0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2025-01-22 12:38:56 +00:00
2023-10-16 13:58:16 +02:00

2466 lines
72 KiB
C

/*
** 2011-08-18
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of an in-memory tree structure.
**
** Technically the tree is a B-tree of order 4 (in the Knuth sense - each
** node may have up to 4 children). Keys are stored within B-tree nodes by
** reference. This may be slightly slower than a conventional red-black
** tree, but it is simpler. It is also an easier structure to modify to
** create a version that supports nested transaction rollback.
**
** This tree does not currently support a delete operation. One is not
** required. When LSM deletes a key from a database, it inserts a DELETE
** marker into the data structure. As a result, although the value associated
** with a key stored in the in-memory tree structure may be modified, no
** keys are ever removed.
*/
/*
** MVCC NOTES
**
** The in-memory tree structure supports SQLite-style MVCC. This means
** that while one client is writing to the tree structure, other clients
** may still be querying an older snapshot of the tree.
**
** One way to implement this is to use an append-only b-tree. In this
** case instead of modifying nodes in-place, a copy of the node is made
** and the required modifications made to the copy. The parent of the
** node is then modified (to update the pointer so that it points to
** the new copy), which causes a copy of the parent to be made, and so on.
** This means that each time the tree is written to a new root node is
** created. A snapshot is identified by the root node that it uses.
**
** The problem with the above is that each time the tree is written to,
** a copy of the node structure modified and all of its ancestor nodes
** is made. This may prove excessive with large tree structures.
**
** To reduce this overhead, the data structure used for a tree node is
** designed so that it may be edited in place exactly once without
** affecting existing users. In other words, the node structure is capable
** of storing two separate versions of the node at the same time.
** When a node is to be edited, if the node structure already contains
** two versions, a copy is made as in the append-only approach. Or, if
** it only contains a single version, it is edited in place.
**
** This reduces the overhead so that, roughly, one new node structure
** must be allocated for each write (on top of those allocations that
** would have been required by a non-MVCC tree). Logic: Assume that at
** any time, 50% of nodes in the tree already contain 2 versions. When
** a new entry is written to a node, there is a 50% chance that a copy
** of the node will be required. And a 25% chance that a copy of its
** parent is required. And so on.
**
** ROLLBACK
**
** The in-memory tree also supports transaction and sub-transaction
** rollback. In order to rollback to point in time X, the following is
** necessary:
**
** 1. All memory allocated since X must be freed, and
** 2. All "v2" data adding to nodes that existed at X should be zeroed.
** 3. The root node must be restored to its X value.
**
** The Mempool object used to allocate memory for the tree supports
** operation (1) - see the lsmPoolMark() and lsmPoolRevert() functions.
**
** To support (2), all nodes that have v2 data are part of a singly linked
** list, sorted by the age of the v2 data (nodes that have had data added
** most recently are at the end of the list). So to zero all v2 data added
** since X, the linked list is traversed from the first node added following
** X onwards.
**
*/
#ifndef _LSM_INT_H
# include "lsmInt.h"
#endif
#include <string.h>
#define MAX_DEPTH 32
typedef struct TreeKey TreeKey;
typedef struct TreeNode TreeNode;
typedef struct TreeLeaf TreeLeaf;
typedef struct NodeVersion NodeVersion;
struct TreeOld {
u32 iShmid; /* Last shared-memory chunk in use by old */
u32 iRoot; /* Offset of root node in shm file */
u32 nHeight; /* Height of tree structure */
};
#if 0
/*
** assert() that a TreeKey.flags value is sane. Usage:
**
** assert( lsmAssertFlagsOk(pTreeKey->flags) );
*/
static int lsmAssertFlagsOk(u8 keyflags){
/* At least one flag must be set. Otherwise, what is this key doing? */
assert( keyflags!=0 );
/* The POINT_DELETE and INSERT flags cannot both be set. */
assert( (keyflags & LSM_POINT_DELETE)==0 || (keyflags & LSM_INSERT)==0 );
/* If both the START_DELETE and END_DELETE flags are set, then the INSERT
** flag must also be set. In other words - the three DELETE flags cannot
** all be set */
assert( (keyflags & LSM_END_DELETE)==0
|| (keyflags & LSM_START_DELETE)==0
|| (keyflags & LSM_POINT_DELETE)==0
);
return 1;
}
#endif
static int assert_delete_ranges_match(lsm_db *);
static int treeCountEntries(lsm_db *db);
/*
** Container for a key-value pair. Within the *-shm file, each key/value
** pair is stored in a single allocation (which may not actually be
** contiguous in memory). Layout is the TreeKey structure, followed by
** the nKey bytes of key blob, followed by the nValue bytes of value blob
** (if nValue is non-negative).
*/
struct TreeKey {
int nKey; /* Size of pKey in bytes */
int nValue; /* Size of pValue. Or negative. */
u8 flags; /* Various LSM_XXX flags */
};
#define TKV_KEY(p) ((void *)&(p)[1])
#define TKV_VAL(p) ((void *)(((u8 *)&(p)[1]) + (p)->nKey))
/*
** A single tree node. A node structure may contain up to 3 key/value
** pairs. Internal (non-leaf) nodes have up to 4 children.
**
** TODO: Update the format of this to be more compact. Get it working
** first though...
*/
struct TreeNode {
u32 aiKeyPtr[3]; /* Array of pointers to TreeKey objects */
/* The following fields are present for interior nodes only, not leaves. */
u32 aiChildPtr[4]; /* Array of pointers to child nodes */
/* The extra child pointer slot. */
u32 iV2; /* Transaction number of v2 */
u8 iV2Child; /* apChild[] entry replaced by pV2Ptr */
u32 iV2Ptr; /* Substitute pointer */
};
struct TreeLeaf {
u32 aiKeyPtr[3]; /* Array of pointers to TreeKey objects */
};
typedef struct TreeBlob TreeBlob;
struct TreeBlob {
int n;
u8 *a;
};
/*
** Cursor for searching a tree structure.
**
** If a cursor does not point to any element (a.k.a. EOF), then the
** TreeCursor.iNode variable is set to a negative value. Otherwise, the
** cursor currently points to key aiCell[iNode] on node apTreeNode[iNode].
**
** Entries in the apTreeNode[] and aiCell[] arrays contain the node and
** index of the TreeNode.apChild[] pointer followed to descend to the
** current element. Hence apTreeNode[0] always contains the root node of
** the tree.
*/
struct TreeCursor {
lsm_db *pDb; /* Database handle for this cursor */
TreeRoot *pRoot; /* Root node and height of tree to access */
int iNode; /* Cursor points at apTreeNode[iNode] */
TreeNode *apTreeNode[MAX_DEPTH];/* Current position in tree */
u8 aiCell[MAX_DEPTH]; /* Current position in tree */
TreeKey *pSave; /* Saved key */
TreeBlob blob; /* Dynamic storage for a key */
};
/*
** A value guaranteed to be larger than the largest possible transaction
** id (TreeHeader.iTransId).
*/
#define WORKING_VERSION (1<<30)
static int tblobGrow(lsm_db *pDb, TreeBlob *p, int n, int *pRc){
if( n>p->n ){
lsmFree(pDb->pEnv, p->a);
p->a = lsmMallocRc(pDb->pEnv, n, pRc);
p->n = n;
}
return (p->a==0);
}
static void tblobFree(lsm_db *pDb, TreeBlob *p){
lsmFree(pDb->pEnv, p->a);
}
/***********************************************************************
** Start of IntArray methods. */
/*
** Append value iVal to the contents of IntArray *p. Return LSM_OK if
** successful, or LSM_NOMEM if an OOM condition is encountered.
*/
static int intArrayAppend(lsm_env *pEnv, IntArray *p, u32 iVal){
assert( p->nArray<=p->nAlloc );
if( p->nArray>=p->nAlloc ){
u32 *aNew;
int nNew = p->nArray ? p->nArray*2 : 128;
aNew = lsmRealloc(pEnv, p->aArray, nNew*sizeof(u32));
if( !aNew ) return LSM_NOMEM_BKPT;
p->aArray = aNew;
p->nAlloc = nNew;
}
p->aArray[p->nArray++] = iVal;
return LSM_OK;
}
/*
** Zero the IntArray object.
*/
static void intArrayFree(lsm_env *pEnv, IntArray *p){
p->nArray = 0;
}
/*
** Return the number of entries currently in the int-array object.
*/
static int intArraySize(IntArray *p){
return p->nArray;
}
/*
** Return a copy of the iIdx'th entry in the int-array.
*/
static u32 intArrayEntry(IntArray *p, int iIdx){
return p->aArray[iIdx];
}
/*
** Truncate the int-array so that all but the first nVal values are
** discarded.
*/
static void intArrayTruncate(IntArray *p, int nVal){
p->nArray = nVal;
}
/* End of IntArray methods.
***********************************************************************/
static int treeKeycmp(void *p1, int n1, void *p2, int n2){
int res;
res = memcmp(p1, p2, LSM_MIN(n1, n2));
if( res==0 ) res = (n1-n2);
return res;
}
/*
** The pointer passed as the first argument points to an interior node,
** not a leaf. This function returns the offset of the iCell'th child
** sub-tree of the node.
*/
static u32 getChildPtr(TreeNode *p, int iVersion, int iCell){
assert( iVersion>=0 );
assert( iCell>=0 && iCell<=array_size(p->aiChildPtr) );
if( p->iV2 && p->iV2<=(u32)iVersion && iCell==p->iV2Child ) return p->iV2Ptr;
return p->aiChildPtr[iCell];
}
/*
** Given an offset within the *-shm file, return the associated chunk number.
*/
static int treeOffsetToChunk(u32 iOff){
assert( LSM_SHM_CHUNK_SIZE==(1<<15) );
return (int)(iOff>>15);
}
#define treeShmptrUnsafe(pDb, iPtr) \
(&((u8*)((pDb)->apShm[(iPtr)>>15]))[(iPtr) & (LSM_SHM_CHUNK_SIZE-1)])
/*
** Return a pointer to the mapped memory location associated with *-shm
** file offset iPtr.
*/
static void *treeShmptr(lsm_db *pDb, u32 iPtr){
assert( (iPtr>>15)<(u32)pDb->nShm );
assert( pDb->apShm[iPtr>>15] );
return iPtr ? treeShmptrUnsafe(pDb, iPtr) : 0;
}
static ShmChunk * treeShmChunk(lsm_db *pDb, int iChunk){
return (ShmChunk *)(pDb->apShm[iChunk]);
}
static ShmChunk * treeShmChunkRc(lsm_db *pDb, int iChunk, int *pRc){
assert( *pRc==LSM_OK );
if( iChunk<pDb->nShm || LSM_OK==(*pRc = lsmShmCacheChunks(pDb, iChunk+1)) ){
return (ShmChunk *)(pDb->apShm[iChunk]);
}
return 0;
}
#ifndef NDEBUG
static void assertIsWorkingChild(
lsm_db *db,
TreeNode *pNode,
TreeNode *pParent,
int iCell
){
TreeNode *p;
u32 iPtr = getChildPtr(pParent, WORKING_VERSION, iCell);
p = treeShmptr(db, iPtr);
assert( p==pNode );
}
#else
# define assertIsWorkingChild(w,x,y,z)
#endif
/* Values for the third argument to treeShmkey(). */
#define TKV_LOADKEY 1
#define TKV_LOADVAL 2
static TreeKey *treeShmkey(
lsm_db *pDb, /* Database handle */
u32 iPtr, /* Shmptr to TreeKey struct */
int eLoad, /* Either zero or a TREEKEY_LOADXXX value */
TreeBlob *pBlob, /* Used if dynamic memory is required */
int *pRc /* IN/OUT: Error code */
){
TreeKey *pRet;
assert( eLoad==TKV_LOADKEY || eLoad==TKV_LOADVAL );
pRet = (TreeKey *)treeShmptr(pDb, iPtr);
if( pRet ){
int nReq; /* Bytes of space required at pRet */
int nAvail; /* Bytes of space available at pRet */
nReq = sizeof(TreeKey) + pRet->nKey;
if( eLoad==TKV_LOADVAL && pRet->nValue>0 ){
nReq += pRet->nValue;
}
assert( LSM_SHM_CHUNK_SIZE==(1<<15) );
nAvail = LSM_SHM_CHUNK_SIZE - (iPtr & (LSM_SHM_CHUNK_SIZE-1));
if( nAvail<nReq ){
if( tblobGrow(pDb, pBlob, nReq, pRc)==0 ){
int nLoad = 0;
while( *pRc==LSM_OK ){
ShmChunk *pChunk;
void *p = treeShmptr(pDb, iPtr);
int n = LSM_MIN(nAvail, nReq-nLoad);
memcpy(&pBlob->a[nLoad], p, n);
nLoad += n;
if( nLoad==nReq ) break;
pChunk = treeShmChunk(pDb, treeOffsetToChunk(iPtr));
assert( pChunk );
iPtr = (pChunk->iNext * LSM_SHM_CHUNK_SIZE) + LSM_SHM_CHUNK_HDR;
nAvail = LSM_SHM_CHUNK_SIZE - LSM_SHM_CHUNK_HDR;
}
}
pRet = (TreeKey *)(pBlob->a);
}
}
return pRet;
}
#if defined(LSM_DEBUG) && defined(LSM_EXPENSIVE_ASSERT)
void assert_leaf_looks_ok(TreeNode *pNode){
assert( pNode->apKey[1] );
}
void assert_node_looks_ok(TreeNode *pNode, int nHeight){
if( pNode ){
assert( pNode->apKey[1] );
if( nHeight>1 ){
int i;
assert( getChildPtr(pNode, WORKING_VERSION, 1) );
assert( getChildPtr(pNode, WORKING_VERSION, 2) );
for(i=0; i<4; i++){
assert_node_looks_ok(getChildPtr(pNode, WORKING_VERSION, i), nHeight-1);
}
}
}
}
/*
** Run various assert() statements to check that the working-version of the
** tree is correct in the following respects:
**
** * todo...
*/
void assert_tree_looks_ok(int rc, Tree *pTree){
}
#else
# define assert_tree_looks_ok(x,y)
#endif
void lsmFlagsToString(int flags, char *zFlags){
zFlags[0] = (flags & LSM_END_DELETE) ? ']' : '.';
/* Only one of LSM_POINT_DELETE, LSM_INSERT and LSM_SEPARATOR should ever
** be set. If this is not true, write a '?' to the output. */
switch( flags & (LSM_POINT_DELETE|LSM_INSERT|LSM_SEPARATOR) ){
case 0: zFlags[1] = '.'; break;
case LSM_POINT_DELETE: zFlags[1] = '-'; break;
case LSM_INSERT: zFlags[1] = '+'; break;
case LSM_SEPARATOR: zFlags[1] = '^'; break;
default: zFlags[1] = '?'; break;
}
zFlags[2] = (flags & LSM_SYSTEMKEY) ? '*' : '.';
zFlags[3] = (flags & LSM_START_DELETE) ? '[' : '.';
zFlags[4] = '\0';
}
#ifdef LSM_DEBUG
/*
** Pointer pBlob points to a buffer containing a blob of binary data
** nBlob bytes long. Append the contents of this blob to *pStr, with
** each octet represented by a 2-digit hexadecimal number. For example,
** if the input blob is three bytes in size and contains {0x01, 0x44, 0xFF},
** then "0144ff" is appended to *pStr.
*/
static void lsmAppendStrBlob(LsmString *pStr, void *pBlob, int nBlob){
int i;
lsmStringExtend(pStr, nBlob*2);
if( pStr->nAlloc==0 ) return;
for(i=0; i<nBlob; i++){
u8 c = ((u8*)pBlob)[i];
if( c>='a' && c<='z' ){
pStr->z[pStr->n++] = c;
}else if( c!=0 || nBlob==1 || i!=(nBlob-1) ){
pStr->z[pStr->n++] = "0123456789abcdef"[(c>>4)&0xf];
pStr->z[pStr->n++] = "0123456789abcdef"[c&0xf];
}
}
pStr->z[pStr->n] = 0;
}
#if 0 /* NOT USED */
/*
** Append nIndent space (0x20) characters to string *pStr.
*/
static void lsmAppendIndent(LsmString *pStr, int nIndent){
int i;
lsmStringExtend(pStr, nIndent);
for(i=0; i<nIndent; i++) lsmStringAppend(pStr, " ", 1);
}
#endif
static void strAppendFlags(LsmString *pStr, u8 flags){
char zFlags[8];
lsmFlagsToString(flags, zFlags);
zFlags[4] = ':';
lsmStringAppend(pStr, zFlags, 5);
}
void dump_node_contents(
lsm_db *pDb,
u32 iNode, /* Print out the contents of this node */
char *zPath, /* Path from root to this node */
int nPath, /* Number of bytes in zPath */
int nHeight /* Height: (0==leaf) (1==parent-of-leaf) */
){
const char *zSpace = " ";
int i;
int rc = LSM_OK;
LsmString s;
TreeNode *pNode;
TreeBlob b = {0, 0};
pNode = (TreeNode *)treeShmptr(pDb, iNode);
if( nHeight==0 ){
/* Append the nIndent bytes of space to string s. */
lsmStringInit(&s, pDb->pEnv);
/* Append each key to string s. */
for(i=0; i<3; i++){
u32 iPtr = pNode->aiKeyPtr[i];
if( iPtr ){
TreeKey *pKey = treeShmkey(pDb, pNode->aiKeyPtr[i],TKV_LOADKEY, &b,&rc);
strAppendFlags(&s, pKey->flags);
lsmAppendStrBlob(&s, TKV_KEY(pKey), pKey->nKey);
lsmStringAppend(&s, " ", -1);
}
}
printf("% 6d %.*sleaf%.*s: %s\n",
iNode, nPath, zPath, 20-nPath-4, zSpace, s.z
);
lsmStringClear(&s);
}else{
for(i=0; i<4 && nHeight>0; i++){
u32 iPtr = getChildPtr(pNode, pDb->treehdr.root.iTransId, i);
zPath[nPath] = (char)(i+'0');
zPath[nPath+1] = '/';
if( iPtr ){
dump_node_contents(pDb, iPtr, zPath, nPath+2, nHeight-1);
}
if( i!=3 && pNode->aiKeyPtr[i] ){
TreeKey *pKey = treeShmkey(pDb, pNode->aiKeyPtr[i], TKV_LOADKEY,&b,&rc);
lsmStringInit(&s, pDb->pEnv);
strAppendFlags(&s, pKey->flags);
lsmAppendStrBlob(&s, TKV_KEY(pKey), pKey->nKey);
printf("% 6d %.*s%.*s: %s\n",
iNode, nPath+1, zPath, 20-nPath-1, zSpace, s.z);
lsmStringClear(&s);
}
}
}
tblobFree(pDb, &b);
}
void dump_tree_contents(lsm_db *pDb, const char *zCaption){
char zPath[64];
TreeRoot *p = &pDb->treehdr.root;
printf("\n%s\n", zCaption);
zPath[0] = '/';
if( p->iRoot ){
dump_node_contents(pDb, p->iRoot, zPath, 1, p->nHeight-1);
}
fflush(stdout);
}
#endif
/*
** Initialize a cursor object, the space for which has already been
** allocated.
*/
static void treeCursorInit(lsm_db *pDb, int bOld, TreeCursor *pCsr){
memset(pCsr, 0, sizeof(TreeCursor));
pCsr->pDb = pDb;
if( bOld ){
pCsr->pRoot = &pDb->treehdr.oldroot;
}else{
pCsr->pRoot = &pDb->treehdr.root;
}
pCsr->iNode = -1;
}
/*
** Return a pointer to the mapping of the TreeKey object that the cursor
** is pointing to.
*/
static TreeKey *csrGetKey(TreeCursor *pCsr, TreeBlob *pBlob, int *pRc){
TreeKey *pRet;
lsm_db *pDb = pCsr->pDb;
u32 iPtr = pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]];
assert( iPtr );
pRet = (TreeKey*)treeShmptrUnsafe(pDb, iPtr);
if( !(pRet->flags & LSM_CONTIGUOUS) ){
pRet = treeShmkey(pDb, iPtr, TKV_LOADVAL, pBlob, pRc);
}
return pRet;
}
/*
** Save the current position of tree cursor pCsr.
*/
int lsmTreeCursorSave(TreeCursor *pCsr){
int rc = LSM_OK;
if( pCsr && pCsr->pSave==0 ){
int iNode = pCsr->iNode;
if( iNode>=0 ){
pCsr->pSave = csrGetKey(pCsr, &pCsr->blob, &rc);
}
pCsr->iNode = -1;
}
return rc;
}
/*
** Restore the position of a saved tree cursor.
*/
static int treeCursorRestore(TreeCursor *pCsr, int *pRes){
int rc = LSM_OK;
if( pCsr->pSave ){
TreeKey *pKey = pCsr->pSave;
pCsr->pSave = 0;
if( pRes ){
rc = lsmTreeCursorSeek(pCsr, TKV_KEY(pKey), pKey->nKey, pRes);
}
}
return rc;
}
/*
** Allocate nByte bytes of space within the *-shm file. If successful,
** return LSM_OK and set *piPtr to the offset within the file at which
** the allocated space is located.
*/
static u32 treeShmalloc(lsm_db *pDb, int bAlign, int nByte, int *pRc){
u32 iRet = 0;
if( *pRc==LSM_OK ){
const static int CHUNK_SIZE = LSM_SHM_CHUNK_SIZE;
const static int CHUNK_HDR = LSM_SHM_CHUNK_HDR;
u32 iWrite; /* Current write offset */
u32 iEof; /* End of current chunk */
int iChunk; /* Current chunk */
assert( nByte <= (CHUNK_SIZE-CHUNK_HDR) );
/* Check if there is enough space on the current chunk to fit the
** new allocation. If not, link in a new chunk and put the new
** allocation at the start of it. */
iWrite = pDb->treehdr.iWrite;
if( bAlign ){
iWrite = (iWrite + 3) & ~0x0003;
assert( (iWrite % 4)==0 );
}
assert( iWrite );
iChunk = treeOffsetToChunk(iWrite-1);
iEof = (iChunk+1) * CHUNK_SIZE;
assert( iEof>=iWrite && (iEof-iWrite)<(u32)CHUNK_SIZE );
if( (iWrite+nByte)>iEof ){
ShmChunk *pHdr; /* Header of chunk just finished (iChunk) */
ShmChunk *pFirst; /* Header of chunk treehdr.iFirst */
ShmChunk *pNext; /* Header of new chunk */
int iNext = 0; /* Next chunk */
int rc = LSM_OK;
pFirst = treeShmChunk(pDb, pDb->treehdr.iFirst);
assert( shm_sequence_ge(pDb->treehdr.iUsedShmid, pFirst->iShmid) );
assert( (pDb->treehdr.iNextShmid+1-pDb->treehdr.nChunk)==pFirst->iShmid );
/* Check if the chunk at the start of the linked list is still in
** use. If not, reuse it. If so, allocate a new chunk by appending
** to the *-shm file. */
if( pDb->treehdr.iUsedShmid!=pFirst->iShmid ){
int bInUse;
rc = lsmTreeInUse(pDb, pFirst->iShmid, &bInUse);
if( rc!=LSM_OK ){
*pRc = rc;
return 0;
}
if( bInUse==0 ){
iNext = pDb->treehdr.iFirst;
pDb->treehdr.iFirst = pFirst->iNext;
assert( pDb->treehdr.iFirst );
}
}
if( iNext==0 ) iNext = pDb->treehdr.nChunk++;
/* Set the header values for the new chunk */
pNext = treeShmChunkRc(pDb, iNext, &rc);
if( pNext ){
pNext->iNext = 0;
pNext->iShmid = (pDb->treehdr.iNextShmid++);
}else{
*pRc = rc;
return 0;
}
/* Set the header values for the chunk just finished */
pHdr = (ShmChunk *)treeShmptr(pDb, iChunk*CHUNK_SIZE);
pHdr->iNext = iNext;
/* Advance to the next chunk */
iWrite = iNext * CHUNK_SIZE + CHUNK_HDR;
}
/* Allocate space at iWrite. */
iRet = iWrite;
pDb->treehdr.iWrite = iWrite + nByte;
pDb->treehdr.root.nByte += nByte;
}
return iRet;
}
/*
** Allocate and zero nByte bytes of space within the *-shm file.
*/
static void *treeShmallocZero(lsm_db *pDb, int nByte, u32 *piPtr, int *pRc){
u32 iPtr;
void *p;
iPtr = treeShmalloc(pDb, 1, nByte, pRc);
p = treeShmptr(pDb, iPtr);
if( p ){
assert( *pRc==LSM_OK );
memset(p, 0, nByte);
*piPtr = iPtr;
}
return p;
}
static TreeNode *newTreeNode(lsm_db *pDb, u32 *piPtr, int *pRc){
return treeShmallocZero(pDb, sizeof(TreeNode), piPtr, pRc);
}
static TreeLeaf *newTreeLeaf(lsm_db *pDb, u32 *piPtr, int *pRc){
return treeShmallocZero(pDb, sizeof(TreeLeaf), piPtr, pRc);
}
static TreeKey *newTreeKey(
lsm_db *pDb,
u32 *piPtr,
void *pKey, int nKey, /* Key data */
void *pVal, int nVal, /* Value data (or nVal<0 for delete) */
int *pRc
){
TreeKey *p;
u32 iPtr;
u32 iEnd;
int nRem;
u8 *a;
int n;
/* Allocate space for the TreeKey structure itself */
*piPtr = iPtr = treeShmalloc(pDb, 1, sizeof(TreeKey), pRc);
p = treeShmptr(pDb, iPtr);
if( *pRc ) return 0;
p->nKey = nKey;
p->nValue = nVal;
/* Allocate and populate the space required for the key and value. */
n = nRem = nKey;
a = (u8 *)pKey;
while( a ){
while( nRem>0 ){
u8 *aAlloc;
int nAlloc;
u32 iWrite;
iWrite = (pDb->treehdr.iWrite & (LSM_SHM_CHUNK_SIZE-1));
iWrite = LSM_MAX(iWrite, LSM_SHM_CHUNK_HDR);
nAlloc = LSM_MIN((LSM_SHM_CHUNK_SIZE-iWrite), (u32)nRem);
aAlloc = treeShmptr(pDb, treeShmalloc(pDb, 0, nAlloc, pRc));
if( aAlloc==0 ) break;
memcpy(aAlloc, &a[n-nRem], nAlloc);
nRem -= nAlloc;
}
a = pVal;
n = nRem = nVal;
pVal = 0;
}
iEnd = iPtr + sizeof(TreeKey) + nKey + LSM_MAX(0, nVal);
if( (iPtr & ~(LSM_SHM_CHUNK_SIZE-1))!=(iEnd & ~(LSM_SHM_CHUNK_SIZE-1)) ){
p->flags = 0;
}else{
p->flags = LSM_CONTIGUOUS;
}
if( *pRc ) return 0;
#if 0
printf("store: %d %s\n", (int)iPtr, (char *)pKey);
#endif
return p;
}
static TreeNode *copyTreeNode(
lsm_db *pDb,
TreeNode *pOld,
u32 *piNew,
int *pRc
){
TreeNode *pNew;
pNew = newTreeNode(pDb, piNew, pRc);
if( pNew ){
memcpy(pNew->aiKeyPtr, pOld->aiKeyPtr, sizeof(pNew->aiKeyPtr));
memcpy(pNew->aiChildPtr, pOld->aiChildPtr, sizeof(pNew->aiChildPtr));
if( pOld->iV2 ) pNew->aiChildPtr[pOld->iV2Child] = pOld->iV2Ptr;
}
return pNew;
}
static TreeNode *copyTreeLeaf(
lsm_db *pDb,
TreeLeaf *pOld,
u32 *piNew,
int *pRc
){
TreeLeaf *pNew;
pNew = newTreeLeaf(pDb, piNew, pRc);
if( pNew ){
memcpy(pNew, pOld, sizeof(TreeLeaf));
}
return (TreeNode *)pNew;
}
/*
** The tree cursor passed as the second argument currently points to an
** internal node (not a leaf). Specifically, to a sub-tree pointer. This
** function replaces the sub-tree that the cursor currently points to
** with sub-tree pNew.
**
** The sub-tree may be replaced either by writing the "v2 data" on the
** internal node, or by allocating a new TreeNode structure and then
** calling this function on the parent of the internal node.
*/
static int treeUpdatePtr(lsm_db *pDb, TreeCursor *pCsr, u32 iNew){
int rc = LSM_OK;
if( pCsr->iNode<0 ){
/* iNew is the new root node */
pDb->treehdr.root.iRoot = iNew;
}else{
/* If this node already has version 2 content, allocate a copy and
** update the copy with the new pointer value. Otherwise, store the
** new pointer as v2 data within the current node structure. */
TreeNode *p; /* The node to be modified */
int iChildPtr; /* apChild[] entry to modify */
p = pCsr->apTreeNode[pCsr->iNode];
iChildPtr = pCsr->aiCell[pCsr->iNode];
if( p->iV2 ){
/* The "allocate new TreeNode" option */
u32 iCopy;
TreeNode *pCopy;
pCopy = copyTreeNode(pDb, p, &iCopy, &rc);
if( pCopy ){
assert( rc==LSM_OK );
pCopy->aiChildPtr[iChildPtr] = iNew;
pCsr->iNode--;
rc = treeUpdatePtr(pDb, pCsr, iCopy);
}
}else{
/* The "v2 data" option */
u32 iPtr;
assert( pDb->treehdr.root.iTransId>0 );
if( pCsr->iNode ){
iPtr = getChildPtr(
pCsr->apTreeNode[pCsr->iNode-1],
pDb->treehdr.root.iTransId, pCsr->aiCell[pCsr->iNode-1]
);
}else{
iPtr = pDb->treehdr.root.iRoot;
}
rc = intArrayAppend(pDb->pEnv, &pDb->rollback, iPtr);
if( rc==LSM_OK ){
p->iV2 = pDb->treehdr.root.iTransId;
p->iV2Child = (u8)iChildPtr;
p->iV2Ptr = iNew;
}
}
}
return rc;
}
/*
** Cursor pCsr points at a node that is part of pTree. This function
** inserts a new key and optionally child node pointer into that node.
**
** The position into which the new key and pointer are inserted is
** determined by the iSlot parameter. The new key will be inserted to
** the left of the key currently stored in apKey[iSlot]. Or, if iSlot is
** greater than the index of the rightmost key in the node.
**
** Pointer pLeftPtr points to a child tree that contains keys that are
** smaller than pTreeKey.
*/
static int treeInsert(
lsm_db *pDb, /* Database handle */
TreeCursor *pCsr, /* Cursor indicating path to insert at */
u32 iLeftPtr, /* Left child pointer */
u32 iTreeKey, /* Location of key to insert */
u32 iRightPtr, /* Right child pointer */
int iSlot /* Position to insert key into */
){
int rc = LSM_OK;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
/* Check if the node is currently full. If so, split pNode in two and
** call this function recursively to add a key to the parent. Otherwise,
** insert the new key directly into pNode. */
assert( pNode->aiKeyPtr[1] );
if( pNode->aiKeyPtr[0] && pNode->aiKeyPtr[2] ){
u32 iLeft; TreeNode *pLeft; /* New left-hand sibling node */
u32 iRight; TreeNode *pRight; /* New right-hand sibling node */
pLeft = newTreeNode(pDb, &iLeft, &rc);
pRight = newTreeNode(pDb, &iRight, &rc);
if( rc ) return rc;
pLeft->aiChildPtr[1] = getChildPtr(pNode, WORKING_VERSION, 0);
pLeft->aiKeyPtr[1] = pNode->aiKeyPtr[0];
pLeft->aiChildPtr[2] = getChildPtr(pNode, WORKING_VERSION, 1);
pRight->aiChildPtr[1] = getChildPtr(pNode, WORKING_VERSION, 2);
pRight->aiKeyPtr[1] = pNode->aiKeyPtr[2];
pRight->aiChildPtr[2] = getChildPtr(pNode, WORKING_VERSION, 3);
if( pCsr->iNode==0 ){
/* pNode is the root of the tree. Grow the tree by one level. */
u32 iRoot; TreeNode *pRoot; /* New root node */
pRoot = newTreeNode(pDb, &iRoot, &rc);
pRoot->aiKeyPtr[1] = pNode->aiKeyPtr[1];
pRoot->aiChildPtr[1] = iLeft;
pRoot->aiChildPtr[2] = iRight;
pDb->treehdr.root.iRoot = iRoot;
pDb->treehdr.root.nHeight++;
}else{
pCsr->iNode--;
rc = treeInsert(pDb, pCsr,
iLeft, pNode->aiKeyPtr[1], iRight, pCsr->aiCell[pCsr->iNode]
);
}
assert( pLeft->iV2==0 );
assert( pRight->iV2==0 );
switch( iSlot ){
case 0:
pLeft->aiKeyPtr[0] = iTreeKey;
pLeft->aiChildPtr[0] = iLeftPtr;
if( iRightPtr ) pLeft->aiChildPtr[1] = iRightPtr;
break;
case 1:
pLeft->aiChildPtr[3] = (iRightPtr ? iRightPtr : pLeft->aiChildPtr[2]);
pLeft->aiKeyPtr[2] = iTreeKey;
pLeft->aiChildPtr[2] = iLeftPtr;
break;
case 2:
pRight->aiKeyPtr[0] = iTreeKey;
pRight->aiChildPtr[0] = iLeftPtr;
if( iRightPtr ) pRight->aiChildPtr[1] = iRightPtr;
break;
case 3:
pRight->aiChildPtr[3] = (iRightPtr ? iRightPtr : pRight->aiChildPtr[2]);
pRight->aiKeyPtr[2] = iTreeKey;
pRight->aiChildPtr[2] = iLeftPtr;
break;
}
}else{
TreeNode *pNew;
u32 *piKey;
u32 *piChild;
u32 iStore = 0;
u32 iNew = 0;
int i;
/* Allocate a new version of node pNode. */
pNew = newTreeNode(pDb, &iNew, &rc);
if( rc ) return rc;
piKey = pNew->aiKeyPtr;
piChild = pNew->aiChildPtr;
for(i=0; i<iSlot; i++){
if( pNode->aiKeyPtr[i] ){
*(piKey++) = pNode->aiKeyPtr[i];
*(piChild++) = getChildPtr(pNode, WORKING_VERSION, i);
}
}
*piKey++ = iTreeKey;
*piChild++ = iLeftPtr;
iStore = iRightPtr;
for(i=iSlot; i<3; i++){
if( pNode->aiKeyPtr[i] ){
*(piKey++) = pNode->aiKeyPtr[i];
*(piChild++) = iStore ? iStore : getChildPtr(pNode, WORKING_VERSION, i);
iStore = 0;
}
}
if( iStore ){
*piChild = iStore;
}else{
*piChild = getChildPtr(pNode, WORKING_VERSION,
(pNode->aiKeyPtr[2] ? 3 : 2)
);
}
pCsr->iNode--;
rc = treeUpdatePtr(pDb, pCsr, iNew);
}
return rc;
}
static int treeInsertLeaf(
lsm_db *pDb, /* Database handle */
TreeCursor *pCsr, /* Cursor structure */
u32 iTreeKey, /* Key pointer to insert */
int iSlot /* Insert key to the left of this */
){
int rc = LSM_OK; /* Return code */
TreeNode *pLeaf = pCsr->apTreeNode[pCsr->iNode];
TreeLeaf *pNew;
u32 iNew;
assert( iSlot>=0 && iSlot<=4 );
assert( pCsr->iNode>0 );
assert( pLeaf->aiKeyPtr[1] );
pCsr->iNode--;
pNew = newTreeLeaf(pDb, &iNew, &rc);
if( pNew ){
if( pLeaf->aiKeyPtr[0] && pLeaf->aiKeyPtr[2] ){
/* The leaf is full. Split it in two. */
TreeLeaf *pRight;
u32 iRight;
pRight = newTreeLeaf(pDb, &iRight, &rc);
if( pRight ){
assert( rc==LSM_OK );
pNew->aiKeyPtr[1] = pLeaf->aiKeyPtr[0];
pRight->aiKeyPtr[1] = pLeaf->aiKeyPtr[2];
switch( iSlot ){
case 0: pNew->aiKeyPtr[0] = iTreeKey; break;
case 1: pNew->aiKeyPtr[2] = iTreeKey; break;
case 2: pRight->aiKeyPtr[0] = iTreeKey; break;
case 3: pRight->aiKeyPtr[2] = iTreeKey; break;
}
rc = treeInsert(pDb, pCsr, iNew, pLeaf->aiKeyPtr[1], iRight,
pCsr->aiCell[pCsr->iNode]
);
}
}else{
int iOut = 0;
int i;
for(i=0; i<4; i++){
if( i==iSlot ) pNew->aiKeyPtr[iOut++] = iTreeKey;
if( i<3 && pLeaf->aiKeyPtr[i] ){
pNew->aiKeyPtr[iOut++] = pLeaf->aiKeyPtr[i];
}
}
rc = treeUpdatePtr(pDb, pCsr, iNew);
}
}
return rc;
}
void lsmTreeMakeOld(lsm_db *pDb){
/* A write transaction must be open. Otherwise the code below that
** assumes (pDb->pClient->iLogOff) is current may malfunction.
**
** Update: currently this assert fails due to lsm_flush(), which does
** not set nTransOpen.
*/
assert( /* pDb->nTransOpen>0 && */ pDb->iReader>=0 );
if( pDb->treehdr.iOldShmid==0 ){
pDb->treehdr.iOldLog = (pDb->treehdr.log.aRegion[2].iEnd << 1);
pDb->treehdr.iOldLog |= (~(pDb->pClient->iLogOff) & (i64)0x0001);
pDb->treehdr.oldcksum0 = pDb->treehdr.log.cksum0;
pDb->treehdr.oldcksum1 = pDb->treehdr.log.cksum1;
pDb->treehdr.iOldShmid = pDb->treehdr.iNextShmid-1;
memcpy(&pDb->treehdr.oldroot, &pDb->treehdr.root, sizeof(TreeRoot));
pDb->treehdr.root.iTransId = 1;
pDb->treehdr.root.iRoot = 0;
pDb->treehdr.root.nHeight = 0;
pDb->treehdr.root.nByte = 0;
}
}
void lsmTreeDiscardOld(lsm_db *pDb){
assert( lsmShmAssertLock(pDb, LSM_LOCK_WRITER, LSM_LOCK_EXCL)
|| lsmShmAssertLock(pDb, LSM_LOCK_DMS2, LSM_LOCK_EXCL)
);
pDb->treehdr.iUsedShmid = pDb->treehdr.iOldShmid;
pDb->treehdr.iOldShmid = 0;
}
int lsmTreeHasOld(lsm_db *pDb){
return pDb->treehdr.iOldShmid!=0;
}
/*
** This function is called during recovery to initialize the
** tree header. Only the database connections private copy of the tree-header
** is initialized here - it will be copied into shared memory if log file
** recovery is successful.
*/
int lsmTreeInit(lsm_db *pDb){
ShmChunk *pOne;
int rc = LSM_OK;
memset(&pDb->treehdr, 0, sizeof(TreeHeader));
pDb->treehdr.root.iTransId = 1;
pDb->treehdr.iFirst = 1;
pDb->treehdr.nChunk = 2;
pDb->treehdr.iWrite = LSM_SHM_CHUNK_SIZE + LSM_SHM_CHUNK_HDR;
pDb->treehdr.iNextShmid = 2;
pDb->treehdr.iUsedShmid = 1;
pOne = treeShmChunkRc(pDb, 1, &rc);
if( pOne ){
pOne->iNext = 0;
pOne->iShmid = 1;
}
return rc;
}
static void treeHeaderChecksum(
TreeHeader *pHdr,
u32 *aCksum
){
u32 cksum1 = 0x12345678;
u32 cksum2 = 0x9ABCDEF0;
u32 *a = (u32 *)pHdr;
int i;
assert( (offsetof(TreeHeader, aCksum) + sizeof(u32)*2)==sizeof(TreeHeader) );
assert( (sizeof(TreeHeader) % (sizeof(u32)*2))==0 );
for(i=0; i<(offsetof(TreeHeader, aCksum) / sizeof(u32)); i+=2){
cksum1 += a[i];
cksum2 += (cksum1 + a[i+1]);
}
aCksum[0] = cksum1;
aCksum[1] = cksum2;
}
/*
** Return true if the checksum stored in TreeHeader object *pHdr is
** consistent with the contents of its other fields.
*/
static int treeHeaderChecksumOk(TreeHeader *pHdr){
u32 aCksum[2];
treeHeaderChecksum(pHdr, aCksum);
return (0==memcmp(aCksum, pHdr->aCksum, sizeof(aCksum)));
}
/*
** This type is used by functions lsmTreeRepair() and treeSortByShmid() to
** make relinking the linked list of shared-memory chunks easier.
*/
typedef struct ShmChunkLoc ShmChunkLoc;
struct ShmChunkLoc {
ShmChunk *pShm;
u32 iLoc;
};
/*
** This function checks that the linked list of shared memory chunks
** that starts at chunk db->treehdr.iFirst:
**
** 1) Includes all chunks in the shared-memory region, and
** 2) Links them together in order of ascending shm-id.
**
** If no error occurs and the conditions above are met, LSM_OK is returned.
**
** If either of the conditions are untrue, LSM_CORRUPT is returned. Or, if
** an error is encountered before the checks are completed, another LSM error
** code (i.e. LSM_IOERR or LSM_NOMEM) may be returned.
*/
static int treeCheckLinkedList(lsm_db *db){
int rc = LSM_OK;
int nVisit = 0;
ShmChunk *p;
p = treeShmChunkRc(db, db->treehdr.iFirst, &rc);
while( rc==LSM_OK && p ){
if( p->iNext ){
if( p->iNext>=db->treehdr.nChunk ){
rc = LSM_CORRUPT_BKPT;
}else{
ShmChunk *pNext = treeShmChunkRc(db, p->iNext, &rc);
if( rc==LSM_OK ){
if( pNext->iShmid!=p->iShmid+1 ){
rc = LSM_CORRUPT_BKPT;
}
p = pNext;
}
}
}else{
p = 0;
}
nVisit++;
}
if( rc==LSM_OK && (u32)nVisit!=db->treehdr.nChunk-1 ){
rc = LSM_CORRUPT_BKPT;
}
return rc;
}
/*
** Iterate through the current in-memory tree. If there are any v2-pointers
** with transaction ids larger than db->treehdr.iTransId, zero them.
*/
static int treeRepairPtrs(lsm_db *db){
int rc = LSM_OK;
if( db->treehdr.root.nHeight>1 ){
TreeCursor csr; /* Cursor used to iterate through tree */
u32 iTransId = db->treehdr.root.iTransId;
/* Initialize the cursor structure. Also decrement the nHeight variable
** in the tree-header. This will prevent the cursor from visiting any
** leaf nodes. */
db->treehdr.root.nHeight--;
treeCursorInit(db, 0, &csr);
rc = lsmTreeCursorEnd(&csr, 0);
while( rc==LSM_OK && lsmTreeCursorValid(&csr) ){
TreeNode *pNode = csr.apTreeNode[csr.iNode];
if( pNode->iV2>iTransId ){
pNode->iV2Child = 0;
pNode->iV2Ptr = 0;
pNode->iV2 = 0;
}
rc = lsmTreeCursorNext(&csr);
}
tblobFree(csr.pDb, &csr.blob);
db->treehdr.root.nHeight++;
}
return rc;
}
static int treeRepairList(lsm_db *db){
int rc = LSM_OK;
int i;
ShmChunk *p;
ShmChunk *pMin = 0;
u32 iMin = 0;
/* Iterate through all shm chunks. Find the smallest shm-id present in
** the shared-memory region. */
for(i=1; rc==LSM_OK && (u32)i<db->treehdr.nChunk; i++){
p = treeShmChunkRc(db, i, &rc);
if( p && (pMin==0 || shm_sequence_ge(pMin->iShmid, p->iShmid)) ){
pMin = p;
iMin = i;
}
}
/* Fix the shm-id values on any chunks with a shm-id greater than or
** equal to treehdr.iNextShmid. Then do a merge-sort of all chunks to
** fix the ShmChunk.iNext pointers.
*/
if( rc==LSM_OK ){
int nSort;
int nByte;
u32 iPrevShmid;
ShmChunkLoc *aSort;
/* Allocate space for a merge sort. */
nSort = 1;
while( (u32)nSort < (db->treehdr.nChunk-1) ) nSort = nSort * 2;
nByte = sizeof(ShmChunkLoc) * nSort * 2;
aSort = lsmMallocZeroRc(db->pEnv, nByte, &rc);
iPrevShmid = pMin->iShmid;
/* Fix all shm-ids, if required. */
if( rc==LSM_OK ){
iPrevShmid = pMin->iShmid-1;
for(i=1; (u32)i<db->treehdr.nChunk; i++){
p = treeShmChunk(db, i);
aSort[i-1].pShm = p;
aSort[i-1].iLoc = i;
if( (u32)i!=db->treehdr.iFirst ){
if( shm_sequence_ge(p->iShmid, db->treehdr.iNextShmid) ){
p->iShmid = iPrevShmid--;
}
}
}
if( iMin!=db->treehdr.iFirst ){
p = treeShmChunk(db, db->treehdr.iFirst);
p->iShmid = iPrevShmid;
}
}
if( rc==LSM_OK ){
ShmChunkLoc *aSpace = &aSort[nSort];
for(i=0; i<nSort; i++){
if( aSort[i].pShm ){
assert( shm_sequence_ge(aSort[i].pShm->iShmid, iPrevShmid) );
assert( aSpace[aSort[i].pShm->iShmid - iPrevShmid].pShm==0 );
aSpace[aSort[i].pShm->iShmid - iPrevShmid] = aSort[i];
}
}
if( aSpace[nSort-1].pShm ) aSpace[nSort-1].pShm->iNext = 0;
for(i=0; i<nSort-1; i++){
if( aSpace[i].pShm ){
aSpace[i].pShm->iNext = aSpace[i+1].iLoc;
}
}
rc = treeCheckLinkedList(db);
lsmFree(db->pEnv, aSort);
}
}
return rc;
}
/*
** This function is called as part of opening a write-transaction if the
** writer-flag is already set - indicating that the previous writer
** failed before ending its transaction.
*/
int lsmTreeRepair(lsm_db *db){
int rc = LSM_OK;
TreeHeader hdr;
ShmHeader *pHdr = db->pShmhdr;
/* Ensure that the two tree-headers are consistent. Copy one over the other
** if necessary. Prefer the data from a tree-header for which the checksum
** computes. Or, if they both compute, prefer tree-header-1. */
if( memcmp(&pHdr->hdr1, &pHdr->hdr2, sizeof(TreeHeader)) ){
if( treeHeaderChecksumOk(&pHdr->hdr1) ){
memcpy(&pHdr->hdr2, &pHdr->hdr1, sizeof(TreeHeader));
}else{
memcpy(&pHdr->hdr1, &pHdr->hdr2, sizeof(TreeHeader));
}
}
/* Save the connections current copy of the tree-header. It will be
** restored before returning. */
memcpy(&hdr, &db->treehdr, sizeof(TreeHeader));
/* Walk the tree. Zero any v2 pointers with a transaction-id greater than
** the transaction-id currently in the tree-headers. */
rc = treeRepairPtrs(db);
/* Repair the linked list of shared-memory chunks. */
if( rc==LSM_OK ){
rc = treeRepairList(db);
}
memcpy(&db->treehdr, &hdr, sizeof(TreeHeader));
return rc;
}
static void treeOverwriteKey(lsm_db *db, TreeCursor *pCsr, u32 iKey, int *pRc){
if( *pRc==LSM_OK ){
TreeRoot *p = &db->treehdr.root;
TreeNode *pNew;
u32 iNew;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
int iCell = pCsr->aiCell[pCsr->iNode];
/* Create a copy of this node */
if( (pCsr->iNode>0 && (u32)pCsr->iNode==(p->nHeight-1)) ){
pNew = copyTreeLeaf(db, (TreeLeaf *)pNode, &iNew, pRc);
}else{
pNew = copyTreeNode(db, pNode, &iNew, pRc);
}
if( pNew ){
/* Modify the value in the new version */
pNew->aiKeyPtr[iCell] = iKey;
/* Change the pointer in the parent (if any) to point at the new
** TreeNode */
pCsr->iNode--;
treeUpdatePtr(db, pCsr, iNew);
}
}
}
static int treeNextIsEndDelete(lsm_db *db, TreeCursor *pCsr){
int iNode = pCsr->iNode;
int iCell = pCsr->aiCell[iNode]+1;
/* Cursor currently points to a leaf node. */
assert( (u32)pCsr->iNode==(db->treehdr.root.nHeight-1) );
while( iNode>=0 ){
TreeNode *pNode = pCsr->apTreeNode[iNode];
if( iCell<3 && pNode->aiKeyPtr[iCell] ){
int rc = LSM_OK;
TreeKey *pKey = treeShmptr(db, pNode->aiKeyPtr[iCell]);
assert( rc==LSM_OK );
return ((pKey->flags & LSM_END_DELETE) ? 1 : 0);
}
iNode--;
iCell = pCsr->aiCell[iNode];
}
return 0;
}
static int treePrevIsStartDelete(lsm_db *db, TreeCursor *pCsr){
int iNode = pCsr->iNode;
/* Cursor currently points to a leaf node. */
assert( (u32)pCsr->iNode==(db->treehdr.root.nHeight-1) );
while( iNode>=0 ){
TreeNode *pNode = pCsr->apTreeNode[iNode];
int iCell = pCsr->aiCell[iNode]-1;
if( iCell>=0 && pNode->aiKeyPtr[iCell] ){
int rc = LSM_OK;
TreeKey *pKey = treeShmptr(db, pNode->aiKeyPtr[iCell]);
assert( rc==LSM_OK );
return ((pKey->flags & LSM_START_DELETE) ? 1 : 0);
}
iNode--;
}
return 0;
}
static int treeInsertEntry(
lsm_db *pDb, /* Database handle */
int flags, /* Flags associated with entry */
void *pKey, /* Pointer to key data */
int nKey, /* Size of key data in bytes */
void *pVal, /* Pointer to value data (or NULL) */
int nVal /* Bytes in value data (or -ve for delete) */
){
int rc = LSM_OK; /* Return Code */
TreeKey *pTreeKey; /* New key-value being inserted */
u32 iTreeKey;
TreeRoot *p = &pDb->treehdr.root;
TreeCursor csr; /* Cursor to seek to pKey/nKey */
int res = 0; /* Result of seek operation on csr */
assert( nVal>=0 || pVal==0 );
assert_tree_looks_ok(LSM_OK, pTree);
assert( flags==LSM_INSERT || flags==LSM_POINT_DELETE
|| flags==LSM_START_DELETE || flags==LSM_END_DELETE
);
assert( (flags & LSM_CONTIGUOUS)==0 );
#if 0
dump_tree_contents(pDb, "before");
#endif
if( p->iRoot ){
TreeKey *pRes; /* Key at end of seek operation */
treeCursorInit(pDb, 0, &csr);
/* Seek to the leaf (or internal node) that the new key belongs on */
rc = lsmTreeCursorSeek(&csr, pKey, nKey, &res);
pRes = csrGetKey(&csr, &csr.blob, &rc);
if( rc!=LSM_OK ) return rc;
assert( pRes );
if( flags==LSM_START_DELETE ){
/* When inserting a start-delete-range entry, if the key that
** occurs immediately before the new entry is already a START_DELETE,
** then the new entry is not required. */
if( (res<=0 && (pRes->flags & LSM_START_DELETE))
|| (res>0 && treePrevIsStartDelete(pDb, &csr))
){
goto insert_entry_out;
}
}else if( flags==LSM_END_DELETE ){
/* When inserting an start-delete-range entry, if the key that
** occurs immediately after the new entry is already an END_DELETE,
** then the new entry is not required. */
if( (res<0 && treeNextIsEndDelete(pDb, &csr))
|| (res>=0 && (pRes->flags & LSM_END_DELETE))
){
goto insert_entry_out;
}
}
if( res==0 && (flags & (LSM_END_DELETE|LSM_START_DELETE)) ){
if( pRes->flags & LSM_INSERT ){
nVal = pRes->nValue;
pVal = TKV_VAL(pRes);
}
flags = flags | pRes->flags;
}
if( flags & (LSM_INSERT|LSM_POINT_DELETE) ){
if( (res<0 && (pRes->flags & LSM_START_DELETE))
|| (res>0 && (pRes->flags & LSM_END_DELETE))
){
flags = flags | (LSM_END_DELETE|LSM_START_DELETE);
}else if( res==0 ){
flags = flags | (pRes->flags & (LSM_END_DELETE|LSM_START_DELETE));
}
}
}else{
memset(&csr, 0, sizeof(TreeCursor));
}
/* Allocate and populate a new key-value pair structure */
pTreeKey = newTreeKey(pDb, &iTreeKey, pKey, nKey, pVal, nVal, &rc);
if( rc!=LSM_OK ) return rc;
assert( pTreeKey->flags==0 || pTreeKey->flags==LSM_CONTIGUOUS );
pTreeKey->flags |= flags;
if( p->iRoot==0 ){
/* The tree is completely empty. Add a new root node and install
** (pKey/nKey) as the middle entry. Even though it is a leaf at the
** moment, use newTreeNode() to allocate the node (i.e. allocate enough
** space for the fields used by interior nodes). This is because the
** treeInsert() routine may convert this node to an interior node. */
TreeNode *pRoot = newTreeNode(pDb, &p->iRoot, &rc);
if( rc==LSM_OK ){
assert( p->nHeight==0 );
pRoot->aiKeyPtr[1] = iTreeKey;
p->nHeight = 1;
}
}else{
if( res==0 ){
/* The search found a match within the tree. */
treeOverwriteKey(pDb, &csr, iTreeKey, &rc);
}else{
/* The cursor now points to the leaf node into which the new entry should
** be inserted. There may or may not be a free slot within the leaf for
** the new key-value pair.
**
** iSlot is set to the index of the key within pLeaf that the new key
** should be inserted to the left of (or to a value 1 greater than the
** index of the rightmost key if the new key is larger than all keys
** currently stored in the node).
*/
int iSlot = csr.aiCell[csr.iNode] + (res<0);
if( csr.iNode==0 ){
rc = treeInsert(pDb, &csr, 0, iTreeKey, 0, iSlot);
}else{
rc = treeInsertLeaf(pDb, &csr, iTreeKey, iSlot);
}
}
}
#if 0
dump_tree_contents(pDb, "after");
#endif
insert_entry_out:
tblobFree(pDb, &csr.blob);
assert_tree_looks_ok(rc, pTree);
return rc;
}
/*
** Insert a new entry into the in-memory tree.
**
** If the value of the 5th parameter, nVal, is negative, then a delete-marker
** is inserted into the tree. In this case the value pointer, pVal, must be
** NULL.
*/
int lsmTreeInsert(
lsm_db *pDb, /* Database handle */
void *pKey, /* Pointer to key data */
int nKey, /* Size of key data in bytes */
void *pVal, /* Pointer to value data (or NULL) */
int nVal /* Bytes in value data (or -ve for delete) */
){
int flags;
if( nVal<0 ){
flags = LSM_POINT_DELETE;
}else{
flags = LSM_INSERT;
}
return treeInsertEntry(pDb, flags, pKey, nKey, pVal, nVal);
}
static int treeDeleteEntry(lsm_db *db, TreeCursor *pCsr, u32 iNewptr){
TreeRoot *p = &db->treehdr.root;
TreeNode *pNode = pCsr->apTreeNode[pCsr->iNode];
int iSlot = pCsr->aiCell[pCsr->iNode];
int bLeaf;
int rc = LSM_OK;
assert( pNode->aiKeyPtr[1] );
assert( pNode->aiKeyPtr[iSlot] );
assert( iSlot==0 || iSlot==1 || iSlot==2 );
assert( ((u32)pCsr->iNode==(db->treehdr.root.nHeight-1))==(iNewptr==0) );
bLeaf = ((u32)pCsr->iNode==(p->nHeight-1) && p->nHeight>1);
if( pNode->aiKeyPtr[0] || pNode->aiKeyPtr[2] ){
/* There are currently at least 2 keys on this node. So just create
** a new copy of the node with one of the keys removed. If the node
** happens to be the root node of the tree, allocate an entire
** TreeNode structure instead of just a TreeLeaf. */
TreeNode *pNew;
u32 iNew;
if( bLeaf ){
pNew = (TreeNode *)newTreeLeaf(db, &iNew, &rc);
}else{
pNew = newTreeNode(db, &iNew, &rc);
}
if( pNew ){
int i;
int iOut = 1;
for(i=0; i<4; i++){
if( i==iSlot ){
i++;
if( bLeaf==0 ) pNew->aiChildPtr[iOut] = iNewptr;
if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i];
iOut++;
}else if( bLeaf || p->nHeight==1 ){
if( i<3 && pNode->aiKeyPtr[i] ){
pNew->aiKeyPtr[iOut++] = pNode->aiKeyPtr[i];
}
}else{
if( getChildPtr(pNode, WORKING_VERSION, i) ){
pNew->aiChildPtr[iOut] = getChildPtr(pNode, WORKING_VERSION, i);
if( i<3 ) pNew->aiKeyPtr[iOut] = pNode->aiKeyPtr[i];
iOut++;
}
}
}
assert( iOut<=4 );
assert( bLeaf || pNew->aiChildPtr[0]==0 );
pCsr->iNode--;
rc = treeUpdatePtr(db, pCsr, iNew);
}
}else if( pCsr->iNode==0 ){
/* Removing the only key in the root node. iNewptr is the new root. */
assert( iSlot==1 );
db->treehdr.root.iRoot = iNewptr;
db->treehdr.root.nHeight--;
}else{
/* There is only one key on this node and the node is not the root
** node. Find a peer for this node. Then redistribute the contents of
** the peer and the parent cell between the parent and either one or
** two new nodes. */
TreeNode *pParent; /* Parent tree node */
int iPSlot;
u32 iPeer; /* Pointer to peer leaf node */
int iDir;
TreeNode *pPeer; /* The peer leaf node */
TreeNode *pNew1; u32 iNew1; /* First new leaf node */
assert( iSlot==1 );
pParent = pCsr->apTreeNode[pCsr->iNode-1];
iPSlot = pCsr->aiCell[pCsr->iNode-1];
if( iPSlot>0 && getChildPtr(pParent, WORKING_VERSION, iPSlot-1) ){
iDir = -1;
}else{
iDir = +1;
}
iPeer = getChildPtr(pParent, WORKING_VERSION, iPSlot+iDir);
pPeer = (TreeNode *)treeShmptr(db, iPeer);
assertIsWorkingChild(db, pNode, pParent, iPSlot);
/* Allocate the first new leaf node. This is always required. */
if( bLeaf ){
pNew1 = (TreeNode *)newTreeLeaf(db, &iNew1, &rc);
}else{
pNew1 = (TreeNode *)newTreeNode(db, &iNew1, &rc);
}
if( pPeer->aiKeyPtr[0] && pPeer->aiKeyPtr[2] ){
/* Peer node is completely full. This means that two new leaf nodes
** and a new parent node are required. */
TreeNode *pNew2; u32 iNew2; /* Second new leaf node */
TreeNode *pNewP; u32 iNewP; /* New parent node */
if( bLeaf ){
pNew2 = (TreeNode *)newTreeLeaf(db, &iNew2, &rc);
}else{
pNew2 = (TreeNode *)newTreeNode(db, &iNew2, &rc);
}
pNewP = copyTreeNode(db, pParent, &iNewP, &rc);
if( iDir==-1 ){
pNew1->aiKeyPtr[1] = pPeer->aiKeyPtr[0];
if( bLeaf==0 ){
pNew1->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 0);
pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 1);
}
pNewP->aiChildPtr[iPSlot-1] = iNew1;
pNewP->aiKeyPtr[iPSlot-1] = pPeer->aiKeyPtr[1];
pNewP->aiChildPtr[iPSlot] = iNew2;
pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[2];
pNew2->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot-1];
if( bLeaf==0 ){
pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 2);
pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 3);
pNew2->aiChildPtr[2] = iNewptr;
}
}else{
pNew1->aiKeyPtr[1] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ){
pNew1->aiChildPtr[1] = iNewptr;
pNew1->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 0);
}
pNewP->aiChildPtr[iPSlot] = iNew1;
pNewP->aiKeyPtr[iPSlot] = pPeer->aiKeyPtr[0];
pNewP->aiChildPtr[iPSlot+1] = iNew2;
pNew2->aiKeyPtr[0] = pPeer->aiKeyPtr[1];
pNew2->aiKeyPtr[1] = pPeer->aiKeyPtr[2];
if( bLeaf==0 ){
pNew2->aiChildPtr[0] = getChildPtr(pPeer, WORKING_VERSION, 1);
pNew2->aiChildPtr[1] = getChildPtr(pPeer, WORKING_VERSION, 2);
pNew2->aiChildPtr[2] = getChildPtr(pPeer, WORKING_VERSION, 3);
}
}
assert( pCsr->iNode>=1 );
pCsr->iNode -= 2;
if( rc==LSM_OK ){
assert( pNew1->aiKeyPtr[1] && pNew2->aiKeyPtr[1] );
rc = treeUpdatePtr(db, pCsr, iNewP);
}
}else{
int iKOut = 0;
int iPOut = 0;
int i;
pCsr->iNode--;
if( iDir==1 ){
pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr;
}
for(i=0; i<3; i++){
if( pPeer->aiKeyPtr[i] ){
pNew1->aiKeyPtr[iKOut++] = pPeer->aiKeyPtr[i];
}
}
if( bLeaf==0 ){
for(i=0; i<4; i++){
if( getChildPtr(pPeer, WORKING_VERSION, i) ){
pNew1->aiChildPtr[iPOut++] = getChildPtr(pPeer, WORKING_VERSION, i);
}
}
}
if( iDir==-1 ){
iPSlot--;
pNew1->aiKeyPtr[iKOut++] = pParent->aiKeyPtr[iPSlot];
if( bLeaf==0 ) pNew1->aiChildPtr[iPOut++] = iNewptr;
pCsr->aiCell[pCsr->iNode] = (u8)iPSlot;
}
rc = treeDeleteEntry(db, pCsr, iNew1);
}
}
return rc;
}
/*
** Delete a range of keys from the tree structure (i.e. the lsm_delete_range()
** function, not lsm_delete()).
**
** This is a two step process:
**
** 1) Remove all entries currently stored in the tree that have keys
** that fall into the deleted range.
**
** TODO: There are surely good ways to optimize this step - removing
** a range of keys from a b-tree. But for now, this function removes
** them one at a time using the usual approach.
**
** 2) Unless the largest key smaller than or equal to (pKey1/nKey1) is
** already marked as START_DELETE, insert a START_DELETE key.
** Similarly, unless the smallest key greater than or equal to
** (pKey2/nKey2) is already START_END, insert a START_END key.
*/
int lsmTreeDelete(
lsm_db *db,
void *pKey1, int nKey1, /* Start of range */
void *pKey2, int nKey2 /* End of range */
){
int rc = LSM_OK;
int bDone = 0;
TreeRoot *p = &db->treehdr.root;
TreeBlob blob = {0, 0};
/* The range must be sensible - that (key1 < key2). */
assert( treeKeycmp(pKey1, nKey1, pKey2, nKey2)<0 );
assert( assert_delete_ranges_match(db) );
#if 0
static int nCall = 0;
printf("\n");
nCall++;
printf("%d delete %s .. %s\n", nCall, (char *)pKey1, (char *)pKey2);
dump_tree_contents(db, "before delete");
#endif
/* Step 1. This loop runs until the tree contains no keys within the
** range being deleted. Or until an error occurs. */
while( bDone==0 && rc==LSM_OK ){
int res;
TreeCursor csr; /* Cursor to seek to first key in range */
void *pDel; int nDel; /* Key to (possibly) delete this iteration */
#ifndef NDEBUG
int nEntry = treeCountEntries(db);
#endif
/* Seek the cursor to the first entry in the tree greater than pKey1. */
treeCursorInit(db, 0, &csr);
lsmTreeCursorSeek(&csr, pKey1, nKey1, &res);
if( res<=0 && lsmTreeCursorValid(&csr) ) lsmTreeCursorNext(&csr);
/* If there is no such entry, or if it is greater than pKey2, then the
** tree now contains no keys in the range being deleted. In this case
** break out of the loop. */
bDone = 1;
if( lsmTreeCursorValid(&csr) ){
lsmTreeCursorKey(&csr, 0, &pDel, &nDel);
if( treeKeycmp(pDel, nDel, pKey2, nKey2)<0 ) bDone = 0;
}
if( bDone==0 ){
if( (u32)csr.iNode==(p->nHeight-1) ){
/* The element to delete already lies on a leaf node */
rc = treeDeleteEntry(db, &csr, 0);
}else{
/* 1. Overwrite the current key with a copy of the next key in the
** tree (key N).
**
** 2. Seek to key N (cursor will stop at the internal node copy of
** N). Move to the next key (original copy of N). Delete
** this entry.
*/
u32 iKey;
TreeKey *pKey;
int iNode = csr.iNode;
lsmTreeCursorNext(&csr);
assert( (u32)csr.iNode==(p->nHeight-1) );
iKey = csr.apTreeNode[csr.iNode]->aiKeyPtr[csr.aiCell[csr.iNode]];
lsmTreeCursorPrev(&csr);
treeOverwriteKey(db, &csr, iKey, &rc);
pKey = treeShmkey(db, iKey, TKV_LOADKEY, &blob, &rc);
if( pKey ){
rc = lsmTreeCursorSeek(&csr, TKV_KEY(pKey), pKey->nKey, &res);
}
if( rc==LSM_OK ){
assert( res==0 && csr.iNode==iNode );
rc = lsmTreeCursorNext(&csr);
if( rc==LSM_OK ){
rc = treeDeleteEntry(db, &csr, 0);
}
}
}
}
/* Clean up any memory allocated by the cursor. */
tblobFree(db, &csr.blob);
#if 0
dump_tree_contents(db, "ddd delete");
#endif
assert( bDone || treeCountEntries(db)==(nEntry-1) );
}
#if 0
dump_tree_contents(db, "during delete");
#endif
/* Now insert the START_DELETE and END_DELETE keys. */
if( rc==LSM_OK ){
rc = treeInsertEntry(db, LSM_START_DELETE, pKey1, nKey1, 0, -1);
}
#if 0
dump_tree_contents(db, "during delete 2");
#endif
if( rc==LSM_OK ){
rc = treeInsertEntry(db, LSM_END_DELETE, pKey2, nKey2, 0, -1);
}
#if 0
dump_tree_contents(db, "after delete");
#endif
tblobFree(db, &blob);
assert( assert_delete_ranges_match(db) );
return rc;
}
/*
** Return, in bytes, the amount of memory currently used by the tree
** structure.
*/
int lsmTreeSize(lsm_db *pDb){
return pDb->treehdr.root.nByte;
}
/*
** Open a cursor on the in-memory tree pTree.
*/
int lsmTreeCursorNew(lsm_db *pDb, int bOld, TreeCursor **ppCsr){
TreeCursor *pCsr;
*ppCsr = pCsr = lsmMalloc(pDb->pEnv, sizeof(TreeCursor));
if( pCsr ){
treeCursorInit(pDb, bOld, pCsr);
return LSM_OK;
}
return LSM_NOMEM_BKPT;
}
/*
** Close an in-memory tree cursor.
*/
void lsmTreeCursorDestroy(TreeCursor *pCsr){
if( pCsr ){
tblobFree(pCsr->pDb, &pCsr->blob);
lsmFree(pCsr->pDb->pEnv, pCsr);
}
}
void lsmTreeCursorReset(TreeCursor *pCsr){
if( pCsr ){
pCsr->iNode = -1;
pCsr->pSave = 0;
}
}
#ifndef NDEBUG
static int treeCsrCompare(TreeCursor *pCsr, void *pKey, int nKey, int *pRc){
TreeKey *p;
int cmp = 0;
assert( pCsr->iNode>=0 );
p = csrGetKey(pCsr, &pCsr->blob, pRc);
if( p ){
cmp = treeKeycmp(TKV_KEY(p), p->nKey, pKey, nKey);
}
return cmp;
}
#endif
/*
** Attempt to seek the cursor passed as the first argument to key (pKey/nKey)
** in the tree structure. If an exact match for the key is found, leave the
** cursor pointing to it and set *pRes to zero before returning. If an
** exact match cannot be found, do one of the following:
**
** * Leave the cursor pointing to the smallest element in the tree that
** is larger than the key and set *pRes to +1, or
**
** * Leave the cursor pointing to the largest element in the tree that
** is smaller than the key and set *pRes to -1, or
**
** * If the tree is empty, leave the cursor at EOF and set *pRes to -1.
*/
int lsmTreeCursorSeek(TreeCursor *pCsr, void *pKey, int nKey, int *pRes){
int rc = LSM_OK; /* Return code */
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
u32 iNodePtr; /* Location of current node in search */
/* Discard any saved position data */
treeCursorRestore(pCsr, 0);
iNodePtr = pRoot->iRoot;
if( iNodePtr==0 ){
/* Either an error occurred or the tree is completely empty. */
assert( rc!=LSM_OK || pRoot->iRoot==0 );
*pRes = -1;
pCsr->iNode = -1;
}else{
TreeBlob b = {0, 0};
int res = 0; /* Result of comparison function */
int iNode = -1;
while( iNodePtr ){
TreeNode *pNode; /* Node at location iNodePtr */
int iTest; /* Index of second key to test (0 or 2) */
u32 iTreeKey;
TreeKey *pTreeKey; /* Key to compare against */
pNode = (TreeNode *)treeShmptrUnsafe(pDb, iNodePtr);
iNode++;
pCsr->apTreeNode[iNode] = pNode;
/* Compare (pKey/nKey) with the key in the middle slot of B-tree node
** pNode. The middle slot is never empty. If the comparison is a match,
** then the search is finished. Break out of the loop. */
pTreeKey = (TreeKey*)treeShmptrUnsafe(pDb, pNode->aiKeyPtr[1]);
if( !(pTreeKey->flags & LSM_CONTIGUOUS) ){
pTreeKey = treeShmkey(pDb, pNode->aiKeyPtr[1], TKV_LOADKEY, &b, &rc);
if( rc!=LSM_OK ) break;
}
res = treeKeycmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
if( res==0 ){
pCsr->aiCell[iNode] = 1;
break;
}
/* Based on the results of the previous comparison, compare (pKey/nKey)
** to either the left or right key of the B-tree node, if such a key
** exists. */
iTest = (res>0 ? 0 : 2);
iTreeKey = pNode->aiKeyPtr[iTest];
if( iTreeKey ){
pTreeKey = (TreeKey*)treeShmptrUnsafe(pDb, iTreeKey);
if( !(pTreeKey->flags & LSM_CONTIGUOUS) ){
pTreeKey = treeShmkey(pDb, iTreeKey, TKV_LOADKEY, &b, &rc);
if( rc ) break;
}
res = treeKeycmp((void *)&pTreeKey[1], pTreeKey->nKey, pKey, nKey);
if( res==0 ){
pCsr->aiCell[iNode] = (u8)iTest;
break;
}
}else{
iTest = 1;
}
if( (u32)iNode<(pRoot->nHeight-1) ){
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iTest + (res<0));
}else{
iNodePtr = 0;
}
pCsr->aiCell[iNode] = (u8)(iTest + (iNodePtr && (res<0)));
}
*pRes = res;
pCsr->iNode = iNode;
tblobFree(pDb, &b);
}
/* assert() that *pRes has been set properly */
#ifndef NDEBUG
if( rc==LSM_OK && lsmTreeCursorValid(pCsr) ){
int cmp = treeCsrCompare(pCsr, pKey, nKey, &rc);
assert( rc!=LSM_OK || *pRes==cmp || (*pRes ^ cmp)>0 );
}
#endif
return rc;
}
int lsmTreeCursorNext(TreeCursor *pCsr){
#ifndef NDEBUG
TreeKey *pK1;
TreeBlob key1 = {0, 0};
#endif
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
const int iLeaf = pRoot->nHeight-1;
int iCell;
int rc = LSM_OK;
TreeNode *pNode;
/* Restore the cursor position, if required */
int iRestore = 0;
treeCursorRestore(pCsr, &iRestore);
if( iRestore>0 ) return LSM_OK;
/* Save a pointer to the current key. This is used in an assert() at the
** end of this function - to check that the 'next' key really is larger
** than the current key. */
#ifndef NDEBUG
pK1 = csrGetKey(pCsr, &key1, &rc);
if( rc!=LSM_OK ) return rc;
#endif
assert( lsmTreeCursorValid(pCsr) );
assert( pCsr->aiCell[pCsr->iNode]<3 );
pNode = pCsr->apTreeNode[pCsr->iNode];
iCell = ++pCsr->aiCell[pCsr->iNode];
/* If the current node is not a leaf, and the current cell has sub-tree
** associated with it, descend to the left-most key on the left-most
** leaf of the sub-tree. */
if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
do {
u32 iNodePtr;
pCsr->iNode++;
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
pCsr->apTreeNode[pCsr->iNode] = pNode;
iCell = pCsr->aiCell[pCsr->iNode] = (pNode->aiKeyPtr[0]==0);
}while( pCsr->iNode < iLeaf );
}
/* Otherwise, the next key is found by following pointer up the tree
** until there is a key immediately to the right of the pointer followed
** to reach the sub-tree containing the current key. */
else if( iCell>=3 || pNode->aiKeyPtr[iCell]==0 ){
while( (--pCsr->iNode)>=0 ){
iCell = pCsr->aiCell[pCsr->iNode];
if( iCell<3 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break;
}
}
#ifndef NDEBUG
if( pCsr->iNode>=0 ){
TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc);
assert( rc||treeKeycmp(TKV_KEY(pK2),pK2->nKey,TKV_KEY(pK1),pK1->nKey)>=0 );
}
tblobFree(pDb, &key1);
#endif
return rc;
}
int lsmTreeCursorPrev(TreeCursor *pCsr){
#ifndef NDEBUG
TreeKey *pK1;
TreeBlob key1 = {0, 0};
#endif
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
const int iLeaf = pRoot->nHeight-1;
int iCell;
int rc = LSM_OK;
TreeNode *pNode;
/* Restore the cursor position, if required */
int iRestore = 0;
treeCursorRestore(pCsr, &iRestore);
if( iRestore<0 ) return LSM_OK;
/* Save a pointer to the current key. This is used in an assert() at the
** end of this function - to check that the 'next' key really is smaller
** than the current key. */
#ifndef NDEBUG
pK1 = csrGetKey(pCsr, &key1, &rc);
if( rc!=LSM_OK ) return rc;
#endif
assert( lsmTreeCursorValid(pCsr) );
pNode = pCsr->apTreeNode[pCsr->iNode];
iCell = pCsr->aiCell[pCsr->iNode];
assert( iCell>=0 && iCell<3 );
/* If the current node is not a leaf, and the current cell has sub-tree
** associated with it, descend to the right-most key on the right-most
** leaf of the sub-tree. */
if( pCsr->iNode<iLeaf && getChildPtr(pNode, pRoot->iTransId, iCell) ){
do {
u32 iNodePtr;
pCsr->iNode++;
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
if( rc!=LSM_OK ) break;
pCsr->apTreeNode[pCsr->iNode] = pNode;
iCell = 1 + (pNode->aiKeyPtr[2]!=0) + (pCsr->iNode < iLeaf);
pCsr->aiCell[pCsr->iNode] = (u8)iCell;
}while( pCsr->iNode < iLeaf );
}
/* Otherwise, the next key is found by following pointer up the tree until
** there is a key immediately to the left of the pointer followed to reach
** the sub-tree containing the current key. */
else{
do {
iCell = pCsr->aiCell[pCsr->iNode]-1;
if( iCell>=0 && pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[iCell] ) break;
}while( (--pCsr->iNode)>=0 );
pCsr->aiCell[pCsr->iNode] = (u8)iCell;
}
#ifndef NDEBUG
if( pCsr->iNode>=0 ){
TreeKey *pK2 = csrGetKey(pCsr, &pCsr->blob, &rc);
assert( rc || treeKeycmp(TKV_KEY(pK2),pK2->nKey,TKV_KEY(pK1),pK1->nKey)<0 );
}
tblobFree(pDb, &key1);
#endif
return rc;
}
/*
** Move the cursor to the first (bLast==0) or last (bLast!=0) entry in the
** in-memory tree.
*/
int lsmTreeCursorEnd(TreeCursor *pCsr, int bLast){
lsm_db *pDb = pCsr->pDb;
TreeRoot *pRoot = pCsr->pRoot;
int rc = LSM_OK;
u32 iNodePtr;
pCsr->iNode = -1;
/* Discard any saved position data */
treeCursorRestore(pCsr, 0);
iNodePtr = pRoot->iRoot;
while( iNodePtr ){
int iCell;
TreeNode *pNode;
pNode = (TreeNode *)treeShmptr(pDb, iNodePtr);
if( rc ) break;
if( bLast ){
iCell = ((pNode->aiKeyPtr[2]==0) ? 2 : 3);
}else{
iCell = ((pNode->aiKeyPtr[0]==0) ? 1 : 0);
}
pCsr->iNode++;
pCsr->apTreeNode[pCsr->iNode] = pNode;
if( (u32)pCsr->iNode<pRoot->nHeight-1 ){
iNodePtr = getChildPtr(pNode, pRoot->iTransId, iCell);
}else{
iNodePtr = 0;
}
pCsr->aiCell[pCsr->iNode] = (u8)(iCell - (iNodePtr==0 && bLast));
}
return rc;
}
int lsmTreeCursorFlags(TreeCursor *pCsr){
int flags = 0;
if( pCsr && pCsr->iNode>=0 ){
int rc = LSM_OK;
TreeKey *pKey = (TreeKey *)treeShmptrUnsafe(pCsr->pDb,
pCsr->apTreeNode[pCsr->iNode]->aiKeyPtr[pCsr->aiCell[pCsr->iNode]]
);
assert( rc==LSM_OK );
flags = (pKey->flags & ~LSM_CONTIGUOUS);
}
return flags;
}
int lsmTreeCursorKey(TreeCursor *pCsr, int *pFlags, void **ppKey, int *pnKey){
TreeKey *pTreeKey;
int rc = LSM_OK;
assert( lsmTreeCursorValid(pCsr) );
pTreeKey = pCsr->pSave;
if( !pTreeKey ){
pTreeKey = csrGetKey(pCsr, &pCsr->blob, &rc);
}
if( rc==LSM_OK ){
*pnKey = pTreeKey->nKey;
if( pFlags ) *pFlags = pTreeKey->flags;
*ppKey = (void *)&pTreeKey[1];
}
return rc;
}
int lsmTreeCursorValue(TreeCursor *pCsr, void **ppVal, int *pnVal){
int res = 0;
int rc;
rc = treeCursorRestore(pCsr, &res);
if( res==0 ){
TreeKey *pTreeKey = csrGetKey(pCsr, &pCsr->blob, &rc);
if( rc==LSM_OK ){
if( pTreeKey->flags & LSM_INSERT ){
*pnVal = pTreeKey->nValue;
*ppVal = TKV_VAL(pTreeKey);
}else{
*ppVal = 0;
*pnVal = -1;
}
}
}else{
*ppVal = 0;
*pnVal = 0;
}
return rc;
}
/*
** Return true if the cursor currently points to a valid entry.
*/
int lsmTreeCursorValid(TreeCursor *pCsr){
return (pCsr && (pCsr->pSave || pCsr->iNode>=0));
}
/*
** Store a mark in *pMark. Later on, a call to lsmTreeRollback() with a
** pointer to the same TreeMark structure may be used to roll the tree
** contents back to their current state.
*/
void lsmTreeMark(lsm_db *pDb, TreeMark *pMark){
pMark->iRoot = pDb->treehdr.root.iRoot;
pMark->nHeight = pDb->treehdr.root.nHeight;
pMark->iWrite = pDb->treehdr.iWrite;
pMark->nChunk = pDb->treehdr.nChunk;
pMark->iNextShmid = pDb->treehdr.iNextShmid;
pMark->iRollback = intArraySize(&pDb->rollback);
}
/*
** Roll back to mark pMark. Structure *pMark should have been previously
** populated by a call to lsmTreeMark().
*/
void lsmTreeRollback(lsm_db *pDb, TreeMark *pMark){
int iIdx;
int nIdx;
u32 iNext;
ShmChunk *pChunk;
u32 iChunk;
u32 iShmid;
/* Revert all required v2 pointers. */
nIdx = intArraySize(&pDb->rollback);
for(iIdx = pMark->iRollback; iIdx<nIdx; iIdx++){
TreeNode *pNode;
pNode = treeShmptr(pDb, intArrayEntry(&pDb->rollback, iIdx));
assert( pNode );
pNode->iV2 = 0;
pNode->iV2Child = 0;
pNode->iV2Ptr = 0;
}
intArrayTruncate(&pDb->rollback, pMark->iRollback);
/* Restore the free-chunk list. */
assert( pMark->iWrite!=0 );
iChunk = treeOffsetToChunk(pMark->iWrite-1);
pChunk = treeShmChunk(pDb, iChunk);
iNext = pChunk->iNext;
pChunk->iNext = 0;
pChunk = treeShmChunk(pDb, pDb->treehdr.iFirst);
iShmid = pChunk->iShmid-1;
while( iNext ){
u32 iFree = iNext; /* Current chunk being rollback-freed */
ShmChunk *pFree; /* Pointer to chunk iFree */
pFree = treeShmChunk(pDb, iFree);
iNext = pFree->iNext;
if( iFree<pMark->nChunk ){
pFree->iNext = pDb->treehdr.iFirst;
pFree->iShmid = iShmid--;
pDb->treehdr.iFirst = iFree;
}
}
/* Restore the tree-header fields */
pDb->treehdr.root.iRoot = pMark->iRoot;
pDb->treehdr.root.nHeight = pMark->nHeight;
pDb->treehdr.iWrite = pMark->iWrite;
pDb->treehdr.nChunk = pMark->nChunk;
pDb->treehdr.iNextShmid = pMark->iNextShmid;
}
/*
** Load the in-memory tree header from shared-memory into pDb->treehdr.
** If the header cannot be loaded, return LSM_PROTOCOL.
**
** If the header is successfully loaded and parameter piRead is not NULL,
** is is set to 1 if the header was loaded from ShmHeader.hdr1, or 2 if
** the header was loaded from ShmHeader.hdr2.
*/
int lsmTreeLoadHeader(lsm_db *pDb, int *piRead){
int nRem = LSM_ATTEMPTS_BEFORE_PROTOCOL;
while( (nRem--)>0 ){
ShmHeader *pShm = pDb->pShmhdr;
memcpy(&pDb->treehdr, &pShm->hdr1, sizeof(TreeHeader));
if( treeHeaderChecksumOk(&pDb->treehdr) ){
if( piRead ) *piRead = 1;
return LSM_OK;
}
memcpy(&pDb->treehdr, &pShm->hdr2, sizeof(TreeHeader));
if( treeHeaderChecksumOk(&pDb->treehdr) ){
if( piRead ) *piRead = 2;
return LSM_OK;
}
lsmShmBarrier(pDb);
}
return LSM_PROTOCOL_BKPT;
}
int lsmTreeLoadHeaderOk(lsm_db *pDb, int iRead){
TreeHeader *p = (iRead==1) ? &pDb->pShmhdr->hdr1 : &pDb->pShmhdr->hdr2;
assert( iRead==1 || iRead==2 );
return (0==memcmp(pDb->treehdr.aCksum, p->aCksum, sizeof(u32)*2));
}
/*
** This function is called to conclude a transaction. If argument bCommit
** is true, the transaction is committed. Otherwise it is rolled back.
*/
int lsmTreeEndTransaction(lsm_db *pDb, int bCommit){
ShmHeader *pShm = pDb->pShmhdr;
treeHeaderChecksum(&pDb->treehdr, pDb->treehdr.aCksum);
memcpy(&pShm->hdr2, &pDb->treehdr, sizeof(TreeHeader));
lsmShmBarrier(pDb);
memcpy(&pShm->hdr1, &pDb->treehdr, sizeof(TreeHeader));
pShm->bWriter = 0;
intArrayFree(pDb->pEnv, &pDb->rollback);
return LSM_OK;
}
#ifndef NDEBUG
static int assert_delete_ranges_match(lsm_db *db){
int prev = 0;
TreeBlob blob = {0, 0};
TreeCursor csr; /* Cursor used to iterate through tree */
int rc;
treeCursorInit(db, 0, &csr);
for( rc = lsmTreeCursorEnd(&csr, 0);
rc==LSM_OK && lsmTreeCursorValid(&csr);
rc = lsmTreeCursorNext(&csr)
){
TreeKey *pKey = csrGetKey(&csr, &blob, &rc);
if( rc!=LSM_OK ) break;
assert( ((prev&LSM_START_DELETE)==0)==((pKey->flags&LSM_END_DELETE)==0) );
prev = pKey->flags;
}
tblobFree(csr.pDb, &csr.blob);
tblobFree(csr.pDb, &blob);
return 1;
}
static int treeCountEntries(lsm_db *db){
TreeCursor csr; /* Cursor used to iterate through tree */
int rc;
int nEntry = 0;
treeCursorInit(db, 0, &csr);
for( rc = lsmTreeCursorEnd(&csr, 0);
rc==LSM_OK && lsmTreeCursorValid(&csr);
rc = lsmTreeCursorNext(&csr)
){
nEntry++;
}
tblobFree(csr.pDb, &csr.blob);
return nEntry;
}
#endif