mirror of
https://github.com/tursodatabase/libsql.git
synced 2025-01-18 23:31:50 +00:00
2026 lines
65 KiB
C
2026 lines
65 KiB
C
/*
|
|
** 2004 May 26
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains code use to manipulate "Mem" structure. A "Mem"
|
|
** stores a single value in the VDBE. Mem is an opaque structure visible
|
|
** only within the VDBE. Interface routines refer to a Mem using the
|
|
** name sqlite_value
|
|
*/
|
|
#include "sqliteInt.h"
|
|
#include "vdbeInt.h"
|
|
|
|
/* True if X is a power of two. 0 is considered a power of two here.
|
|
** In other words, return true if X has at most one bit set.
|
|
*/
|
|
#define ISPOWEROF2(X) (((X)&((X)-1))==0)
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Check invariants on a Mem object.
|
|
**
|
|
** This routine is intended for use inside of assert() statements, like
|
|
** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
|
|
*/
|
|
int sqlite3VdbeCheckMemInvariants(Mem *p){
|
|
/* If MEM_Dyn is set then Mem.xDel!=0.
|
|
** Mem.xDel might not be initialized if MEM_Dyn is clear.
|
|
*/
|
|
assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
|
|
|
|
/* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
|
|
** ensure that if Mem.szMalloc>0 then it is safe to do
|
|
** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
|
|
** That saves a few cycles in inner loops. */
|
|
assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
|
|
|
|
/* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
|
|
assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
|
|
|
|
if( p->flags & MEM_Null ){
|
|
/* Cannot be both MEM_Null and some other type */
|
|
assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
|
|
|
|
/* If MEM_Null is set, then either the value is a pure NULL (the usual
|
|
** case) or it is a pointer set using sqlite3_bind_pointer() or
|
|
** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
|
|
** set.
|
|
*/
|
|
if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
|
|
/* This is a pointer type. There may be a flag to indicate what to
|
|
** do with the pointer. */
|
|
assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
|
|
((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
|
|
((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
|
|
|
|
/* No other bits set */
|
|
assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
|
|
|MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
|
|
}else{
|
|
/* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
|
|
** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
|
|
}
|
|
}else{
|
|
/* The MEM_Cleared bit is only allowed on NULLs */
|
|
assert( (p->flags & MEM_Cleared)==0 );
|
|
}
|
|
|
|
/* The szMalloc field holds the correct memory allocation size */
|
|
assert( p->szMalloc==0
|
|
|| (p->flags==MEM_Undefined
|
|
&& p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
|
|
|| p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
|
|
|
|
/* If p holds a string or blob, the Mem.z must point to exactly
|
|
** one of the following:
|
|
**
|
|
** (1) Memory in Mem.zMalloc and managed by the Mem object
|
|
** (2) Memory to be freed using Mem.xDel
|
|
** (3) An ephemeral string or blob
|
|
** (4) A static string or blob
|
|
*/
|
|
if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
|
|
assert(
|
|
((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
|
|
((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
|
|
((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
|
|
((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
|
|
);
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
|
|
** into a buffer.
|
|
*/
|
|
static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
|
|
StrAccum acc;
|
|
assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
|
|
assert( sz>22 );
|
|
if( p->flags & MEM_Int ){
|
|
#if GCC_VERSION>=7000000
|
|
/* Work-around for GCC bug
|
|
** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
|
|
i64 x;
|
|
assert( (p->flags&MEM_Int)*2==sizeof(x) );
|
|
memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
|
|
p->n = sqlite3Int64ToText(x, zBuf);
|
|
#else
|
|
p->n = sqlite3Int64ToText(p->u.i, zBuf);
|
|
#endif
|
|
}else{
|
|
sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
|
|
sqlite3_str_appendf(&acc, "%!.15g",
|
|
(p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
|
|
assert( acc.zText==zBuf && acc.mxAlloc<=0 );
|
|
zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
|
|
p->n = acc.nChar;
|
|
}
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Validity checks on pMem. pMem holds a string.
|
|
**
|
|
** (1) Check that string value of pMem agrees with its integer or real value.
|
|
** (2) Check that the string is correctly zero terminated
|
|
**
|
|
** A single int or real value always converts to the same strings. But
|
|
** many different strings can be converted into the same int or real.
|
|
** If a table contains a numeric value and an index is based on the
|
|
** corresponding string value, then it is important that the string be
|
|
** derived from the numeric value, not the other way around, to ensure
|
|
** that the index and table are consistent. See ticket
|
|
** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
|
|
** an example.
|
|
**
|
|
** This routine looks at pMem to verify that if it has both a numeric
|
|
** representation and a string representation then the string rep has
|
|
** been derived from the numeric and not the other way around. It returns
|
|
** true if everything is ok and false if there is a problem.
|
|
**
|
|
** This routine is for use inside of assert() statements only.
|
|
*/
|
|
int sqlite3VdbeMemValidStrRep(Mem *p){
|
|
Mem tmp;
|
|
char zBuf[100];
|
|
char *z;
|
|
int i, j, incr;
|
|
if( (p->flags & MEM_Str)==0 ) return 1;
|
|
if( p->db && p->db->mallocFailed ) return 1;
|
|
if( p->flags & MEM_Term ){
|
|
/* Insure that the string is properly zero-terminated. Pay particular
|
|
** attention to the case where p->n is odd */
|
|
if( p->szMalloc>0 && p->z==p->zMalloc ){
|
|
assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
|
|
assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
|
|
}
|
|
assert( p->z[p->n]==0 );
|
|
assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
|
|
assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
|
|
}
|
|
if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
|
|
memcpy(&tmp, p, sizeof(tmp));
|
|
vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp);
|
|
z = p->z;
|
|
i = j = 0;
|
|
incr = 1;
|
|
if( p->enc!=SQLITE_UTF8 ){
|
|
incr = 2;
|
|
if( p->enc==SQLITE_UTF16BE ) z++;
|
|
}
|
|
while( zBuf[j] ){
|
|
if( zBuf[j++]!=z[i] ) return 0;
|
|
i += incr;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
/*
|
|
** If pMem is an object with a valid string representation, this routine
|
|
** ensures the internal encoding for the string representation is
|
|
** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
|
|
**
|
|
** If pMem is not a string object, or the encoding of the string
|
|
** representation is already stored using the requested encoding, then this
|
|
** routine is a no-op.
|
|
**
|
|
** SQLITE_OK is returned if the conversion is successful (or not required).
|
|
** SQLITE_NOMEM may be returned if a malloc() fails during conversion
|
|
** between formats.
|
|
*/
|
|
int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
int rc;
|
|
#endif
|
|
assert( pMem!=0 );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
|
|
|| desiredEnc==SQLITE_UTF16BE );
|
|
if( !(pMem->flags&MEM_Str) ){
|
|
pMem->enc = desiredEnc;
|
|
return SQLITE_OK;
|
|
}
|
|
if( pMem->enc==desiredEnc ){
|
|
return SQLITE_OK;
|
|
}
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
#ifdef SQLITE_OMIT_UTF16
|
|
return SQLITE_ERROR;
|
|
#else
|
|
|
|
/* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
|
|
** then the encoding of the value may not have changed.
|
|
*/
|
|
rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
|
|
assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
|
|
assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
|
|
assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
|
|
return rc;
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
** Make sure pMem->z points to a writable allocation of at least n bytes.
|
|
**
|
|
** If the bPreserve argument is true, then copy of the content of
|
|
** pMem->z into the new allocation. pMem must be either a string or
|
|
** blob if bPreserve is true. If bPreserve is false, any prior content
|
|
** in pMem->z is discarded.
|
|
*/
|
|
SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
|
|
assert( sqlite3VdbeCheckMemInvariants(pMem) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
testcase( pMem->db==0 );
|
|
|
|
/* If the bPreserve flag is set to true, then the memory cell must already
|
|
** contain a valid string or blob value. */
|
|
assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
|
|
testcase( bPreserve && pMem->z==0 );
|
|
|
|
assert( pMem->szMalloc==0
|
|
|| (pMem->flags==MEM_Undefined
|
|
&& pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
|
|
|| pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
|
|
if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
|
|
if( pMem->db ){
|
|
pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
|
|
}else{
|
|
pMem->zMalloc = sqlite3Realloc(pMem->z, n);
|
|
if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
|
|
pMem->z = pMem->zMalloc;
|
|
}
|
|
bPreserve = 0;
|
|
}else{
|
|
if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
|
|
pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
|
|
}
|
|
if( pMem->zMalloc==0 ){
|
|
sqlite3VdbeMemSetNull(pMem);
|
|
pMem->z = 0;
|
|
pMem->szMalloc = 0;
|
|
return SQLITE_NOMEM_BKPT;
|
|
}else{
|
|
pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
|
|
}
|
|
|
|
if( bPreserve && pMem->z ){
|
|
assert( pMem->z!=pMem->zMalloc );
|
|
memcpy(pMem->zMalloc, pMem->z, pMem->n);
|
|
}
|
|
if( (pMem->flags&MEM_Dyn)!=0 ){
|
|
assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
|
|
pMem->xDel((void *)(pMem->z));
|
|
}
|
|
|
|
pMem->z = pMem->zMalloc;
|
|
pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Change the pMem->zMalloc allocation to be at least szNew bytes.
|
|
** If pMem->zMalloc already meets or exceeds the requested size, this
|
|
** routine is a no-op.
|
|
**
|
|
** Any prior string or blob content in the pMem object may be discarded.
|
|
** The pMem->xDel destructor is called, if it exists. Though MEM_Str
|
|
** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
|
|
** and MEM_Null values are preserved.
|
|
**
|
|
** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
|
|
** if unable to complete the resizing.
|
|
*/
|
|
int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
|
|
assert( CORRUPT_DB || szNew>0 );
|
|
assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
|
|
if( pMem->szMalloc<szNew ){
|
|
return sqlite3VdbeMemGrow(pMem, szNew, 0);
|
|
}
|
|
assert( (pMem->flags & MEM_Dyn)==0 );
|
|
pMem->z = pMem->zMalloc;
|
|
pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** If pMem is already a string, detect if it is a zero-terminated
|
|
** string, or make it into one if possible, and mark it as such.
|
|
**
|
|
** This is an optimization. Correct operation continues even if
|
|
** this routine is a no-op.
|
|
*/
|
|
void sqlite3VdbeMemZeroTerminateIfAble(Mem *pMem){
|
|
if( (pMem->flags & (MEM_Str|MEM_Term|MEM_Ephem|MEM_Static))!=MEM_Str ){
|
|
/* pMem must be a string, and it cannot be an ephemeral or static string */
|
|
return;
|
|
}
|
|
if( pMem->enc!=SQLITE_UTF8 ) return;
|
|
if( NEVER(pMem->z==0) ) return;
|
|
if( pMem->flags & MEM_Dyn ){
|
|
if( pMem->xDel==sqlite3_free
|
|
&& sqlite3_msize(pMem->z) >= (u64)(pMem->n+1)
|
|
){
|
|
pMem->z[pMem->n] = 0;
|
|
pMem->flags |= MEM_Term;
|
|
return;
|
|
}
|
|
if( pMem->xDel==sqlite3RCStrUnref ){
|
|
/* Blindly assume that all RCStr objects are zero-terminated */
|
|
pMem->flags |= MEM_Term;
|
|
return;
|
|
}
|
|
}else if( pMem->szMalloc >= pMem->n+1 ){
|
|
pMem->z[pMem->n] = 0;
|
|
pMem->flags |= MEM_Term;
|
|
return;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** It is already known that pMem contains an unterminated string.
|
|
** Add the zero terminator.
|
|
**
|
|
** Three bytes of zero are added. In this way, there is guaranteed
|
|
** to be a double-zero byte at an even byte boundary in order to
|
|
** terminate a UTF16 string, even if the initial size of the buffer
|
|
** is an odd number of bytes.
|
|
*/
|
|
static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
|
|
if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
pMem->z[pMem->n] = 0;
|
|
pMem->z[pMem->n+1] = 0;
|
|
pMem->z[pMem->n+2] = 0;
|
|
pMem->flags |= MEM_Term;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Change pMem so that its MEM_Str or MEM_Blob value is stored in
|
|
** MEM.zMalloc, where it can be safely written.
|
|
**
|
|
** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
|
|
*/
|
|
int sqlite3VdbeMemMakeWriteable(Mem *pMem){
|
|
assert( pMem!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
|
|
if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
|
|
if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
|
|
int rc = vdbeMemAddTerminator(pMem);
|
|
if( rc ) return rc;
|
|
}
|
|
}
|
|
pMem->flags &= ~MEM_Ephem;
|
|
#ifdef SQLITE_DEBUG
|
|
pMem->pScopyFrom = 0;
|
|
#endif
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** If the given Mem* has a zero-filled tail, turn it into an ordinary
|
|
** blob stored in dynamically allocated space.
|
|
*/
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
int sqlite3VdbeMemExpandBlob(Mem *pMem){
|
|
int nByte;
|
|
assert( pMem!=0 );
|
|
assert( pMem->flags & MEM_Zero );
|
|
assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
|
|
testcase( sqlite3_value_nochange(pMem) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
|
|
/* Set nByte to the number of bytes required to store the expanded blob. */
|
|
nByte = pMem->n + pMem->u.nZero;
|
|
if( nByte<=0 ){
|
|
if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
|
|
nByte = 1;
|
|
}
|
|
if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
assert( pMem->z!=0 );
|
|
assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
|
|
|
|
memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
|
|
pMem->n += pMem->u.nZero;
|
|
pMem->flags &= ~(MEM_Zero|MEM_Term);
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Make sure the given Mem is \u0000 terminated.
|
|
*/
|
|
int sqlite3VdbeMemNulTerminate(Mem *pMem){
|
|
assert( pMem!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
|
|
testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
|
|
if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
|
|
return SQLITE_OK; /* Nothing to do */
|
|
}else{
|
|
return vdbeMemAddTerminator(pMem);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Add MEM_Str to the set of representations for the given Mem. This
|
|
** routine is only called if pMem is a number of some kind, not a NULL
|
|
** or a BLOB.
|
|
**
|
|
** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
|
|
** if bForce is true but are retained if bForce is false.
|
|
**
|
|
** A MEM_Null value will never be passed to this function. This function is
|
|
** used for converting values to text for returning to the user (i.e. via
|
|
** sqlite3_value_text()), or for ensuring that values to be used as btree
|
|
** keys are strings. In the former case a NULL pointer is returned the
|
|
** user and the latter is an internal programming error.
|
|
*/
|
|
int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
|
|
const int nByte = 32;
|
|
|
|
assert( pMem!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( !(pMem->flags&MEM_Zero) );
|
|
assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
|
|
assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
|
|
|
|
|
if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
|
|
pMem->enc = 0;
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
|
|
vdbeMemRenderNum(nByte, pMem->z, pMem);
|
|
assert( pMem->z!=0 );
|
|
assert( pMem->n==(int)sqlite3Strlen30NN(pMem->z) );
|
|
pMem->enc = SQLITE_UTF8;
|
|
pMem->flags |= MEM_Str|MEM_Term;
|
|
if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
|
|
sqlite3VdbeChangeEncoding(pMem, enc);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Memory cell pMem contains the context of an aggregate function.
|
|
** This routine calls the finalize method for that function. The
|
|
** result of the aggregate is stored back into pMem.
|
|
**
|
|
** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
|
|
** otherwise.
|
|
*/
|
|
int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
|
|
sqlite3_context ctx;
|
|
Mem t;
|
|
assert( pFunc!=0 );
|
|
assert( pMem!=0 );
|
|
assert( pMem->db!=0 );
|
|
assert( pFunc->xFinalize!=0 );
|
|
assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
|
|
assert( sqlite3_mutex_held(pMem->db->mutex) );
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
memset(&t, 0, sizeof(t));
|
|
t.flags = MEM_Null;
|
|
t.db = pMem->db;
|
|
ctx.pOut = &t;
|
|
ctx.pMem = pMem;
|
|
ctx.pFunc = pFunc;
|
|
ctx.enc = ENC(t.db);
|
|
pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
|
|
assert( (pMem->flags & MEM_Dyn)==0 );
|
|
if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
|
|
memcpy(pMem, &t, sizeof(t));
|
|
return ctx.isError;
|
|
}
|
|
|
|
/*
|
|
** Memory cell pAccum contains the context of an aggregate function.
|
|
** This routine calls the xValue method for that function and stores
|
|
** the results in memory cell pMem.
|
|
**
|
|
** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
|
|
** otherwise.
|
|
*/
|
|
#ifndef SQLITE_OMIT_WINDOWFUNC
|
|
int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
|
|
sqlite3_context ctx;
|
|
assert( pFunc!=0 );
|
|
assert( pFunc->xValue!=0 );
|
|
assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
|
|
assert( pAccum->db!=0 );
|
|
assert( sqlite3_mutex_held(pAccum->db->mutex) );
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
sqlite3VdbeMemSetNull(pOut);
|
|
ctx.pOut = pOut;
|
|
ctx.pMem = pAccum;
|
|
ctx.pFunc = pFunc;
|
|
ctx.enc = ENC(pAccum->db);
|
|
pFunc->xValue(&ctx);
|
|
return ctx.isError;
|
|
}
|
|
#endif /* SQLITE_OMIT_WINDOWFUNC */
|
|
|
|
/*
|
|
** If the memory cell contains a value that must be freed by
|
|
** invoking the external callback in Mem.xDel, then this routine
|
|
** will free that value. It also sets Mem.flags to MEM_Null.
|
|
**
|
|
** This is a helper routine for sqlite3VdbeMemSetNull() and
|
|
** for sqlite3VdbeMemRelease(). Use those other routines as the
|
|
** entry point for releasing Mem resources.
|
|
*/
|
|
static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
|
|
assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
|
|
assert( VdbeMemDynamic(p) );
|
|
if( p->flags&MEM_Agg ){
|
|
sqlite3VdbeMemFinalize(p, p->u.pDef);
|
|
assert( (p->flags & MEM_Agg)==0 );
|
|
testcase( p->flags & MEM_Dyn );
|
|
}
|
|
if( p->flags&MEM_Dyn ){
|
|
assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
|
|
p->xDel((void *)p->z);
|
|
}
|
|
p->flags = MEM_Null;
|
|
}
|
|
|
|
/*
|
|
** Release memory held by the Mem p, both external memory cleared
|
|
** by p->xDel and memory in p->zMalloc.
|
|
**
|
|
** This is a helper routine invoked by sqlite3VdbeMemRelease() in
|
|
** the unusual case where there really is memory in p that needs
|
|
** to be freed.
|
|
*/
|
|
static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
|
|
if( VdbeMemDynamic(p) ){
|
|
vdbeMemClearExternAndSetNull(p);
|
|
}
|
|
if( p->szMalloc ){
|
|
sqlite3DbFreeNN(p->db, p->zMalloc);
|
|
p->szMalloc = 0;
|
|
}
|
|
p->z = 0;
|
|
}
|
|
|
|
/*
|
|
** Release any memory resources held by the Mem. Both the memory that is
|
|
** free by Mem.xDel and the Mem.zMalloc allocation are freed.
|
|
**
|
|
** Use this routine prior to clean up prior to abandoning a Mem, or to
|
|
** reset a Mem back to its minimum memory utilization.
|
|
**
|
|
** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
|
|
** prior to inserting new content into the Mem.
|
|
*/
|
|
void sqlite3VdbeMemRelease(Mem *p){
|
|
assert( sqlite3VdbeCheckMemInvariants(p) );
|
|
if( VdbeMemDynamic(p) || p->szMalloc ){
|
|
vdbeMemClear(p);
|
|
}
|
|
}
|
|
|
|
/* Like sqlite3VdbeMemRelease() but faster for cases where we
|
|
** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
|
|
*/
|
|
void sqlite3VdbeMemReleaseMalloc(Mem *p){
|
|
assert( !VdbeMemDynamic(p) );
|
|
if( p->szMalloc ) vdbeMemClear(p);
|
|
}
|
|
|
|
/*
|
|
** Return some kind of integer value which is the best we can do
|
|
** at representing the value that *pMem describes as an integer.
|
|
** If pMem is an integer, then the value is exact. If pMem is
|
|
** a floating-point then the value returned is the integer part.
|
|
** If pMem is a string or blob, then we make an attempt to convert
|
|
** it into an integer and return that. If pMem represents an
|
|
** an SQL-NULL value, return 0.
|
|
**
|
|
** If pMem represents a string value, its encoding might be changed.
|
|
*/
|
|
static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
|
|
i64 value = 0;
|
|
sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
|
|
return value;
|
|
}
|
|
i64 sqlite3VdbeIntValue(const Mem *pMem){
|
|
int flags;
|
|
assert( pMem!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
|
flags = pMem->flags;
|
|
if( flags & (MEM_Int|MEM_IntReal) ){
|
|
testcase( flags & MEM_IntReal );
|
|
return pMem->u.i;
|
|
}else if( flags & MEM_Real ){
|
|
return sqlite3RealToI64(pMem->u.r);
|
|
}else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
|
|
return memIntValue(pMem);
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return the best representation of pMem that we can get into a
|
|
** double. If pMem is already a double or an integer, return its
|
|
** value. If it is a string or blob, try to convert it to a double.
|
|
** If it is a NULL, return 0.0.
|
|
*/
|
|
static SQLITE_NOINLINE double memRealValue(Mem *pMem){
|
|
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
|
|
double val = (double)0;
|
|
sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
|
|
return val;
|
|
}
|
|
double sqlite3VdbeRealValue(Mem *pMem){
|
|
assert( pMem!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
|
if( pMem->flags & MEM_Real ){
|
|
return pMem->u.r;
|
|
}else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
|
|
testcase( pMem->flags & MEM_IntReal );
|
|
return (double)pMem->u.i;
|
|
}else if( pMem->flags & (MEM_Str|MEM_Blob) ){
|
|
return memRealValue(pMem);
|
|
}else{
|
|
/* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
|
|
return (double)0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Return 1 if pMem represents true, and return 0 if pMem represents false.
|
|
** Return the value ifNull if pMem is NULL.
|
|
*/
|
|
int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
|
|
testcase( pMem->flags & MEM_IntReal );
|
|
if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
|
|
if( pMem->flags & MEM_Null ) return ifNull;
|
|
return sqlite3VdbeRealValue(pMem)!=0.0;
|
|
}
|
|
|
|
/*
|
|
** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
|
|
** make it a MEM_Int if we can.
|
|
*/
|
|
void sqlite3VdbeIntegerAffinity(Mem *pMem){
|
|
assert( pMem!=0 );
|
|
assert( pMem->flags & (MEM_Real|MEM_IntReal) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
|
|
|
if( pMem->flags & MEM_IntReal ){
|
|
MemSetTypeFlag(pMem, MEM_Int);
|
|
}else{
|
|
i64 ix = sqlite3RealToI64(pMem->u.r);
|
|
|
|
/* Only mark the value as an integer if
|
|
**
|
|
** (1) the round-trip conversion real->int->real is a no-op, and
|
|
** (2) The integer is neither the largest nor the smallest
|
|
** possible integer (ticket #3922)
|
|
**
|
|
** The second and third terms in the following conditional enforces
|
|
** the second condition under the assumption that addition overflow causes
|
|
** values to wrap around.
|
|
*/
|
|
if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
|
|
pMem->u.i = ix;
|
|
MemSetTypeFlag(pMem, MEM_Int);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Convert pMem to type integer. Invalidate any prior representations.
|
|
*/
|
|
int sqlite3VdbeMemIntegerify(Mem *pMem){
|
|
assert( pMem!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
|
|
|
pMem->u.i = sqlite3VdbeIntValue(pMem);
|
|
MemSetTypeFlag(pMem, MEM_Int);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Convert pMem so that it is of type MEM_Real.
|
|
** Invalidate any prior representations.
|
|
*/
|
|
int sqlite3VdbeMemRealify(Mem *pMem){
|
|
assert( pMem!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( EIGHT_BYTE_ALIGNMENT(pMem) );
|
|
|
|
pMem->u.r = sqlite3VdbeRealValue(pMem);
|
|
MemSetTypeFlag(pMem, MEM_Real);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/* Compare a floating point value to an integer. Return true if the two
|
|
** values are the same within the precision of the floating point value.
|
|
**
|
|
** This function assumes that i was obtained by assignment from r1.
|
|
**
|
|
** For some versions of GCC on 32-bit machines, if you do the more obvious
|
|
** comparison of "r1==(double)i" you sometimes get an answer of false even
|
|
** though the r1 and (double)i values are bit-for-bit the same.
|
|
*/
|
|
int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
|
|
double r2 = (double)i;
|
|
return r1==0.0
|
|
|| (memcmp(&r1, &r2, sizeof(r1))==0
|
|
&& i >= -2251799813685248LL && i < 2251799813685248LL);
|
|
}
|
|
|
|
/* Convert a floating point value to its closest integer. Do so in
|
|
** a way that avoids 'outside the range of representable values' warnings
|
|
** from UBSAN.
|
|
*/
|
|
i64 sqlite3RealToI64(double r){
|
|
if( r<-9223372036854774784.0 ) return SMALLEST_INT64;
|
|
if( r>+9223372036854774784.0 ) return LARGEST_INT64;
|
|
return (i64)r;
|
|
}
|
|
|
|
/*
|
|
** Convert pMem so that it has type MEM_Real or MEM_Int.
|
|
** Invalidate any prior representations.
|
|
**
|
|
** Every effort is made to force the conversion, even if the input
|
|
** is a string that does not look completely like a number. Convert
|
|
** as much of the string as we can and ignore the rest.
|
|
*/
|
|
int sqlite3VdbeMemNumerify(Mem *pMem){
|
|
assert( pMem!=0 );
|
|
testcase( pMem->flags & MEM_Int );
|
|
testcase( pMem->flags & MEM_Real );
|
|
testcase( pMem->flags & MEM_IntReal );
|
|
testcase( pMem->flags & MEM_Null );
|
|
if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
|
|
int rc;
|
|
sqlite3_int64 ix;
|
|
assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
|
|
if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
|
|
|| sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r)))
|
|
){
|
|
pMem->u.i = ix;
|
|
MemSetTypeFlag(pMem, MEM_Int);
|
|
}else{
|
|
MemSetTypeFlag(pMem, MEM_Real);
|
|
}
|
|
}
|
|
assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
|
|
pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Cast the datatype of the value in pMem according to the affinity
|
|
** "aff". Casting is different from applying affinity in that a cast
|
|
** is forced. In other words, the value is converted into the desired
|
|
** affinity even if that results in loss of data. This routine is
|
|
** used (for example) to implement the SQL "cast()" operator.
|
|
*/
|
|
int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
|
|
if( pMem->flags & MEM_Null ) return SQLITE_OK;
|
|
switch( aff ){
|
|
case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
|
|
if( (pMem->flags & MEM_Blob)==0 ){
|
|
sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
|
|
assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
|
|
if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
|
|
}else{
|
|
pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
|
|
}
|
|
break;
|
|
}
|
|
case SQLITE_AFF_NUMERIC: {
|
|
sqlite3VdbeMemNumerify(pMem);
|
|
break;
|
|
}
|
|
case SQLITE_AFF_INTEGER: {
|
|
sqlite3VdbeMemIntegerify(pMem);
|
|
break;
|
|
}
|
|
case SQLITE_AFF_REAL: {
|
|
sqlite3VdbeMemRealify(pMem);
|
|
break;
|
|
}
|
|
default: {
|
|
int rc;
|
|
assert( aff==SQLITE_AFF_TEXT );
|
|
assert( MEM_Str==(MEM_Blob>>3) );
|
|
pMem->flags |= (pMem->flags&MEM_Blob)>>3;
|
|
sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
|
|
assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
|
|
pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
|
|
if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1;
|
|
rc = sqlite3VdbeChangeEncoding(pMem, encoding);
|
|
if( rc ) return rc;
|
|
sqlite3VdbeMemZeroTerminateIfAble(pMem);
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Initialize bulk memory to be a consistent Mem object.
|
|
**
|
|
** The minimum amount of initialization feasible is performed.
|
|
*/
|
|
void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
|
|
assert( (flags & ~MEM_TypeMask)==0 );
|
|
pMem->flags = flags;
|
|
pMem->db = db;
|
|
pMem->szMalloc = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
** Delete any previous value and set the value stored in *pMem to NULL.
|
|
**
|
|
** This routine calls the Mem.xDel destructor to dispose of values that
|
|
** require the destructor. But it preserves the Mem.zMalloc memory allocation.
|
|
** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
|
|
** routine to invoke the destructor and deallocates Mem.zMalloc.
|
|
**
|
|
** Use this routine to reset the Mem prior to insert a new value.
|
|
**
|
|
** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
|
|
*/
|
|
void sqlite3VdbeMemSetNull(Mem *pMem){
|
|
if( VdbeMemDynamic(pMem) ){
|
|
vdbeMemClearExternAndSetNull(pMem);
|
|
}else{
|
|
pMem->flags = MEM_Null;
|
|
}
|
|
}
|
|
void sqlite3ValueSetNull(sqlite3_value *p){
|
|
sqlite3VdbeMemSetNull((Mem*)p);
|
|
}
|
|
|
|
/*
|
|
** Delete any previous value and set the value to be a BLOB of length
|
|
** n containing all zeros.
|
|
*/
|
|
#ifndef SQLITE_OMIT_INCRBLOB
|
|
void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->flags = MEM_Blob|MEM_Zero;
|
|
pMem->n = 0;
|
|
if( n<0 ) n = 0;
|
|
pMem->u.nZero = n;
|
|
pMem->enc = SQLITE_UTF8;
|
|
pMem->z = 0;
|
|
}
|
|
#else
|
|
int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
|
|
int nByte = n>0?n:1;
|
|
if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
assert( pMem->z!=0 );
|
|
assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
|
|
memset(pMem->z, 0, nByte);
|
|
pMem->n = n>0?n:0;
|
|
pMem->flags = MEM_Blob;
|
|
pMem->enc = SQLITE_UTF8;
|
|
return SQLITE_OK;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** The pMem is known to contain content that needs to be destroyed prior
|
|
** to a value change. So invoke the destructor, then set the value to
|
|
** a 64-bit integer.
|
|
*/
|
|
static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
|
|
sqlite3VdbeMemSetNull(pMem);
|
|
pMem->u.i = val;
|
|
pMem->flags = MEM_Int;
|
|
}
|
|
|
|
/*
|
|
** Delete any previous value and set the value stored in *pMem to val,
|
|
** manifest type INTEGER.
|
|
*/
|
|
void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
|
|
if( VdbeMemDynamic(pMem) ){
|
|
vdbeReleaseAndSetInt64(pMem, val);
|
|
}else{
|
|
pMem->u.i = val;
|
|
pMem->flags = MEM_Int;
|
|
}
|
|
}
|
|
|
|
/* A no-op destructor */
|
|
void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
|
|
|
|
/*
|
|
** Set the value stored in *pMem should already be a NULL.
|
|
** Also store a pointer to go with it.
|
|
*/
|
|
void sqlite3VdbeMemSetPointer(
|
|
Mem *pMem,
|
|
void *pPtr,
|
|
const char *zPType,
|
|
void (*xDestructor)(void*)
|
|
){
|
|
assert( pMem->flags==MEM_Null );
|
|
vdbeMemClear(pMem);
|
|
pMem->u.zPType = zPType ? zPType : "";
|
|
pMem->z = pPtr;
|
|
pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
|
|
pMem->eSubtype = 'p';
|
|
pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
|
|
}
|
|
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
/*
|
|
** Delete any previous value and set the value stored in *pMem to val,
|
|
** manifest type REAL.
|
|
*/
|
|
void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
|
|
sqlite3VdbeMemSetNull(pMem);
|
|
if( !sqlite3IsNaN(val) ){
|
|
pMem->u.r = val;
|
|
pMem->flags = MEM_Real;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** Return true if the Mem holds a RowSet object. This routine is intended
|
|
** for use inside of assert() statements.
|
|
*/
|
|
int sqlite3VdbeMemIsRowSet(const Mem *pMem){
|
|
return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
|
|
&& pMem->xDel==sqlite3RowSetDelete;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
** Delete any previous value and set the value of pMem to be an
|
|
** empty boolean index.
|
|
**
|
|
** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
|
|
** error occurs.
|
|
*/
|
|
int sqlite3VdbeMemSetRowSet(Mem *pMem){
|
|
sqlite3 *db = pMem->db;
|
|
RowSet *p;
|
|
assert( db!=0 );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
sqlite3VdbeMemRelease(pMem);
|
|
p = sqlite3RowSetInit(db);
|
|
if( p==0 ) return SQLITE_NOMEM;
|
|
pMem->z = (char*)p;
|
|
pMem->flags = MEM_Blob|MEM_Dyn;
|
|
pMem->xDel = sqlite3RowSetDelete;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Return true if the Mem object contains a TEXT or BLOB that is
|
|
** too large - whose size exceeds SQLITE_MAX_LENGTH.
|
|
*/
|
|
int sqlite3VdbeMemTooBig(Mem *p){
|
|
assert( p->db!=0 );
|
|
if( p->flags & (MEM_Str|MEM_Blob) ){
|
|
int n = p->n;
|
|
if( p->flags & MEM_Zero ){
|
|
n += p->u.nZero;
|
|
}
|
|
return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SQLITE_DEBUG
|
|
/*
|
|
** This routine prepares a memory cell for modification by breaking
|
|
** its link to a shallow copy and by marking any current shallow
|
|
** copies of this cell as invalid.
|
|
**
|
|
** This is used for testing and debugging only - to help ensure that shallow
|
|
** copies (created by OP_SCopy) are not misused.
|
|
*/
|
|
void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
|
|
int i;
|
|
Mem *pX;
|
|
for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
|
|
if( pX->pScopyFrom==pMem ){
|
|
u16 mFlags;
|
|
if( pVdbe->db->flags & SQLITE_VdbeTrace ){
|
|
sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
|
|
(int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
|
|
}
|
|
/* If pX is marked as a shallow copy of pMem, then try to verify that
|
|
** no significant changes have been made to pX since the OP_SCopy.
|
|
** A significant change would indicated a missed call to this
|
|
** function for pX. Minor changes, such as adding or removing a
|
|
** dual type, are allowed, as long as the underlying value is the
|
|
** same. */
|
|
mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
|
|
assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
|
|
|
|
/* pMem is the register that is changing. But also mark pX as
|
|
** undefined so that we can quickly detect the shallow-copy error */
|
|
pX->flags = MEM_Undefined;
|
|
pX->pScopyFrom = 0;
|
|
}
|
|
}
|
|
pMem->pScopyFrom = 0;
|
|
}
|
|
#endif /* SQLITE_DEBUG */
|
|
|
|
/*
|
|
** Make an shallow copy of pFrom into pTo. Prior contents of
|
|
** pTo are freed. The pFrom->z field is not duplicated. If
|
|
** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
|
|
** and flags gets srcType (either MEM_Ephem or MEM_Static).
|
|
*/
|
|
static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
|
|
vdbeMemClearExternAndSetNull(pTo);
|
|
assert( !VdbeMemDynamic(pTo) );
|
|
sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
|
|
}
|
|
void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
|
|
assert( !sqlite3VdbeMemIsRowSet(pFrom) );
|
|
assert( pTo->db==pFrom->db );
|
|
if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
|
|
memcpy(pTo, pFrom, MEMCELLSIZE);
|
|
if( (pFrom->flags&MEM_Static)==0 ){
|
|
pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
|
|
assert( srcType==MEM_Ephem || srcType==MEM_Static );
|
|
pTo->flags |= srcType;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Make a full copy of pFrom into pTo. Prior contents of pTo are
|
|
** freed before the copy is made.
|
|
*/
|
|
int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( !sqlite3VdbeMemIsRowSet(pFrom) );
|
|
if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
|
|
memcpy(pTo, pFrom, MEMCELLSIZE);
|
|
pTo->flags &= ~MEM_Dyn;
|
|
if( pTo->flags&(MEM_Str|MEM_Blob) ){
|
|
if( 0==(pFrom->flags&MEM_Static) ){
|
|
pTo->flags |= MEM_Ephem;
|
|
rc = sqlite3VdbeMemMakeWriteable(pTo);
|
|
}
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Transfer the contents of pFrom to pTo. Any existing value in pTo is
|
|
** freed. If pFrom contains ephemeral data, a copy is made.
|
|
**
|
|
** pFrom contains an SQL NULL when this routine returns.
|
|
*/
|
|
void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
|
|
assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
|
|
assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
|
|
assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
|
|
|
|
sqlite3VdbeMemRelease(pTo);
|
|
memcpy(pTo, pFrom, sizeof(Mem));
|
|
pFrom->flags = MEM_Null;
|
|
pFrom->szMalloc = 0;
|
|
}
|
|
|
|
/*
|
|
** Change the value of a Mem to be a string or a BLOB.
|
|
**
|
|
** The memory management strategy depends on the value of the xDel
|
|
** parameter. If the value passed is SQLITE_TRANSIENT, then the
|
|
** string is copied into a (possibly existing) buffer managed by the
|
|
** Mem structure. Otherwise, any existing buffer is freed and the
|
|
** pointer copied.
|
|
**
|
|
** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
|
|
** size limit) then no memory allocation occurs. If the string can be
|
|
** stored without allocating memory, then it is. If a memory allocation
|
|
** is required to store the string, then value of pMem is unchanged. In
|
|
** either case, SQLITE_TOOBIG is returned.
|
|
**
|
|
** The "enc" parameter is the text encoding for the string, or zero
|
|
** to store a blob.
|
|
**
|
|
** If n is negative, then the string consists of all bytes up to but
|
|
** excluding the first zero character. The n parameter must be
|
|
** non-negative for blobs.
|
|
*/
|
|
int sqlite3VdbeMemSetStr(
|
|
Mem *pMem, /* Memory cell to set to string value */
|
|
const char *z, /* String pointer */
|
|
i64 n, /* Bytes in string, or negative */
|
|
u8 enc, /* Encoding of z. 0 for BLOBs */
|
|
void (*xDel)(void*) /* Destructor function */
|
|
){
|
|
i64 nByte = n; /* New value for pMem->n */
|
|
int iLimit; /* Maximum allowed string or blob size */
|
|
u16 flags; /* New value for pMem->flags */
|
|
|
|
assert( pMem!=0 );
|
|
assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
assert( enc!=0 || n>=0 );
|
|
|
|
/* If z is a NULL pointer, set pMem to contain an SQL NULL. */
|
|
if( !z ){
|
|
sqlite3VdbeMemSetNull(pMem);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
if( pMem->db ){
|
|
iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
|
|
}else{
|
|
iLimit = SQLITE_MAX_LENGTH;
|
|
}
|
|
if( nByte<0 ){
|
|
assert( enc!=0 );
|
|
if( enc==SQLITE_UTF8 ){
|
|
nByte = strlen(z);
|
|
}else{
|
|
for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
|
|
}
|
|
flags= MEM_Str|MEM_Term;
|
|
}else if( enc==0 ){
|
|
flags = MEM_Blob;
|
|
enc = SQLITE_UTF8;
|
|
}else{
|
|
flags = MEM_Str;
|
|
}
|
|
if( nByte>iLimit ){
|
|
if( xDel && xDel!=SQLITE_TRANSIENT ){
|
|
if( xDel==SQLITE_DYNAMIC ){
|
|
sqlite3DbFree(pMem->db, (void*)z);
|
|
}else{
|
|
xDel((void*)z);
|
|
}
|
|
}
|
|
sqlite3VdbeMemSetNull(pMem);
|
|
return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
|
|
}
|
|
|
|
/* The following block sets the new values of Mem.z and Mem.xDel. It
|
|
** also sets a flag in local variable "flags" to indicate the memory
|
|
** management (one of MEM_Dyn or MEM_Static).
|
|
*/
|
|
if( xDel==SQLITE_TRANSIENT ){
|
|
i64 nAlloc = nByte;
|
|
if( flags&MEM_Term ){
|
|
nAlloc += (enc==SQLITE_UTF8?1:2);
|
|
}
|
|
testcase( nAlloc==0 );
|
|
testcase( nAlloc==31 );
|
|
testcase( nAlloc==32 );
|
|
if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
memcpy(pMem->z, z, nAlloc);
|
|
}else{
|
|
sqlite3VdbeMemRelease(pMem);
|
|
pMem->z = (char *)z;
|
|
if( xDel==SQLITE_DYNAMIC ){
|
|
pMem->zMalloc = pMem->z;
|
|
pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
|
|
}else{
|
|
pMem->xDel = xDel;
|
|
flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
|
|
}
|
|
}
|
|
|
|
pMem->n = (int)(nByte & 0x7fffffff);
|
|
pMem->flags = flags;
|
|
pMem->enc = enc;
|
|
|
|
#ifndef SQLITE_OMIT_UTF16
|
|
if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
#endif
|
|
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Move data out of a btree key or data field and into a Mem structure.
|
|
** The data is payload from the entry that pCur is currently pointing
|
|
** to. offset and amt determine what portion of the data or key to retrieve.
|
|
** The result is written into the pMem element.
|
|
**
|
|
** The pMem object must have been initialized. This routine will use
|
|
** pMem->zMalloc to hold the content from the btree, if possible. New
|
|
** pMem->zMalloc space will be allocated if necessary. The calling routine
|
|
** is responsible for making sure that the pMem object is eventually
|
|
** destroyed.
|
|
**
|
|
** If this routine fails for any reason (malloc returns NULL or unable
|
|
** to read from the disk) then the pMem is left in an inconsistent state.
|
|
*/
|
|
int sqlite3VdbeMemFromBtree(
|
|
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
|
|
u32 offset, /* Offset from the start of data to return bytes from. */
|
|
u32 amt, /* Number of bytes to return. */
|
|
Mem *pMem /* OUT: Return data in this Mem structure. */
|
|
){
|
|
int rc;
|
|
pMem->flags = MEM_Null;
|
|
if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
|
|
return SQLITE_CORRUPT_BKPT;
|
|
}
|
|
if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
|
|
rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
|
|
if( rc==SQLITE_OK ){
|
|
pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
|
|
pMem->flags = MEM_Blob;
|
|
pMem->n = (int)amt;
|
|
}else{
|
|
sqlite3VdbeMemRelease(pMem);
|
|
}
|
|
}
|
|
return rc;
|
|
}
|
|
int sqlite3VdbeMemFromBtreeZeroOffset(
|
|
BtCursor *pCur, /* Cursor pointing at record to retrieve. */
|
|
u32 amt, /* Number of bytes to return. */
|
|
Mem *pMem /* OUT: Return data in this Mem structure. */
|
|
){
|
|
u32 available = 0; /* Number of bytes available on the local btree page */
|
|
int rc = SQLITE_OK; /* Return code */
|
|
|
|
assert( sqlite3BtreeCursorIsValid(pCur) );
|
|
assert( !VdbeMemDynamic(pMem) );
|
|
|
|
/* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
|
|
** that both the BtShared and database handle mutexes are held. */
|
|
assert( !sqlite3VdbeMemIsRowSet(pMem) );
|
|
pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
|
|
assert( pMem->z!=0 );
|
|
|
|
if( amt<=available ){
|
|
pMem->flags = MEM_Blob|MEM_Ephem;
|
|
pMem->n = (int)amt;
|
|
}else{
|
|
rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** The pVal argument is known to be a value other than NULL.
|
|
** Convert it into a string with encoding enc and return a pointer
|
|
** to a zero-terminated version of that string.
|
|
*/
|
|
static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
|
|
assert( pVal!=0 );
|
|
assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
|
|
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pVal) );
|
|
assert( (pVal->flags & (MEM_Null))==0 );
|
|
if( pVal->flags & (MEM_Blob|MEM_Str) ){
|
|
if( ExpandBlob(pVal) ) return 0;
|
|
pVal->flags |= MEM_Str;
|
|
if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
|
|
sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
|
|
}
|
|
if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
|
|
assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
|
|
if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
|
|
return 0;
|
|
}
|
|
}
|
|
sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
|
|
}else{
|
|
sqlite3VdbeMemStringify(pVal, enc, 0);
|
|
assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
|
|
}
|
|
assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
|
|
|| pVal->db->mallocFailed );
|
|
if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
|
|
assert( sqlite3VdbeMemValidStrRep(pVal) );
|
|
return pVal->z;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* This function is only available internally, it is not part of the
|
|
** external API. It works in a similar way to sqlite3_value_text(),
|
|
** except the data returned is in the encoding specified by the second
|
|
** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
|
|
** SQLITE_UTF8.
|
|
**
|
|
** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
|
|
** If that is the case, then the result must be aligned on an even byte
|
|
** boundary.
|
|
*/
|
|
const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
|
|
if( !pVal ) return 0;
|
|
assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
|
|
assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
|
|
assert( !sqlite3VdbeMemIsRowSet(pVal) );
|
|
if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
|
|
assert( sqlite3VdbeMemValidStrRep(pVal) );
|
|
return pVal->z;
|
|
}
|
|
if( pVal->flags&MEM_Null ){
|
|
return 0;
|
|
}
|
|
return valueToText(pVal, enc);
|
|
}
|
|
|
|
/* Return true if sqlit3_value object pVal is a string or blob value
|
|
** that uses the destructor specified in the second argument.
|
|
**
|
|
** TODO: Maybe someday promote this interface into a published API so
|
|
** that third-party extensions can get access to it?
|
|
*/
|
|
int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){
|
|
if( ALWAYS(pVal!=0)
|
|
&& ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0)
|
|
&& (pVal->flags & MEM_Dyn)!=0
|
|
&& pVal->xDel==xFree
|
|
){
|
|
return 1;
|
|
}else{
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Create a new sqlite3_value object.
|
|
*/
|
|
sqlite3_value *sqlite3ValueNew(sqlite3 *db){
|
|
Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
|
|
if( p ){
|
|
p->flags = MEM_Null;
|
|
p->db = db;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/*
|
|
** Context object passed by sqlite3Stat4ProbeSetValue() through to
|
|
** valueNew(). See comments above valueNew() for details.
|
|
*/
|
|
struct ValueNewStat4Ctx {
|
|
Parse *pParse;
|
|
Index *pIdx;
|
|
UnpackedRecord **ppRec;
|
|
int iVal;
|
|
};
|
|
|
|
/*
|
|
** Allocate and return a pointer to a new sqlite3_value object. If
|
|
** the second argument to this function is NULL, the object is allocated
|
|
** by calling sqlite3ValueNew().
|
|
**
|
|
** Otherwise, if the second argument is non-zero, then this function is
|
|
** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
|
|
** already been allocated, allocate the UnpackedRecord structure that
|
|
** that function will return to its caller here. Then return a pointer to
|
|
** an sqlite3_value within the UnpackedRecord.a[] array.
|
|
*/
|
|
static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( p ){
|
|
UnpackedRecord *pRec = p->ppRec[0];
|
|
|
|
if( pRec==0 ){
|
|
Index *pIdx = p->pIdx; /* Index being probed */
|
|
int nByte; /* Bytes of space to allocate */
|
|
int i; /* Counter variable */
|
|
int nCol = pIdx->nColumn; /* Number of index columns including rowid */
|
|
|
|
nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
|
|
pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
|
|
if( pRec ){
|
|
pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
|
|
if( pRec->pKeyInfo ){
|
|
assert( pRec->pKeyInfo->nAllField==nCol );
|
|
assert( pRec->pKeyInfo->enc==ENC(db) );
|
|
pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
|
|
for(i=0; i<nCol; i++){
|
|
pRec->aMem[i].flags = MEM_Null;
|
|
pRec->aMem[i].db = db;
|
|
}
|
|
}else{
|
|
sqlite3DbFreeNN(db, pRec);
|
|
pRec = 0;
|
|
}
|
|
}
|
|
if( pRec==0 ) return 0;
|
|
p->ppRec[0] = pRec;
|
|
}
|
|
|
|
pRec->nField = p->iVal+1;
|
|
sqlite3VdbeMemSetNull(&pRec->aMem[p->iVal]);
|
|
return &pRec->aMem[p->iVal];
|
|
}
|
|
#else
|
|
UNUSED_PARAMETER(p);
|
|
#endif /* defined(SQLITE_ENABLE_STAT4) */
|
|
return sqlite3ValueNew(db);
|
|
}
|
|
|
|
/*
|
|
** The expression object indicated by the second argument is guaranteed
|
|
** to be a scalar SQL function. If
|
|
**
|
|
** * all function arguments are SQL literals,
|
|
** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
|
|
** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
|
|
**
|
|
** then this routine attempts to invoke the SQL function. Assuming no
|
|
** error occurs, output parameter (*ppVal) is set to point to a value
|
|
** object containing the result before returning SQLITE_OK.
|
|
**
|
|
** Affinity aff is applied to the result of the function before returning.
|
|
** If the result is a text value, the sqlite3_value object uses encoding
|
|
** enc.
|
|
**
|
|
** If the conditions above are not met, this function returns SQLITE_OK
|
|
** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
|
|
** NULL and an SQLite error code returned.
|
|
*/
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
static int valueFromFunction(
|
|
sqlite3 *db, /* The database connection */
|
|
const Expr *p, /* The expression to evaluate */
|
|
u8 enc, /* Encoding to use */
|
|
u8 aff, /* Affinity to use */
|
|
sqlite3_value **ppVal, /* Write the new value here */
|
|
struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
|
|
){
|
|
sqlite3_context ctx; /* Context object for function invocation */
|
|
sqlite3_value **apVal = 0; /* Function arguments */
|
|
int nVal = 0; /* Size of apVal[] array */
|
|
FuncDef *pFunc = 0; /* Function definition */
|
|
sqlite3_value *pVal = 0; /* New value */
|
|
int rc = SQLITE_OK; /* Return code */
|
|
ExprList *pList = 0; /* Function arguments */
|
|
int i; /* Iterator variable */
|
|
|
|
assert( pCtx!=0 );
|
|
assert( (p->flags & EP_TokenOnly)==0 );
|
|
assert( ExprUseXList(p) );
|
|
pList = p->x.pList;
|
|
if( pList ) nVal = pList->nExpr;
|
|
assert( !ExprHasProperty(p, EP_IntValue) );
|
|
pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
|
|
#ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
|
|
if( pFunc==0 ) return SQLITE_OK;
|
|
#endif
|
|
assert( pFunc );
|
|
if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
|
|
|| (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
|
|
){
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
if( pList ){
|
|
apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
|
|
if( apVal==0 ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
goto value_from_function_out;
|
|
}
|
|
for(i=0; i<nVal; i++){
|
|
rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
|
|
if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
|
|
}
|
|
}
|
|
|
|
pVal = valueNew(db, pCtx);
|
|
if( pVal==0 ){
|
|
rc = SQLITE_NOMEM_BKPT;
|
|
goto value_from_function_out;
|
|
}
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
ctx.pOut = pVal;
|
|
ctx.pFunc = pFunc;
|
|
ctx.enc = ENC(db);
|
|
pFunc->xSFunc(&ctx, nVal, apVal);
|
|
if( ctx.isError ){
|
|
rc = ctx.isError;
|
|
sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
|
|
}else{
|
|
sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
|
|
assert( rc==SQLITE_OK );
|
|
rc = sqlite3VdbeChangeEncoding(pVal, enc);
|
|
if( NEVER(rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal)) ){
|
|
rc = SQLITE_TOOBIG;
|
|
pCtx->pParse->nErr++;
|
|
}
|
|
}
|
|
|
|
value_from_function_out:
|
|
if( rc!=SQLITE_OK ){
|
|
pVal = 0;
|
|
pCtx->pParse->rc = rc;
|
|
}
|
|
if( apVal ){
|
|
for(i=0; i<nVal; i++){
|
|
sqlite3ValueFree(apVal[i]);
|
|
}
|
|
sqlite3DbFreeNN(db, apVal);
|
|
}
|
|
|
|
*ppVal = pVal;
|
|
return rc;
|
|
}
|
|
#else
|
|
# define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
|
|
#endif /* defined(SQLITE_ENABLE_STAT4) */
|
|
|
|
/*
|
|
** Extract a value from the supplied expression in the manner described
|
|
** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
|
|
** using valueNew().
|
|
**
|
|
** If pCtx is NULL and an error occurs after the sqlite3_value object
|
|
** has been allocated, it is freed before returning. Or, if pCtx is not
|
|
** NULL, it is assumed that the caller will free any allocated object
|
|
** in all cases.
|
|
*/
|
|
static int valueFromExpr(
|
|
sqlite3 *db, /* The database connection */
|
|
const Expr *pExpr, /* The expression to evaluate */
|
|
u8 enc, /* Encoding to use */
|
|
u8 affinity, /* Affinity to use */
|
|
sqlite3_value **ppVal, /* Write the new value here */
|
|
struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
|
|
){
|
|
int op;
|
|
char *zVal = 0;
|
|
sqlite3_value *pVal = 0;
|
|
int negInt = 1;
|
|
const char *zNeg = "";
|
|
int rc = SQLITE_OK;
|
|
|
|
assert( pExpr!=0 );
|
|
while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
|
|
if( op==TK_REGISTER ) op = pExpr->op2;
|
|
|
|
/* Compressed expressions only appear when parsing the DEFAULT clause
|
|
** on a table column definition, and hence only when pCtx==0. This
|
|
** check ensures that an EP_TokenOnly expression is never passed down
|
|
** into valueFromFunction(). */
|
|
assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
|
|
|
|
if( op==TK_CAST ){
|
|
u8 aff;
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
aff = sqlite3AffinityType(pExpr->u.zToken,0);
|
|
rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
|
|
testcase( rc!=SQLITE_OK );
|
|
if( *ppVal ){
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
rc = ExpandBlob(*ppVal);
|
|
#else
|
|
/* zero-blobs only come from functions, not literal values. And
|
|
** functions are only processed under STAT4 */
|
|
assert( (ppVal[0][0].flags & MEM_Zero)==0 );
|
|
#endif
|
|
sqlite3VdbeMemCast(*ppVal, aff, enc);
|
|
sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
/* Handle negative integers in a single step. This is needed in the
|
|
** case when the value is -9223372036854775808.
|
|
*/
|
|
if( op==TK_UMINUS
|
|
&& (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
|
|
pExpr = pExpr->pLeft;
|
|
op = pExpr->op;
|
|
negInt = -1;
|
|
zNeg = "-";
|
|
}
|
|
|
|
if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
|
|
pVal = valueNew(db, pCtx);
|
|
if( pVal==0 ) goto no_mem;
|
|
if( ExprHasProperty(pExpr, EP_IntValue) ){
|
|
sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
|
|
}else{
|
|
zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
|
|
if( zVal==0 ) goto no_mem;
|
|
sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
|
|
}
|
|
if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
|
|
sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
|
|
}else{
|
|
sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
|
|
}
|
|
assert( (pVal->flags & MEM_IntReal)==0 );
|
|
if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
|
|
testcase( pVal->flags & MEM_Int );
|
|
testcase( pVal->flags & MEM_Real );
|
|
pVal->flags &= ~MEM_Str;
|
|
}
|
|
if( enc!=SQLITE_UTF8 ){
|
|
rc = sqlite3VdbeChangeEncoding(pVal, enc);
|
|
}
|
|
}else if( op==TK_UMINUS ) {
|
|
/* This branch happens for multiple negative signs. Ex: -(-5) */
|
|
if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
|
|
&& pVal!=0
|
|
){
|
|
sqlite3VdbeMemNumerify(pVal);
|
|
if( pVal->flags & MEM_Real ){
|
|
pVal->u.r = -pVal->u.r;
|
|
}else if( pVal->u.i==SMALLEST_INT64 ){
|
|
#ifndef SQLITE_OMIT_FLOATING_POINT
|
|
pVal->u.r = -(double)SMALLEST_INT64;
|
|
#else
|
|
pVal->u.r = LARGEST_INT64;
|
|
#endif
|
|
MemSetTypeFlag(pVal, MEM_Real);
|
|
}else{
|
|
pVal->u.i = -pVal->u.i;
|
|
}
|
|
sqlite3ValueApplyAffinity(pVal, affinity, enc);
|
|
}
|
|
}else if( op==TK_NULL ){
|
|
pVal = valueNew(db, pCtx);
|
|
if( pVal==0 ) goto no_mem;
|
|
sqlite3VdbeMemSetNull(pVal);
|
|
}
|
|
#ifndef SQLITE_OMIT_BLOB_LITERAL
|
|
else if( op==TK_BLOB ){
|
|
int nVal;
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
|
|
assert( pExpr->u.zToken[1]=='\'' );
|
|
pVal = valueNew(db, pCtx);
|
|
if( !pVal ) goto no_mem;
|
|
zVal = &pExpr->u.zToken[2];
|
|
nVal = sqlite3Strlen30(zVal)-1;
|
|
assert( zVal[nVal]=='\'' );
|
|
sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
|
|
0, SQLITE_DYNAMIC);
|
|
}
|
|
#endif
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
else if( op==TK_FUNCTION && pCtx!=0 ){
|
|
rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
|
|
}
|
|
#endif
|
|
else if( op==TK_TRUEFALSE ){
|
|
assert( !ExprHasProperty(pExpr, EP_IntValue) );
|
|
pVal = valueNew(db, pCtx);
|
|
if( pVal ){
|
|
pVal->flags = MEM_Int;
|
|
pVal->u.i = pExpr->u.zToken[4]==0;
|
|
sqlite3ValueApplyAffinity(pVal, affinity, enc);
|
|
}
|
|
}
|
|
|
|
*ppVal = pVal;
|
|
return rc;
|
|
|
|
no_mem:
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
|
|
#endif
|
|
sqlite3OomFault(db);
|
|
sqlite3DbFree(db, zVal);
|
|
assert( *ppVal==0 );
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
if( pCtx==0 ) sqlite3ValueFree(pVal);
|
|
#else
|
|
assert( pCtx==0 ); sqlite3ValueFree(pVal);
|
|
#endif
|
|
return SQLITE_NOMEM_BKPT;
|
|
}
|
|
|
|
/*
|
|
** Create a new sqlite3_value object, containing the value of pExpr.
|
|
**
|
|
** This only works for very simple expressions that consist of one constant
|
|
** token (i.e. "5", "5.1", "'a string'"). If the expression can
|
|
** be converted directly into a value, then the value is allocated and
|
|
** a pointer written to *ppVal. The caller is responsible for deallocating
|
|
** the value by passing it to sqlite3ValueFree() later on. If the expression
|
|
** cannot be converted to a value, then *ppVal is set to NULL.
|
|
*/
|
|
int sqlite3ValueFromExpr(
|
|
sqlite3 *db, /* The database connection */
|
|
const Expr *pExpr, /* The expression to evaluate */
|
|
u8 enc, /* Encoding to use */
|
|
u8 affinity, /* Affinity to use */
|
|
sqlite3_value **ppVal /* Write the new value here */
|
|
){
|
|
return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
|
|
}
|
|
|
|
#ifdef SQLITE_ENABLE_STAT4
|
|
/*
|
|
** Attempt to extract a value from pExpr and use it to construct *ppVal.
|
|
**
|
|
** If pAlloc is not NULL, then an UnpackedRecord object is created for
|
|
** pAlloc if one does not exist and the new value is added to the
|
|
** UnpackedRecord object.
|
|
**
|
|
** A value is extracted in the following cases:
|
|
**
|
|
** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
|
|
**
|
|
** * The expression is a bound variable, and this is a reprepare, or
|
|
**
|
|
** * The expression is a literal value.
|
|
**
|
|
** On success, *ppVal is made to point to the extracted value. The caller
|
|
** is responsible for ensuring that the value is eventually freed.
|
|
*/
|
|
static int stat4ValueFromExpr(
|
|
Parse *pParse, /* Parse context */
|
|
Expr *pExpr, /* The expression to extract a value from */
|
|
u8 affinity, /* Affinity to use */
|
|
struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
|
|
sqlite3_value **ppVal /* OUT: New value object (or NULL) */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
sqlite3_value *pVal = 0;
|
|
sqlite3 *db = pParse->db;
|
|
|
|
/* Skip over any TK_COLLATE nodes */
|
|
pExpr = sqlite3ExprSkipCollate(pExpr);
|
|
|
|
assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
|
|
if( !pExpr ){
|
|
pVal = valueNew(db, pAlloc);
|
|
if( pVal ){
|
|
sqlite3VdbeMemSetNull((Mem*)pVal);
|
|
}
|
|
}else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
|
|
Vdbe *v;
|
|
int iBindVar = pExpr->iColumn;
|
|
sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
|
|
if( (v = pParse->pReprepare)!=0 ){
|
|
pVal = valueNew(db, pAlloc);
|
|
if( pVal ){
|
|
rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
|
|
sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
|
|
pVal->db = pParse->db;
|
|
}
|
|
}
|
|
}else{
|
|
rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
|
|
}
|
|
|
|
assert( pVal==0 || pVal->db==db );
|
|
*ppVal = pVal;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function is used to allocate and populate UnpackedRecord
|
|
** structures intended to be compared against sample index keys stored
|
|
** in the sqlite_stat4 table.
|
|
**
|
|
** A single call to this function populates zero or more fields of the
|
|
** record starting with field iVal (fields are numbered from left to
|
|
** right starting with 0). A single field is populated if:
|
|
**
|
|
** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
|
|
**
|
|
** * The expression is a bound variable, and this is a reprepare, or
|
|
**
|
|
** * The sqlite3ValueFromExpr() function is able to extract a value
|
|
** from the expression (i.e. the expression is a literal value).
|
|
**
|
|
** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
|
|
** vector components that match either of the two latter criteria listed
|
|
** above.
|
|
**
|
|
** Before any value is appended to the record, the affinity of the
|
|
** corresponding column within index pIdx is applied to it. Before
|
|
** this function returns, output parameter *pnExtract is set to the
|
|
** number of values appended to the record.
|
|
**
|
|
** When this function is called, *ppRec must either point to an object
|
|
** allocated by an earlier call to this function, or must be NULL. If it
|
|
** is NULL and a value can be successfully extracted, a new UnpackedRecord
|
|
** is allocated (and *ppRec set to point to it) before returning.
|
|
**
|
|
** Unless an error is encountered, SQLITE_OK is returned. It is not an
|
|
** error if a value cannot be extracted from pExpr. If an error does
|
|
** occur, an SQLite error code is returned.
|
|
*/
|
|
int sqlite3Stat4ProbeSetValue(
|
|
Parse *pParse, /* Parse context */
|
|
Index *pIdx, /* Index being probed */
|
|
UnpackedRecord **ppRec, /* IN/OUT: Probe record */
|
|
Expr *pExpr, /* The expression to extract a value from */
|
|
int nElem, /* Maximum number of values to append */
|
|
int iVal, /* Array element to populate */
|
|
int *pnExtract /* OUT: Values appended to the record */
|
|
){
|
|
int rc = SQLITE_OK;
|
|
int nExtract = 0;
|
|
|
|
if( pExpr==0 || pExpr->op!=TK_SELECT ){
|
|
int i;
|
|
struct ValueNewStat4Ctx alloc;
|
|
|
|
alloc.pParse = pParse;
|
|
alloc.pIdx = pIdx;
|
|
alloc.ppRec = ppRec;
|
|
|
|
for(i=0; i<nElem; i++){
|
|
sqlite3_value *pVal = 0;
|
|
Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
|
|
u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
|
|
alloc.iVal = iVal+i;
|
|
rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
|
|
if( !pVal ) break;
|
|
nExtract++;
|
|
}
|
|
}
|
|
|
|
*pnExtract = nExtract;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Attempt to extract a value from expression pExpr using the methods
|
|
** as described for sqlite3Stat4ProbeSetValue() above.
|
|
**
|
|
** If successful, set *ppVal to point to a new value object and return
|
|
** SQLITE_OK. If no value can be extracted, but no other error occurs
|
|
** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
|
|
** does occur, return an SQLite error code. The final value of *ppVal
|
|
** is undefined in this case.
|
|
*/
|
|
int sqlite3Stat4ValueFromExpr(
|
|
Parse *pParse, /* Parse context */
|
|
Expr *pExpr, /* The expression to extract a value from */
|
|
u8 affinity, /* Affinity to use */
|
|
sqlite3_value **ppVal /* OUT: New value object (or NULL) */
|
|
){
|
|
return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
|
|
}
|
|
|
|
/*
|
|
** Extract the iCol-th column from the nRec-byte record in pRec. Write
|
|
** the column value into *ppVal. If *ppVal is initially NULL then a new
|
|
** sqlite3_value object is allocated.
|
|
**
|
|
** If *ppVal is initially NULL then the caller is responsible for
|
|
** ensuring that the value written into *ppVal is eventually freed.
|
|
*/
|
|
int sqlite3Stat4Column(
|
|
sqlite3 *db, /* Database handle */
|
|
const void *pRec, /* Pointer to buffer containing record */
|
|
int nRec, /* Size of buffer pRec in bytes */
|
|
int iCol, /* Column to extract */
|
|
sqlite3_value **ppVal /* OUT: Extracted value */
|
|
){
|
|
u32 t = 0; /* a column type code */
|
|
int nHdr; /* Size of the header in the record */
|
|
int iHdr; /* Next unread header byte */
|
|
int iField; /* Next unread data byte */
|
|
int szField = 0; /* Size of the current data field */
|
|
int i; /* Column index */
|
|
u8 *a = (u8*)pRec; /* Typecast byte array */
|
|
Mem *pMem = *ppVal; /* Write result into this Mem object */
|
|
|
|
assert( iCol>0 );
|
|
iHdr = getVarint32(a, nHdr);
|
|
if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
|
|
iField = nHdr;
|
|
for(i=0; i<=iCol; i++){
|
|
iHdr += getVarint32(&a[iHdr], t);
|
|
testcase( iHdr==nHdr );
|
|
testcase( iHdr==nHdr+1 );
|
|
if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
|
|
szField = sqlite3VdbeSerialTypeLen(t);
|
|
iField += szField;
|
|
}
|
|
testcase( iField==nRec );
|
|
testcase( iField==nRec+1 );
|
|
if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
|
|
if( pMem==0 ){
|
|
pMem = *ppVal = sqlite3ValueNew(db);
|
|
if( pMem==0 ) return SQLITE_NOMEM_BKPT;
|
|
}
|
|
sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
|
|
pMem->enc = ENC(db);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Unless it is NULL, the argument must be an UnpackedRecord object returned
|
|
** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
|
|
** the object.
|
|
*/
|
|
void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
|
|
if( pRec ){
|
|
int i;
|
|
int nCol = pRec->pKeyInfo->nAllField;
|
|
Mem *aMem = pRec->aMem;
|
|
sqlite3 *db = aMem[0].db;
|
|
for(i=0; i<nCol; i++){
|
|
sqlite3VdbeMemRelease(&aMem[i]);
|
|
}
|
|
sqlite3KeyInfoUnref(pRec->pKeyInfo);
|
|
sqlite3DbFreeNN(db, pRec);
|
|
}
|
|
}
|
|
#endif /* ifdef SQLITE_ENABLE_STAT4 */
|
|
|
|
/*
|
|
** Change the string value of an sqlite3_value object
|
|
*/
|
|
void sqlite3ValueSetStr(
|
|
sqlite3_value *v, /* Value to be set */
|
|
int n, /* Length of string z */
|
|
const void *z, /* Text of the new string */
|
|
u8 enc, /* Encoding to use */
|
|
void (*xDel)(void*) /* Destructor for the string */
|
|
){
|
|
if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
|
|
}
|
|
|
|
/*
|
|
** Free an sqlite3_value object
|
|
*/
|
|
void sqlite3ValueFree(sqlite3_value *v){
|
|
if( !v ) return;
|
|
sqlite3VdbeMemRelease((Mem *)v);
|
|
sqlite3DbFreeNN(((Mem*)v)->db, v);
|
|
}
|
|
|
|
/*
|
|
** The sqlite3ValueBytes() routine returns the number of bytes in the
|
|
** sqlite3_value object assuming that it uses the encoding "enc".
|
|
** The valueBytes() routine is a helper function.
|
|
*/
|
|
static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
|
|
return valueToText(pVal, enc)!=0 ? pVal->n : 0;
|
|
}
|
|
int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
|
|
Mem *p = (Mem*)pVal;
|
|
assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
|
|
if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
|
|
return p->n;
|
|
}
|
|
if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){
|
|
return p->n;
|
|
}
|
|
if( (p->flags & MEM_Blob)!=0 ){
|
|
if( p->flags & MEM_Zero ){
|
|
return p->n + p->u.nZero;
|
|
}else{
|
|
return p->n;
|
|
}
|
|
}
|
|
if( p->flags & MEM_Null ) return 0;
|
|
return valueBytes(pVal, enc);
|
|
}
|