Files
kernel/include/linux/huge_mm.h
Kefeng Wang 963756aac1 mm: huge_memory: add vma_thp_disabled() and thp_disabled_by_hw()
Patch series "mm: don't install PMD mappings when THPs are disabled by the
hw/process/vma".

During testing, it was found that we can get PMD mappings in processes
where THP (and more precisely, PMD mappings) are supposed to be disabled. 
While it works as expected for anon+shmem, the pagecache is the
problematic bit.

For s390 KVM this currently means that a VM backed by a file located on
filesystem with large folio support can crash when KVM tries accessing the
problematic page, because the readahead logic might decide to use a
PMD-sized THP and faulting it into the page tables will install a PMD
mapping, something that s390 KVM cannot tolerate.

This might also be a problem with HW that does not support PMD mappings,
but I did not try reproducing it.

Fix it by respecting the ways to disable THPs when deciding whether we can
install a PMD mapping.  khugepaged should already be taking care of not
collapsing if THPs are effectively disabled for the hw/process/vma.


This patch (of 2):

Add vma_thp_disabled() and thp_disabled_by_hw() helpers to be shared by
shmem_allowable_huge_orders() and __thp_vma_allowable_orders().

[david@redhat.com: rename to vma_thp_disabled(), split out thp_disabled_by_hw() ]
Link: https://lkml.kernel.org/r/20241011102445.934409-2-david@redhat.com
Fixes: 793917d997 ("mm/readahead: Add large folio readahead")
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Signed-off-by: David Hildenbrand <david@redhat.com>
Reported-by: Leo Fu <bfu@redhat.com>
Tested-by: Thomas Huth <thuth@redhat.com>
Reviewed-by: Ryan Roberts <ryan.roberts@arm.com>
Cc: Boqiao Fu <bfu@redhat.com>
Cc: Christian Borntraeger <borntraeger@linux.ibm.com>
Cc: Claudio Imbrenda <imbrenda@linux.ibm.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Janosch Frank <frankja@linux.ibm.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-10-17 00:28:10 -07:00

669 lines
19 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_HUGE_MM_H
#define _LINUX_HUGE_MM_H
#include <linux/sched/coredump.h>
#include <linux/mm_types.h>
#include <linux/fs.h> /* only for vma_is_dax() */
#include <linux/kobject.h>
vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf);
int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
void huge_pmd_set_accessed(struct vm_fault *vmf);
int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
struct vm_area_struct *vma);
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud);
#else
static inline void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
{
}
#endif
vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf);
bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr, unsigned long next);
int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma, pmd_t *pmd,
unsigned long addr);
int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma, pud_t *pud,
unsigned long addr);
bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd);
int change_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
pmd_t *pmd, unsigned long addr, pgprot_t newprot,
unsigned long cp_flags);
vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write);
vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write);
enum transparent_hugepage_flag {
TRANSPARENT_HUGEPAGE_UNSUPPORTED,
TRANSPARENT_HUGEPAGE_FLAG,
TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG,
TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG,
};
struct kobject;
struct kobj_attribute;
ssize_t single_hugepage_flag_store(struct kobject *kobj,
struct kobj_attribute *attr,
const char *buf, size_t count,
enum transparent_hugepage_flag flag);
ssize_t single_hugepage_flag_show(struct kobject *kobj,
struct kobj_attribute *attr, char *buf,
enum transparent_hugepage_flag flag);
extern struct kobj_attribute shmem_enabled_attr;
extern struct kobj_attribute thpsize_shmem_enabled_attr;
/*
* Mask of all large folio orders supported for anonymous THP; all orders up to
* and including PMD_ORDER, except order-0 (which is not "huge") and order-1
* (which is a limitation of the THP implementation).
*/
#define THP_ORDERS_ALL_ANON ((BIT(PMD_ORDER + 1) - 1) & ~(BIT(0) | BIT(1)))
/*
* Mask of all large folio orders supported for file THP. Folios in a DAX
* file is never split and the MAX_PAGECACHE_ORDER limit does not apply to
* it. Same to PFNMAPs where there's neither page* nor pagecache.
*/
#define THP_ORDERS_ALL_SPECIAL \
(BIT(PMD_ORDER) | BIT(PUD_ORDER))
#define THP_ORDERS_ALL_FILE_DEFAULT \
((BIT(MAX_PAGECACHE_ORDER + 1) - 1) & ~BIT(0))
/*
* Mask of all large folio orders supported for THP.
*/
#define THP_ORDERS_ALL \
(THP_ORDERS_ALL_ANON | THP_ORDERS_ALL_SPECIAL | THP_ORDERS_ALL_FILE_DEFAULT)
#define TVA_SMAPS (1 << 0) /* Will be used for procfs */
#define TVA_IN_PF (1 << 1) /* Page fault handler */
#define TVA_ENFORCE_SYSFS (1 << 2) /* Obey sysfs configuration */
#define thp_vma_allowable_order(vma, vm_flags, tva_flags, order) \
(!!thp_vma_allowable_orders(vma, vm_flags, tva_flags, BIT(order)))
#define split_folio(f) split_folio_to_list(f, NULL)
#ifdef CONFIG_PGTABLE_HAS_HUGE_LEAVES
#define HPAGE_PMD_SHIFT PMD_SHIFT
#define HPAGE_PUD_SHIFT PUD_SHIFT
#else
#define HPAGE_PMD_SHIFT ({ BUILD_BUG(); 0; })
#define HPAGE_PUD_SHIFT ({ BUILD_BUG(); 0; })
#endif
#define HPAGE_PMD_ORDER (HPAGE_PMD_SHIFT-PAGE_SHIFT)
#define HPAGE_PMD_NR (1<<HPAGE_PMD_ORDER)
#define HPAGE_PMD_MASK (~(HPAGE_PMD_SIZE - 1))
#define HPAGE_PMD_SIZE ((1UL) << HPAGE_PMD_SHIFT)
#define HPAGE_PUD_ORDER (HPAGE_PUD_SHIFT-PAGE_SHIFT)
#define HPAGE_PUD_NR (1<<HPAGE_PUD_ORDER)
#define HPAGE_PUD_MASK (~(HPAGE_PUD_SIZE - 1))
#define HPAGE_PUD_SIZE ((1UL) << HPAGE_PUD_SHIFT)
enum mthp_stat_item {
MTHP_STAT_ANON_FAULT_ALLOC,
MTHP_STAT_ANON_FAULT_FALLBACK,
MTHP_STAT_ANON_FAULT_FALLBACK_CHARGE,
MTHP_STAT_SWPOUT,
MTHP_STAT_SWPOUT_FALLBACK,
MTHP_STAT_SHMEM_ALLOC,
MTHP_STAT_SHMEM_FALLBACK,
MTHP_STAT_SHMEM_FALLBACK_CHARGE,
MTHP_STAT_SPLIT,
MTHP_STAT_SPLIT_FAILED,
MTHP_STAT_SPLIT_DEFERRED,
MTHP_STAT_NR_ANON,
MTHP_STAT_NR_ANON_PARTIALLY_MAPPED,
__MTHP_STAT_COUNT
};
#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
struct mthp_stat {
unsigned long stats[ilog2(MAX_PTRS_PER_PTE) + 1][__MTHP_STAT_COUNT];
};
DECLARE_PER_CPU(struct mthp_stat, mthp_stats);
static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta)
{
if (order <= 0 || order > PMD_ORDER)
return;
this_cpu_add(mthp_stats.stats[order][item], delta);
}
static inline void count_mthp_stat(int order, enum mthp_stat_item item)
{
mod_mthp_stat(order, item, 1);
}
#else
static inline void mod_mthp_stat(int order, enum mthp_stat_item item, int delta)
{
}
static inline void count_mthp_stat(int order, enum mthp_stat_item item)
{
}
#endif
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
extern unsigned long transparent_hugepage_flags;
extern unsigned long huge_anon_orders_always;
extern unsigned long huge_anon_orders_madvise;
extern unsigned long huge_anon_orders_inherit;
static inline bool hugepage_global_enabled(void)
{
return transparent_hugepage_flags &
((1<<TRANSPARENT_HUGEPAGE_FLAG) |
(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG));
}
static inline bool hugepage_global_always(void)
{
return transparent_hugepage_flags &
(1<<TRANSPARENT_HUGEPAGE_FLAG);
}
static inline int highest_order(unsigned long orders)
{
return fls_long(orders) - 1;
}
static inline int next_order(unsigned long *orders, int prev)
{
*orders &= ~BIT(prev);
return highest_order(*orders);
}
/*
* Do the below checks:
* - For file vma, check if the linear page offset of vma is
* order-aligned within the file. The hugepage is
* guaranteed to be order-aligned within the file, but we must
* check that the order-aligned addresses in the VMA map to
* order-aligned offsets within the file, else the hugepage will
* not be mappable.
* - For all vmas, check if the haddr is in an aligned hugepage
* area.
*/
static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
unsigned long addr, int order)
{
unsigned long hpage_size = PAGE_SIZE << order;
unsigned long haddr;
/* Don't have to check pgoff for anonymous vma */
if (!vma_is_anonymous(vma)) {
if (!IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
hpage_size >> PAGE_SHIFT))
return false;
}
haddr = ALIGN_DOWN(addr, hpage_size);
if (haddr < vma->vm_start || haddr + hpage_size > vma->vm_end)
return false;
return true;
}
/*
* Filter the bitfield of input orders to the ones suitable for use in the vma.
* See thp_vma_suitable_order().
* All orders that pass the checks are returned as a bitfield.
*/
static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
unsigned long addr, unsigned long orders)
{
int order;
/*
* Iterate over orders, highest to lowest, removing orders that don't
* meet alignment requirements from the set. Exit loop at first order
* that meets requirements, since all lower orders must also meet
* requirements.
*/
order = highest_order(orders);
while (orders) {
if (thp_vma_suitable_order(vma, addr, order))
break;
order = next_order(&orders, order);
}
return orders;
}
static inline bool file_thp_enabled(struct vm_area_struct *vma)
{
struct inode *inode;
if (!vma->vm_file)
return false;
inode = vma->vm_file->f_inode;
return (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS)) &&
!inode_is_open_for_write(inode) && S_ISREG(inode->i_mode);
}
unsigned long __thp_vma_allowable_orders(struct vm_area_struct *vma,
unsigned long vm_flags,
unsigned long tva_flags,
unsigned long orders);
/**
* thp_vma_allowable_orders - determine hugepage orders that are allowed for vma
* @vma: the vm area to check
* @vm_flags: use these vm_flags instead of vma->vm_flags
* @tva_flags: Which TVA flags to honour
* @orders: bitfield of all orders to consider
*
* Calculates the intersection of the requested hugepage orders and the allowed
* hugepage orders for the provided vma. Permitted orders are encoded as a set
* bit at the corresponding bit position (bit-2 corresponds to order-2, bit-3
* corresponds to order-3, etc). Order-0 is never considered a hugepage order.
*
* Return: bitfield of orders allowed for hugepage in the vma. 0 if no hugepage
* orders are allowed.
*/
static inline
unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
unsigned long vm_flags,
unsigned long tva_flags,
unsigned long orders)
{
/* Optimization to check if required orders are enabled early. */
if ((tva_flags & TVA_ENFORCE_SYSFS) && vma_is_anonymous(vma)) {
unsigned long mask = READ_ONCE(huge_anon_orders_always);
if (vm_flags & VM_HUGEPAGE)
mask |= READ_ONCE(huge_anon_orders_madvise);
if (hugepage_global_always() ||
((vm_flags & VM_HUGEPAGE) && hugepage_global_enabled()))
mask |= READ_ONCE(huge_anon_orders_inherit);
orders &= mask;
if (!orders)
return 0;
}
return __thp_vma_allowable_orders(vma, vm_flags, tva_flags, orders);
}
struct thpsize {
struct kobject kobj;
struct list_head node;
int order;
};
#define to_thpsize(kobj) container_of(kobj, struct thpsize, kobj)
#define transparent_hugepage_use_zero_page() \
(transparent_hugepage_flags & \
(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG))
static inline bool vma_thp_disabled(struct vm_area_struct *vma,
unsigned long vm_flags)
{
/*
* Explicitly disabled through madvise or prctl, or some
* architectures may disable THP for some mappings, for
* example, s390 kvm.
*/
return (vm_flags & VM_NOHUGEPAGE) ||
test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags);
}
static inline bool thp_disabled_by_hw(void)
{
/* If the hardware/firmware marked hugepage support disabled. */
return transparent_hugepage_flags & (1 << TRANSPARENT_HUGEPAGE_UNSUPPORTED);
}
unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags);
unsigned long thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags,
vm_flags_t vm_flags);
bool can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins);
int split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
unsigned int new_order);
int min_order_for_split(struct folio *folio);
int split_folio_to_list(struct folio *folio, struct list_head *list);
static inline int split_huge_page(struct page *page)
{
struct folio *folio = page_folio(page);
int ret = min_order_for_split(folio);
if (ret < 0)
return ret;
/*
* split_huge_page() locks the page before splitting and
* expects the same page that has been split to be locked when
* returned. split_folio(page_folio(page)) cannot be used here
* because it converts the page to folio and passes the head
* page to be split.
*/
return split_huge_page_to_list_to_order(page, NULL, ret);
}
void deferred_split_folio(struct folio *folio, bool partially_mapped);
void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long address, bool freeze, struct folio *folio);
#define split_huge_pmd(__vma, __pmd, __address) \
do { \
pmd_t *____pmd = (__pmd); \
if (is_swap_pmd(*____pmd) || pmd_trans_huge(*____pmd) \
|| pmd_devmap(*____pmd)) \
__split_huge_pmd(__vma, __pmd, __address, \
false, NULL); \
} while (0)
void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
bool freeze, struct folio *folio);
void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
unsigned long address);
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
int change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
pud_t *pudp, unsigned long addr, pgprot_t newprot,
unsigned long cp_flags);
#else
static inline int
change_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
pud_t *pudp, unsigned long addr, pgprot_t newprot,
unsigned long cp_flags) { return 0; }
#endif
#define split_huge_pud(__vma, __pud, __address) \
do { \
pud_t *____pud = (__pud); \
if (pud_trans_huge(*____pud) \
|| pud_devmap(*____pud)) \
__split_huge_pud(__vma, __pud, __address); \
} while (0)
int hugepage_madvise(struct vm_area_struct *vma, unsigned long *vm_flags,
int advice);
int madvise_collapse(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end);
void vma_adjust_trans_huge(struct vm_area_struct *vma, unsigned long start,
unsigned long end, long adjust_next);
spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma);
spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma);
static inline int is_swap_pmd(pmd_t pmd)
{
return !pmd_none(pmd) && !pmd_present(pmd);
}
/* mmap_lock must be held on entry */
static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
struct vm_area_struct *vma)
{
if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd))
return __pmd_trans_huge_lock(pmd, vma);
else
return NULL;
}
static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
struct vm_area_struct *vma)
{
if (pud_trans_huge(*pud) || pud_devmap(*pud))
return __pud_trans_huge_lock(pud, vma);
else
return NULL;
}
/**
* folio_test_pmd_mappable - Can we map this folio with a PMD?
* @folio: The folio to test
*/
static inline bool folio_test_pmd_mappable(struct folio *folio)
{
return folio_order(folio) >= HPAGE_PMD_ORDER;
}
struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmd, int flags, struct dev_pagemap **pgmap);
vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf);
extern struct folio *huge_zero_folio;
extern unsigned long huge_zero_pfn;
static inline bool is_huge_zero_folio(const struct folio *folio)
{
return READ_ONCE(huge_zero_folio) == folio;
}
static inline bool is_huge_zero_pmd(pmd_t pmd)
{
return pmd_present(pmd) && READ_ONCE(huge_zero_pfn) == pmd_pfn(pmd);
}
struct folio *mm_get_huge_zero_folio(struct mm_struct *mm);
void mm_put_huge_zero_folio(struct mm_struct *mm);
#define mk_huge_pmd(page, prot) pmd_mkhuge(mk_pmd(page, prot))
static inline bool thp_migration_supported(void)
{
return IS_ENABLED(CONFIG_ARCH_ENABLE_THP_MIGRATION);
}
void split_huge_pmd_locked(struct vm_area_struct *vma, unsigned long address,
pmd_t *pmd, bool freeze, struct folio *folio);
bool unmap_huge_pmd_locked(struct vm_area_struct *vma, unsigned long addr,
pmd_t *pmdp, struct folio *folio);
#else /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline bool folio_test_pmd_mappable(struct folio *folio)
{
return false;
}
static inline bool thp_vma_suitable_order(struct vm_area_struct *vma,
unsigned long addr, int order)
{
return false;
}
static inline unsigned long thp_vma_suitable_orders(struct vm_area_struct *vma,
unsigned long addr, unsigned long orders)
{
return 0;
}
static inline unsigned long thp_vma_allowable_orders(struct vm_area_struct *vma,
unsigned long vm_flags,
unsigned long tva_flags,
unsigned long orders)
{
return 0;
}
#define transparent_hugepage_flags 0UL
#define thp_get_unmapped_area NULL
static inline unsigned long
thp_get_unmapped_area_vmflags(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags, vm_flags_t vm_flags)
{
return 0;
}
static inline bool
can_split_folio(struct folio *folio, int caller_pins, int *pextra_pins)
{
return false;
}
static inline int
split_huge_page_to_list_to_order(struct page *page, struct list_head *list,
unsigned int new_order)
{
return 0;
}
static inline int split_huge_page(struct page *page)
{
return 0;
}
static inline int split_folio_to_list(struct folio *folio, struct list_head *list)
{
return 0;
}
static inline void deferred_split_folio(struct folio *folio, bool partially_mapped) {}
#define split_huge_pmd(__vma, __pmd, __address) \
do { } while (0)
static inline void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
unsigned long address, bool freeze, struct folio *folio) {}
static inline void split_huge_pmd_address(struct vm_area_struct *vma,
unsigned long address, bool freeze, struct folio *folio) {}
static inline void split_huge_pmd_locked(struct vm_area_struct *vma,
unsigned long address, pmd_t *pmd,
bool freeze, struct folio *folio) {}
static inline bool unmap_huge_pmd_locked(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmdp,
struct folio *folio)
{
return false;
}
#define split_huge_pud(__vma, __pmd, __address) \
do { } while (0)
static inline int hugepage_madvise(struct vm_area_struct *vma,
unsigned long *vm_flags, int advice)
{
return -EINVAL;
}
static inline int madvise_collapse(struct vm_area_struct *vma,
struct vm_area_struct **prev,
unsigned long start, unsigned long end)
{
return -EINVAL;
}
static inline void vma_adjust_trans_huge(struct vm_area_struct *vma,
unsigned long start,
unsigned long end,
long adjust_next)
{
}
static inline int is_swap_pmd(pmd_t pmd)
{
return 0;
}
static inline spinlock_t *pmd_trans_huge_lock(pmd_t *pmd,
struct vm_area_struct *vma)
{
return NULL;
}
static inline spinlock_t *pud_trans_huge_lock(pud_t *pud,
struct vm_area_struct *vma)
{
return NULL;
}
static inline vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf)
{
return 0;
}
static inline bool is_huge_zero_folio(const struct folio *folio)
{
return false;
}
static inline bool is_huge_zero_pmd(pmd_t pmd)
{
return false;
}
static inline void mm_put_huge_zero_folio(struct mm_struct *mm)
{
return;
}
static inline struct page *follow_devmap_pmd(struct vm_area_struct *vma,
unsigned long addr, pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
{
return NULL;
}
static inline bool thp_migration_supported(void)
{
return false;
}
static inline int highest_order(unsigned long orders)
{
return 0;
}
static inline int next_order(unsigned long *orders, int prev)
{
return 0;
}
static inline void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
unsigned long address)
{
}
static inline int change_huge_pud(struct mmu_gather *tlb,
struct vm_area_struct *vma, pud_t *pudp,
unsigned long addr, pgprot_t newprot,
unsigned long cp_flags)
{
return 0;
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
static inline int split_folio_to_list_to_order(struct folio *folio,
struct list_head *list, int new_order)
{
return split_huge_page_to_list_to_order(&folio->page, list, new_order);
}
static inline int split_folio_to_order(struct folio *folio, int new_order)
{
return split_folio_to_list_to_order(folio, NULL, new_order);
}
#endif /* _LINUX_HUGE_MM_H */