Files
kernel/drivers/pwm/pwm-airoha.c
Benjamin Larsson 07cece8c4c pwm: airoha: Add support for EN7581 SoC
Introduce driver for PWM module available on EN7581 SoC.

Limitations:
- Only 8 concurrent waveform generators are available for 8 combinations of
  duty_cycle and period. Waveform generators are shared between 16 GPIO
  pins and 17 SIPO GPIO pins.
- Supports only normal polarity.
- On configuration the currently running period is completed.
- Minimum supported period is 4 ms
- Maximum supported period is 1s

Signed-off-by: Benjamin Larsson <benjamin.larsson@genexis.eu>
Reviewed-by: AngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Co-developed-by: Lorenzo Bianconi <lorenzo@kernel.org>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Reviewed-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Co-developed-by: Christian Marangi <ansuelsmth@gmail.com>
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Link: https://patch.msgid.link/20251013103408.14724-1-ansuelsmth@gmail.com
Signed-off-by: Uwe Kleine-König <ukleinek@kernel.org>
2025-11-07 17:21:34 -03:00

623 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2022 Markus Gothe <markus.gothe@genexis.eu>
* Copyright 2025 Christian Marangi <ansuelsmth@gmail.com>
*
* Limitations:
* - Only 8 concurrent waveform generators are available for 8 combinations of
* duty_cycle and period. Waveform generators are shared between 16 GPIO
* pins and 17 SIPO GPIO pins.
* - Supports only normal polarity.
* - On configuration the currently running period is completed.
* - Minimum supported period is 4 ms
* - Maximum supported period is 1s
*/
#include <linux/array_size.h>
#include <linux/bitfield.h>
#include <linux/bitmap.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/iopoll.h>
#include <linux/math64.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/pwm.h>
#include <linux/regmap.h>
#include <linux/types.h>
#define AIROHA_PWM_REG_SGPIO_LED_DATA 0x0024
#define AIROHA_PWM_SGPIO_LED_DATA_SHIFT_FLAG BIT(31)
#define AIROHA_PWM_SGPIO_LED_DATA_DATA GENMASK(16, 0)
#define AIROHA_PWM_REG_SGPIO_CLK_DIVR 0x0028
#define AIROHA_PWM_SGPIO_CLK_DIVR GENMASK(1, 0)
#define AIROHA_PWM_SGPIO_CLK_DIVR_32 FIELD_PREP_CONST(AIROHA_PWM_SGPIO_CLK_DIVR, 3)
#define AIROHA_PWM_SGPIO_CLK_DIVR_16 FIELD_PREP_CONST(AIROHA_PWM_SGPIO_CLK_DIVR, 2)
#define AIROHA_PWM_SGPIO_CLK_DIVR_8 FIELD_PREP_CONST(AIROHA_PWM_SGPIO_CLK_DIVR, 1)
#define AIROHA_PWM_SGPIO_CLK_DIVR_4 FIELD_PREP_CONST(AIROHA_PWM_SGPIO_CLK_DIVR, 0)
#define AIROHA_PWM_REG_SGPIO_CLK_DLY 0x002c
#define AIROHA_PWM_REG_SIPO_FLASH_MODE_CFG 0x0030
#define AIROHA_PWM_SERIAL_GPIO_FLASH_MODE BIT(1)
#define AIROHA_PWM_SERIAL_GPIO_MODE_74HC164 BIT(0)
#define AIROHA_PWM_REG_GPIO_FLASH_PRD_SET(_n) (0x003c + (4 * (_n)))
#define AIROHA_PWM_REG_GPIO_FLASH_PRD_SHIFT(_n) (16 * (_n))
#define AIROHA_PWM_GPIO_FLASH_PRD_LOW GENMASK(15, 8)
#define AIROHA_PWM_GPIO_FLASH_PRD_HIGH GENMASK(7, 0)
#define AIROHA_PWM_REG_GPIO_FLASH_MAP(_n) (0x004c + (4 * (_n)))
#define AIROHA_PWM_REG_GPIO_FLASH_MAP_SHIFT(_n) (4 * (_n))
#define AIROHA_PWM_GPIO_FLASH_EN BIT(3)
#define AIROHA_PWM_GPIO_FLASH_SET_ID GENMASK(2, 0)
/* Register map is equal to GPIO flash map */
#define AIROHA_PWM_REG_SIPO_FLASH_MAP(_n) (0x0054 + (4 * (_n)))
#define AIROHA_PWM_REG_CYCLE_CFG_VALUE(_n) (0x0098 + (4 * (_n)))
#define AIROHA_PWM_REG_CYCLE_CFG_SHIFT(_n) (8 * (_n))
#define AIROHA_PWM_WAVE_GEN_CYCLE GENMASK(7, 0)
/* GPIO/SIPO flash map handles 8 pins in one register */
#define AIROHA_PWM_PINS_PER_FLASH_MAP 8
/* Cycle(Period) registers handles 4 generators in one 32-bit register */
#define AIROHA_PWM_BUCKET_PER_CYCLE_CFG 4
/* Flash(Duty) producer handles 2 generators in one 32-bit register */
#define AIROHA_PWM_BUCKET_PER_FLASH_PROD 2
#define AIROHA_PWM_NUM_BUCKETS 8
/*
* The first 16 GPIO pins, GPIO0-GPIO15, are mapped into 16 PWM channels, 0-15.
* The SIPO GPIO pins are 17 pins which are mapped into 17 PWM channels, 16-32.
* However, we've only got 8 concurrent waveform generators and can therefore
* only use up to 8 different combinations of duty cycle and period at a time.
*/
#define AIROHA_PWM_NUM_GPIO 16
#define AIROHA_PWM_NUM_SIPO 17
#define AIROHA_PWM_MAX_CHANNELS (AIROHA_PWM_NUM_GPIO + AIROHA_PWM_NUM_SIPO)
struct airoha_pwm_bucket {
/* Concurrent access protected by PWM core */
int used;
u32 period_ticks;
u32 duty_ticks;
};
struct airoha_pwm {
struct regmap *regmap;
DECLARE_BITMAP(initialized, AIROHA_PWM_MAX_CHANNELS);
struct airoha_pwm_bucket buckets[AIROHA_PWM_NUM_BUCKETS];
/* Cache bucket used by each pwm channel */
u8 channel_bucket[AIROHA_PWM_MAX_CHANNELS];
};
/* The PWM hardware supports periods between 4 ms and 1 s */
#define AIROHA_PWM_PERIOD_TICK_NS (4 * NSEC_PER_MSEC)
#define AIROHA_PWM_PERIOD_MAX_NS (1 * NSEC_PER_SEC)
/* It is represented internally as 1/250 s between 1 and 250. Unit is ticks. */
#define AIROHA_PWM_PERIOD_MIN 1
#define AIROHA_PWM_PERIOD_MAX 250
/* Duty cycle is relative with 255 corresponding to 100% */
#define AIROHA_PWM_DUTY_FULL 255
static void airoha_pwm_get_flash_map_addr_and_shift(unsigned int hwpwm,
u32 *addr, u32 *shift)
{
unsigned int offset, hwpwm_bit;
if (hwpwm >= AIROHA_PWM_NUM_GPIO) {
unsigned int sipohwpwm = hwpwm - AIROHA_PWM_NUM_GPIO;
offset = sipohwpwm / AIROHA_PWM_PINS_PER_FLASH_MAP;
hwpwm_bit = sipohwpwm % AIROHA_PWM_PINS_PER_FLASH_MAP;
/* One FLASH_MAP register handles 8 pins */
*shift = AIROHA_PWM_REG_GPIO_FLASH_MAP_SHIFT(hwpwm_bit);
*addr = AIROHA_PWM_REG_SIPO_FLASH_MAP(offset);
} else {
offset = hwpwm / AIROHA_PWM_PINS_PER_FLASH_MAP;
hwpwm_bit = hwpwm % AIROHA_PWM_PINS_PER_FLASH_MAP;
/* One FLASH_MAP register handles 8 pins */
*shift = AIROHA_PWM_REG_GPIO_FLASH_MAP_SHIFT(hwpwm_bit);
*addr = AIROHA_PWM_REG_GPIO_FLASH_MAP(offset);
}
}
static u32 airoha_pwm_get_period_ticks_from_ns(u32 period_ns)
{
return period_ns / AIROHA_PWM_PERIOD_TICK_NS;
}
static u32 airoha_pwm_get_duty_ticks_from_ns(u32 period_ns, u32 duty_ns)
{
return mul_u64_u32_div(duty_ns, AIROHA_PWM_DUTY_FULL, period_ns);
}
static u32 airoha_pwm_get_period_ns_from_ticks(u32 period_tick)
{
return period_tick * AIROHA_PWM_PERIOD_TICK_NS;
}
static u32 airoha_pwm_get_duty_ns_from_ticks(u32 period_tick, u32 duty_tick)
{
u32 period_ns = period_tick * AIROHA_PWM_PERIOD_TICK_NS;
/*
* Overflow can't occur in multiplication as duty_tick is just 8 bit
* and period_ns is clamped to AIROHA_PWM_PERIOD_MAX_NS and fit in a
* u64.
*/
return DIV_U64_ROUND_UP(duty_tick * period_ns, AIROHA_PWM_DUTY_FULL);
}
static int airoha_pwm_get_bucket(struct airoha_pwm *pc, int bucket,
u64 *period_ns, u64 *duty_ns)
{
struct regmap *map = pc->regmap;
u32 period_tick, duty_tick;
unsigned int offset;
u32 shift, val;
int ret;
offset = bucket / AIROHA_PWM_BUCKET_PER_CYCLE_CFG;
shift = bucket % AIROHA_PWM_BUCKET_PER_CYCLE_CFG;
shift = AIROHA_PWM_REG_CYCLE_CFG_SHIFT(shift);
ret = regmap_read(map, AIROHA_PWM_REG_CYCLE_CFG_VALUE(offset), &val);
if (ret)
return ret;
period_tick = FIELD_GET(AIROHA_PWM_WAVE_GEN_CYCLE, val >> shift);
*period_ns = airoha_pwm_get_period_ns_from_ticks(period_tick);
offset = bucket / AIROHA_PWM_BUCKET_PER_FLASH_PROD;
shift = bucket % AIROHA_PWM_BUCKET_PER_FLASH_PROD;
shift = AIROHA_PWM_REG_GPIO_FLASH_PRD_SHIFT(shift);
ret = regmap_read(map, AIROHA_PWM_REG_GPIO_FLASH_PRD_SET(offset),
&val);
if (ret)
return ret;
duty_tick = FIELD_GET(AIROHA_PWM_GPIO_FLASH_PRD_HIGH, val >> shift);
*duty_ns = airoha_pwm_get_duty_ns_from_ticks(period_tick, duty_tick);
return 0;
}
static int airoha_pwm_get_generator(struct airoha_pwm *pc, u32 duty_ticks,
u32 period_ticks)
{
int best = -ENOENT, unused = -ENOENT;
u32 duty_ns, best_duty_ns = 0;
u32 best_period_ticks = 0;
unsigned int i;
duty_ns = airoha_pwm_get_duty_ns_from_ticks(period_ticks, duty_ticks);
for (i = 0; i < ARRAY_SIZE(pc->buckets); i++) {
struct airoha_pwm_bucket *bucket = &pc->buckets[i];
u32 bucket_period_ticks = bucket->period_ticks;
u32 bucket_duty_ticks = bucket->duty_ticks;
/* If found, save an unused bucket to return it later */
if (!bucket->used) {
unused = i;
continue;
}
/* We found a matching bucket, exit early */
if (duty_ticks == bucket_duty_ticks &&
period_ticks == bucket_period_ticks)
return i;
/*
* Unlike duty cycle zero, which can be handled by
* disabling PWM, a generator is needed for full duty
* cycle but it can be reused regardless of period
*/
if (duty_ticks == AIROHA_PWM_DUTY_FULL &&
bucket_duty_ticks == AIROHA_PWM_DUTY_FULL)
return i;
/*
* With an unused bucket available, skip searching for
* a bucket to recycle (closer to the requested period/duty)
*/
if (unused >= 0)
continue;
/* Ignore bucket with invalid period */
if (bucket_period_ticks > period_ticks)
continue;
/*
* Search for a bucket closer to the requested period
* that has the maximal possible period that isn't bigger
* than the requested period. For that period pick the maximal
* duty cycle that isn't bigger than the requested duty_cycle.
*/
if (bucket_period_ticks >= best_period_ticks) {
u32 bucket_duty_ns = airoha_pwm_get_duty_ns_from_ticks(bucket_period_ticks,
bucket_duty_ticks);
/* Skip bucket that goes over the requested duty */
if (bucket_duty_ns > duty_ns)
continue;
if (bucket_duty_ns > best_duty_ns) {
best_period_ticks = bucket_period_ticks;
best_duty_ns = bucket_duty_ns;
best = i;
}
}
}
/* Return an unused bucket or the best one found (if ever) */
return unused >= 0 ? unused : best;
}
static void airoha_pwm_release_bucket_config(struct airoha_pwm *pc,
unsigned int hwpwm)
{
int bucket;
/* Nothing to clear, PWM channel never used */
if (!test_bit(hwpwm, pc->initialized))
return;
bucket = pc->channel_bucket[hwpwm];
pc->buckets[bucket].used--;
}
static int airoha_pwm_apply_bucket_config(struct airoha_pwm *pc, unsigned int bucket,
u32 duty_ticks, u32 period_ticks)
{
u32 mask, shift, val;
u32 offset;
int ret;
offset = bucket / AIROHA_PWM_BUCKET_PER_CYCLE_CFG;
shift = bucket % AIROHA_PWM_BUCKET_PER_CYCLE_CFG;
shift = AIROHA_PWM_REG_CYCLE_CFG_SHIFT(shift);
/* Configure frequency divisor */
mask = AIROHA_PWM_WAVE_GEN_CYCLE << shift;
val = FIELD_PREP(AIROHA_PWM_WAVE_GEN_CYCLE, period_ticks) << shift;
ret = regmap_update_bits(pc->regmap, AIROHA_PWM_REG_CYCLE_CFG_VALUE(offset),
mask, val);
if (ret)
return ret;
offset = bucket / AIROHA_PWM_BUCKET_PER_FLASH_PROD;
shift = bucket % AIROHA_PWM_BUCKET_PER_FLASH_PROD;
shift = AIROHA_PWM_REG_GPIO_FLASH_PRD_SHIFT(shift);
/* Configure duty cycle */
mask = AIROHA_PWM_GPIO_FLASH_PRD_HIGH << shift;
val = FIELD_PREP(AIROHA_PWM_GPIO_FLASH_PRD_HIGH, duty_ticks) << shift;
ret = regmap_update_bits(pc->regmap, AIROHA_PWM_REG_GPIO_FLASH_PRD_SET(offset),
mask, val);
if (ret)
return ret;
mask = AIROHA_PWM_GPIO_FLASH_PRD_LOW << shift;
val = FIELD_PREP(AIROHA_PWM_GPIO_FLASH_PRD_LOW,
AIROHA_PWM_DUTY_FULL - duty_ticks) << shift;
return regmap_update_bits(pc->regmap, AIROHA_PWM_REG_GPIO_FLASH_PRD_SET(offset),
mask, val);
}
static int airoha_pwm_consume_generator(struct airoha_pwm *pc,
u32 duty_ticks, u32 period_ticks,
unsigned int hwpwm)
{
bool config_bucket = false;
int bucket, ret;
/*
* Search for a bucket that already satisfies duty and period
* or an unused one.
* If not found, -ENOENT is returned.
*/
bucket = airoha_pwm_get_generator(pc, duty_ticks, period_ticks);
if (bucket < 0)
return bucket;
/* Release previous used bucket (if any) */
airoha_pwm_release_bucket_config(pc, hwpwm);
if (!pc->buckets[bucket].used)
config_bucket = true;
pc->buckets[bucket].used++;
if (config_bucket) {
pc->buckets[bucket].period_ticks = period_ticks;
pc->buckets[bucket].duty_ticks = duty_ticks;
ret = airoha_pwm_apply_bucket_config(pc, bucket,
duty_ticks,
period_ticks);
if (ret) {
pc->buckets[bucket].used--;
return ret;
}
}
return bucket;
}
static int airoha_pwm_sipo_init(struct airoha_pwm *pc)
{
u32 val;
int ret;
ret = regmap_clear_bits(pc->regmap, AIROHA_PWM_REG_SIPO_FLASH_MODE_CFG,
AIROHA_PWM_SERIAL_GPIO_MODE_74HC164);
if (ret)
return ret;
/* Configure shift register chip clock timings, use 32x divisor */
ret = regmap_write(pc->regmap, AIROHA_PWM_REG_SGPIO_CLK_DIVR,
AIROHA_PWM_SGPIO_CLK_DIVR_32);
if (ret)
return ret;
/*
* Configure the shift register chip clock delay. This needs
* to be configured based on the chip characteristics when the SoC
* apply the shift register configuration.
* This doesn't affect actual PWM operation and is only specific to
* the shift register chip.
*
* For 74HC164 we set it to 0.
*
* For reference, the actual delay applied is the internal clock
* feed to the SGPIO chip + 1.
*
* From documentation is specified that clock delay should not be
* greater than (AIROHA_PWM_REG_SGPIO_CLK_DIVR / 2) - 1.
*/
ret = regmap_write(pc->regmap, AIROHA_PWM_REG_SGPIO_CLK_DLY, 0);
if (ret)
return ret;
/*
* It is necessary to explicitly shift out all zeros after muxing
* to initialize the shift register before enabling PWM
* mode because in PWM mode SIPO will not start shifting until
* it needs to output a non-zero value (bit 31 of led_data
* indicates shifting in progress and it must return to zero
* before led_data can be written or PWM mode can be set).
*/
ret = regmap_read_poll_timeout(pc->regmap, AIROHA_PWM_REG_SGPIO_LED_DATA, val,
!(val & AIROHA_PWM_SGPIO_LED_DATA_SHIFT_FLAG),
10, 200 * USEC_PER_MSEC);
if (ret)
return ret;
ret = regmap_clear_bits(pc->regmap, AIROHA_PWM_REG_SGPIO_LED_DATA,
AIROHA_PWM_SGPIO_LED_DATA_DATA);
if (ret)
return ret;
ret = regmap_read_poll_timeout(pc->regmap, AIROHA_PWM_REG_SGPIO_LED_DATA, val,
!(val & AIROHA_PWM_SGPIO_LED_DATA_SHIFT_FLAG),
10, 200 * USEC_PER_MSEC);
if (ret)
return ret;
/* Set SIPO in PWM mode */
return regmap_set_bits(pc->regmap, AIROHA_PWM_REG_SIPO_FLASH_MODE_CFG,
AIROHA_PWM_SERIAL_GPIO_FLASH_MODE);
}
static int airoha_pwm_config_flash_map(struct airoha_pwm *pc,
unsigned int hwpwm, int index)
{
unsigned int addr;
u32 shift;
int ret;
airoha_pwm_get_flash_map_addr_and_shift(hwpwm, &addr, &shift);
/* negative index means disable PWM channel */
if (index < 0) {
/*
* If we need to disable the PWM, we just put low the
* GPIO. No need to setup buckets.
*/
return regmap_clear_bits(pc->regmap, addr,
AIROHA_PWM_GPIO_FLASH_EN << shift);
}
ret = regmap_update_bits(pc->regmap, addr,
AIROHA_PWM_GPIO_FLASH_SET_ID << shift,
FIELD_PREP(AIROHA_PWM_GPIO_FLASH_SET_ID, index) << shift);
if (ret)
return ret;
return regmap_set_bits(pc->regmap, addr, AIROHA_PWM_GPIO_FLASH_EN << shift);
}
static int airoha_pwm_config(struct airoha_pwm *pc, struct pwm_device *pwm,
u32 period_ticks, u32 duty_ticks)
{
unsigned int hwpwm = pwm->hwpwm;
int bucket, ret;
bucket = airoha_pwm_consume_generator(pc, duty_ticks, period_ticks,
hwpwm);
if (bucket < 0)
return bucket;
ret = airoha_pwm_config_flash_map(pc, hwpwm, bucket);
if (ret) {
pc->buckets[bucket].used--;
return ret;
}
__set_bit(hwpwm, pc->initialized);
pc->channel_bucket[hwpwm] = bucket;
/*
* SIPO are special GPIO attached to a shift register chip. The handling
* of this chip is internal to the SoC that takes care of applying the
* values based on the flash map. To apply a new flash map, it's needed
* to trigger a refresh on the shift register chip.
* If a SIPO is getting configuring , always reinit the shift register
* chip to make sure the correct flash map is applied.
* Skip reconfiguring the shift register if the related hwpwm
* is disabled (as it doesn't need to be mapped).
*/
if (hwpwm >= AIROHA_PWM_NUM_GPIO) {
ret = airoha_pwm_sipo_init(pc);
if (ret) {
airoha_pwm_release_bucket_config(pc, hwpwm);
return ret;
}
}
return 0;
}
static void airoha_pwm_disable(struct airoha_pwm *pc, struct pwm_device *pwm)
{
/* Disable PWM and release the bucket */
airoha_pwm_config_flash_map(pc, pwm->hwpwm, -1);
airoha_pwm_release_bucket_config(pc, pwm->hwpwm);
__clear_bit(pwm->hwpwm, pc->initialized);
/* If no SIPO is used, disable the shift register chip */
if (!bitmap_read(pc->initialized,
AIROHA_PWM_NUM_GPIO, AIROHA_PWM_NUM_SIPO))
regmap_clear_bits(pc->regmap, AIROHA_PWM_REG_SIPO_FLASH_MODE_CFG,
AIROHA_PWM_SERIAL_GPIO_FLASH_MODE);
}
static int airoha_pwm_apply(struct pwm_chip *chip, struct pwm_device *pwm,
const struct pwm_state *state)
{
struct airoha_pwm *pc = pwmchip_get_drvdata(chip);
u32 period_ticks, duty_ticks;
u32 period_ns, duty_ns;
if (!state->enabled) {
airoha_pwm_disable(pc, pwm);
return 0;
}
/* Only normal polarity is supported */
if (state->polarity == PWM_POLARITY_INVERSED)
return -EINVAL;
/* Exit early if period is less than minimum supported */
if (state->period < AIROHA_PWM_PERIOD_TICK_NS)
return -EINVAL;
/* Clamp period to MAX supported value */
if (state->period > AIROHA_PWM_PERIOD_MAX_NS)
period_ns = AIROHA_PWM_PERIOD_MAX_NS;
else
period_ns = state->period;
/* Validate duty to configured period */
if (state->duty_cycle > period_ns)
duty_ns = period_ns;
else
duty_ns = state->duty_cycle;
/* Convert period ns to ticks */
period_ticks = airoha_pwm_get_period_ticks_from_ns(period_ns);
/* Convert period ticks to ns again for cosistent duty tick calculation */
period_ns = airoha_pwm_get_period_ns_from_ticks(period_ticks);
duty_ticks = airoha_pwm_get_duty_ticks_from_ns(period_ns, duty_ns);
return airoha_pwm_config(pc, pwm, period_ticks, duty_ticks);
}
static int airoha_pwm_get_state(struct pwm_chip *chip, struct pwm_device *pwm,
struct pwm_state *state)
{
struct airoha_pwm *pc = pwmchip_get_drvdata(chip);
int ret, hwpwm = pwm->hwpwm;
u32 addr, shift, val;
u8 bucket;
airoha_pwm_get_flash_map_addr_and_shift(hwpwm, &addr, &shift);
ret = regmap_read(pc->regmap, addr, &val);
if (ret)
return ret;
state->enabled = FIELD_GET(AIROHA_PWM_GPIO_FLASH_EN, val >> shift);
if (!state->enabled)
return 0;
state->polarity = PWM_POLARITY_NORMAL;
bucket = FIELD_GET(AIROHA_PWM_GPIO_FLASH_SET_ID, val >> shift);
return airoha_pwm_get_bucket(pc, bucket, &state->period,
&state->duty_cycle);
}
static const struct pwm_ops airoha_pwm_ops = {
.apply = airoha_pwm_apply,
.get_state = airoha_pwm_get_state,
};
static int airoha_pwm_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct airoha_pwm *pc;
struct pwm_chip *chip;
int ret;
chip = devm_pwmchip_alloc(dev, AIROHA_PWM_MAX_CHANNELS, sizeof(*pc));
if (IS_ERR(chip))
return PTR_ERR(chip);
chip->ops = &airoha_pwm_ops;
pc = pwmchip_get_drvdata(chip);
pc->regmap = device_node_to_regmap(dev_of_node(dev->parent));
if (IS_ERR(pc->regmap))
return dev_err_probe(dev, PTR_ERR(pc->regmap), "Failed to get PWM regmap\n");
ret = devm_pwmchip_add(dev, chip);
if (ret)
return dev_err_probe(dev, ret, "Failed to add PWM chip\n");
return 0;
}
static const struct of_device_id airoha_pwm_of_match[] = {
{ .compatible = "airoha,en7581-pwm" },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, airoha_pwm_of_match);
static struct platform_driver airoha_pwm_driver = {
.driver = {
.name = "pwm-airoha",
.probe_type = PROBE_PREFER_ASYNCHRONOUS,
.of_match_table = airoha_pwm_of_match,
},
.probe = airoha_pwm_probe,
};
module_platform_driver(airoha_pwm_driver);
MODULE_AUTHOR("Lorenzo Bianconi <lorenzo@kernel.org>");
MODULE_AUTHOR("Markus Gothe <markus.gothe@genexis.eu>");
MODULE_AUTHOR("Benjamin Larsson <benjamin.larsson@genexis.eu>");
MODULE_AUTHOR("Christian Marangi <ansuelsmth@gmail.com>");
MODULE_DESCRIPTION("Airoha EN7581 PWM driver");
MODULE_LICENSE("GPL");