0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2025-01-22 14:58:57 +00:00
2023-10-16 13:58:16 +02:00

876 lines
26 KiB
C

/*
** This program is a debugging and analysis utility that displays
** information about an FTS3 or FTS4 index.
**
** Link this program against the SQLite3 amalgamation with the
** SQLITE_ENABLE_FTS4 compile-time option. Then run it as:
**
** fts3view DATABASE
**
** to get a list of all FTS3/4 tables in DATABASE, or do
**
** fts3view DATABASE TABLE COMMAND ....
**
** to see various aspects of the TABLE table. Type fts3view with no
** arguments for a list of available COMMANDs.
*/
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "sqlite3.h"
/*
** Extra command-line arguments:
*/
int nExtra;
char **azExtra;
/*
** Look for a command-line argument.
*/
const char *findOption(const char *zName, int hasArg, const char *zDefault){
int i;
const char *zResult = zDefault;
for(i=0; i<nExtra; i++){
const char *z = azExtra[i];
while( z[0]=='-' ) z++;
if( strcmp(z, zName)==0 ){
int j = 1;
if( hasArg==0 || i==nExtra-1 ) j = 0;
zResult = azExtra[i+j];
while( i+j<nExtra ){
azExtra[i] = azExtra[i+j+1];
i++;
}
break;
}
}
return zResult;
}
/*
** Prepare an SQL query
*/
static sqlite3_stmt *prepare(sqlite3 *db, const char *zFormat, ...){
va_list ap;
char *zSql;
sqlite3_stmt *pStmt;
int rc;
va_start(ap, zFormat);
zSql = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
if( rc ){
fprintf(stderr, "Error: %s\nSQL: %s\n", sqlite3_errmsg(db), zSql);
exit(1);
}
sqlite3_free(zSql);
return pStmt;
}
/*
** Run an SQL statement
*/
static int runSql(sqlite3 *db, const char *zFormat, ...){
va_list ap;
char *zSql;
int rc;
va_start(ap, zFormat);
zSql = sqlite3_vmprintf(zFormat, ap);
rc = sqlite3_exec(db, zSql, 0, 0, 0);
va_end(ap);
return rc;
}
/*
** Show the table schema
*/
static void showSchema(sqlite3 *db, const char *zTab){
sqlite3_stmt *pStmt;
pStmt = prepare(db,
"SELECT sql FROM sqlite_schema"
" WHERE name LIKE '%q%%'"
" ORDER BY 1",
zTab);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
printf("%s;\n", sqlite3_column_text(pStmt, 0));
}
sqlite3_finalize(pStmt);
pStmt = prepare(db, "PRAGMA page_size");
while( sqlite3_step(pStmt)==SQLITE_ROW ){
printf("PRAGMA page_size=%s;\n", sqlite3_column_text(pStmt, 0));
}
sqlite3_finalize(pStmt);
pStmt = prepare(db, "PRAGMA journal_mode");
while( sqlite3_step(pStmt)==SQLITE_ROW ){
printf("PRAGMA journal_mode=%s;\n", sqlite3_column_text(pStmt, 0));
}
sqlite3_finalize(pStmt);
pStmt = prepare(db, "PRAGMA auto_vacuum");
while( sqlite3_step(pStmt)==SQLITE_ROW ){
const char *zType = "???";
switch( sqlite3_column_int(pStmt, 0) ){
case 0: zType = "OFF"; break;
case 1: zType = "FULL"; break;
case 2: zType = "INCREMENTAL"; break;
}
printf("PRAGMA auto_vacuum=%s;\n", zType);
}
sqlite3_finalize(pStmt);
pStmt = prepare(db, "PRAGMA encoding");
while( sqlite3_step(pStmt)==SQLITE_ROW ){
printf("PRAGMA encoding=%s;\n", sqlite3_column_text(pStmt, 0));
}
sqlite3_finalize(pStmt);
}
/*
** Read a 64-bit variable-length integer from memory starting at p[0].
** Return the number of bytes read, or 0 on error.
** The value is stored in *v.
*/
int getVarint(const unsigned char *p, sqlite_int64 *v){
const unsigned char *q = p;
sqlite_uint64 x = 0, y = 1;
while( (*q&0x80)==0x80 && q-(unsigned char *)p<9 ){
x += y * (*q++ & 0x7f);
y <<= 7;
}
x += y * (*q++);
*v = (sqlite_int64) x;
return (int) (q - (unsigned char *)p);
}
/* Show the content of the %_stat table
*/
static void showStat(sqlite3 *db, const char *zTab){
sqlite3_stmt *pStmt;
pStmt = prepare(db, "SELECT id, value FROM '%q_stat'", zTab);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
printf("stat[%d] =", sqlite3_column_int(pStmt, 0));
switch( sqlite3_column_type(pStmt, 1) ){
case SQLITE_INTEGER: {
printf(" %d\n", sqlite3_column_int(pStmt, 1));
break;
}
case SQLITE_BLOB: {
unsigned char *x = (unsigned char*)sqlite3_column_blob(pStmt, 1);
int len = sqlite3_column_bytes(pStmt, 1);
int i = 0;
sqlite3_int64 v;
while( i<len ){
i += getVarint(x, &v);
printf(" %lld", v);
}
printf("\n");
break;
}
}
}
sqlite3_finalize(pStmt);
}
/*
** Report on the vocabulary. This creates an fts4aux table with a random
** name, but deletes it in the end.
*/
static void showVocabulary(sqlite3 *db, const char *zTab){
char *zAux;
sqlite3_uint64 r;
sqlite3_stmt *pStmt;
int nDoc = 0;
int nToken = 0;
int nOccurrence = 0;
int nTop;
int n, i;
sqlite3_randomness(sizeof(r), &r);
zAux = sqlite3_mprintf("viewer_%llx", zTab, r);
runSql(db, "BEGIN");
pStmt = prepare(db, "SELECT count(*) FROM %Q", zTab);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
nDoc = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
printf("Number of documents...................... %9d\n", nDoc);
runSql(db, "CREATE VIRTUAL TABLE %s USING fts4aux(%Q)", zAux, zTab);
pStmt = prepare(db,
"SELECT count(*), sum(occurrences) FROM %s WHERE col='*'",
zAux);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
nToken = sqlite3_column_int(pStmt, 0);
nOccurrence = sqlite3_column_int(pStmt, 1);
}
sqlite3_finalize(pStmt);
printf("Total tokens in all documents............ %9d\n", nOccurrence);
printf("Total number of distinct tokens.......... %9d\n", nToken);
if( nToken==0 ) goto end_vocab;
n = 0;
pStmt = prepare(db, "SELECT count(*) FROM %s"
" WHERE col='*' AND occurrences==1", zAux);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
n = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
printf("Tokens used exactly once................. %9d %5.2f%%\n",
n, n*100.0/nToken);
n = 0;
pStmt = prepare(db, "SELECT count(*) FROM %s"
" WHERE col='*' AND documents==1", zAux);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
n = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
printf("Tokens used in only one document......... %9d %5.2f%%\n",
n, n*100.0/nToken);
if( nDoc>=2000 ){
n = 0;
pStmt = prepare(db, "SELECT count(*) FROM %s"
" WHERE col='*' AND occurrences<=%d", zAux, nDoc/1000);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
n = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
printf("Tokens used in 0.1%% or less of docs...... %9d %5.2f%%\n",
n, n*100.0/nToken);
}
if( nDoc>=200 ){
n = 0;
pStmt = prepare(db, "SELECT count(*) FROM %s"
" WHERE col='*' AND occurrences<=%d", zAux, nDoc/100);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
n = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
printf("Tokens used in 1%% or less of docs........ %9d %5.2f%%\n",
n, n*100.0/nToken);
}
nTop = atoi(findOption("top", 1, "25"));
printf("The %d most common tokens:\n", nTop);
pStmt = prepare(db,
"SELECT term, documents FROM %s"
" WHERE col='*'"
" ORDER BY documents DESC, term"
" LIMIT %d", zAux, nTop);
i = 0;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
i++;
n = sqlite3_column_int(pStmt, 1);
printf(" %2d. %-30s %9d docs %5.2f%%\n", i,
sqlite3_column_text(pStmt, 0), n, n*100.0/nDoc);
}
sqlite3_finalize(pStmt);
end_vocab:
runSql(db, "ROLLBACK");
sqlite3_free(zAux);
}
/*
** Report on the number and sizes of segments
*/
static void showSegmentStats(sqlite3 *db, const char *zTab){
sqlite3_stmt *pStmt;
int nSeg = 0;
sqlite3_int64 szSeg = 0, mxSeg = 0;
int nIdx = 0;
sqlite3_int64 szIdx = 0, mxIdx = 0;
int nRoot = 0;
sqlite3_int64 szRoot = 0, mxRoot = 0;
sqlite3_int64 mx;
int nLeaf;
int n;
int pgsz;
int mxLevel;
int i;
pStmt = prepare(db,
"SELECT count(*), sum(length(block)), max(length(block))"
" FROM '%q_segments'",
zTab);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
nSeg = sqlite3_column_int(pStmt, 0);
szSeg = sqlite3_column_int64(pStmt, 1);
mxSeg = sqlite3_column_int64(pStmt, 2);
}
sqlite3_finalize(pStmt);
pStmt = prepare(db,
"SELECT count(*), sum(length(block)), max(length(block))"
" FROM '%q_segments' a JOIN '%q_segdir' b"
" WHERE a.blockid BETWEEN b.leaves_end_block+1 AND b.end_block",
zTab, zTab);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
nIdx = sqlite3_column_int(pStmt, 0);
szIdx = sqlite3_column_int64(pStmt, 1);
mxIdx = sqlite3_column_int64(pStmt, 2);
}
sqlite3_finalize(pStmt);
pStmt = prepare(db,
"SELECT count(*), sum(length(root)), max(length(root))"
" FROM '%q_segdir'",
zTab);
while( sqlite3_step(pStmt)==SQLITE_ROW ){
nRoot = sqlite3_column_int(pStmt, 0);
szRoot = sqlite3_column_int64(pStmt, 1);
mxRoot = sqlite3_column_int64(pStmt, 2);
}
sqlite3_finalize(pStmt);
printf("Number of segments....................... %9d\n", nSeg+nRoot);
printf("Number of leaf segments.................. %9d\n", nSeg-nIdx);
printf("Number of index segments................. %9d\n", nIdx);
printf("Number of root segments.................. %9d\n", nRoot);
printf("Total size of all segments............... %9lld\n", szSeg+szRoot);
printf("Total size of all leaf segments.......... %9lld\n", szSeg-szIdx);
printf("Total size of all index segments......... %9lld\n", szIdx);
printf("Total size of all root segments.......... %9lld\n", szRoot);
if( nSeg>0 ){
printf("Average size of all segments............. %11.1f\n",
(double)(szSeg+szRoot)/(double)(nSeg+nRoot));
printf("Average size of leaf segments............ %11.1f\n",
(double)(szSeg-szIdx)/(double)(nSeg-nIdx));
}
if( nIdx>0 ){
printf("Average size of index segments........... %11.1f\n",
(double)szIdx/(double)nIdx);
}
if( nRoot>0 ){
printf("Average size of root segments............ %11.1f\n",
(double)szRoot/(double)nRoot);
}
mx = mxSeg;
if( mx<mxRoot ) mx = mxRoot;
printf("Maximum segment size..................... %9lld\n", mx);
printf("Maximum index segment size............... %9lld\n", mxIdx);
printf("Maximum root segment size................ %9lld\n", mxRoot);
pStmt = prepare(db, "PRAGMA page_size");
pgsz = 1024;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
pgsz = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
printf("Database page size....................... %9d\n", pgsz);
pStmt = prepare(db,
"SELECT count(*)"
" FROM '%q_segments' a JOIN '%q_segdir' b"
" WHERE a.blockid BETWEEN b.start_block AND b.leaves_end_block"
" AND length(a.block)>%d",
zTab, zTab, pgsz-45);
n = 0;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
n = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
nLeaf = nSeg - nIdx;
printf("Leaf segments larger than %5d bytes.... %9d %5.2f%%\n",
pgsz-45, n, nLeaf>0 ? n*100.0/nLeaf : 0.0);
pStmt = prepare(db, "SELECT max(level%%1024) FROM '%q_segdir'", zTab);
mxLevel = 0;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
mxLevel = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
for(i=0; i<=mxLevel; i++){
pStmt = prepare(db,
"SELECT count(*), sum(len), avg(len), max(len), sum(len>%d),"
" count(distinct idx)"
" FROM (SELECT length(a.block) AS len, idx"
" FROM '%q_segments' a JOIN '%q_segdir' b"
" WHERE (a.blockid BETWEEN b.start_block"
" AND b.leaves_end_block)"
" AND (b.level%%1024)==%d)",
pgsz-45, zTab, zTab, i);
if( sqlite3_step(pStmt)==SQLITE_ROW
&& (nLeaf = sqlite3_column_int(pStmt, 0))>0
){
sqlite3_int64 sz;
nIdx = sqlite3_column_int(pStmt, 5);
printf("For level %d:\n", i);
printf(" Number of indexes...................... %9d\n", nIdx);
printf(" Number of leaf segments................ %9d\n", nLeaf);
if( nIdx>1 ){
printf(" Average leaf segments per index........ %11.1f\n",
(double)nLeaf/(double)nIdx);
}
printf(" Total size of all leaf segments........ %9lld\n",
(sz = sqlite3_column_int64(pStmt, 1)));
printf(" Average size of leaf segments.......... %11.1f\n",
sqlite3_column_double(pStmt, 2));
if( nIdx>1 ){
printf(" Average leaf segment size per index.... %11.1f\n",
(double)sz/(double)nIdx);
}
printf(" Maximum leaf segment size.............. %9lld\n",
sqlite3_column_int64(pStmt, 3));
n = sqlite3_column_int(pStmt, 4);
printf(" Leaf segments larger than %5d bytes.. %9d %5.2f%%\n",
pgsz-45, n, n*100.0/nLeaf);
}
sqlite3_finalize(pStmt);
}
}
/*
** Print a single "tree" line of the segdir map output.
*/
static void printTreeLine(sqlite3_int64 iLower, sqlite3_int64 iUpper){
printf(" tree %9lld", iLower);
if( iUpper>iLower ){
printf(" thru %9lld (%lld blocks)", iUpper, iUpper-iLower+1);
}
printf("\n");
}
/*
** Check to see if the block of a %_segments entry is NULL.
*/
static int isNullSegment(sqlite3 *db, const char *zTab, sqlite3_int64 iBlockId){
sqlite3_stmt *pStmt;
int rc = 1;
pStmt = prepare(db, "SELECT block IS NULL FROM '%q_segments'"
" WHERE blockid=%lld", zTab, iBlockId);
if( sqlite3_step(pStmt)==SQLITE_ROW ){
rc = sqlite3_column_int(pStmt, 0);
}
sqlite3_finalize(pStmt);
return rc;
}
/*
** Show a map of segments derived from the %_segdir table.
*/
static void showSegdirMap(sqlite3 *db, const char *zTab){
int mxIndex, iIndex;
sqlite3_stmt *pStmt = 0;
sqlite3_stmt *pStmt2 = 0;
int prevLevel;
pStmt = prepare(db, "SELECT max(level/1024) FROM '%q_segdir'", zTab);
if( sqlite3_step(pStmt)==SQLITE_ROW ){
mxIndex = sqlite3_column_int(pStmt, 0);
}else{
mxIndex = 0;
}
sqlite3_finalize(pStmt);
printf("Number of inverted indices............... %3d\n", mxIndex+1);
pStmt = prepare(db,
"SELECT level, idx, start_block, leaves_end_block, end_block, rowid"
" FROM '%q_segdir'"
" WHERE level/1024==?"
" ORDER BY level DESC, idx",
zTab);
pStmt2 = prepare(db,
"SELECT blockid FROM '%q_segments'"
" WHERE blockid BETWEEN ? AND ? ORDER BY blockid",
zTab);
for(iIndex=0; iIndex<=mxIndex; iIndex++){
if( mxIndex>0 ){
printf("**************************** Index %d "
"****************************\n", iIndex);
}
sqlite3_bind_int(pStmt, 1, iIndex);
prevLevel = -1;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
int iLevel = sqlite3_column_int(pStmt, 0)%1024;
int iIdx = sqlite3_column_int(pStmt, 1);
sqlite3_int64 iStart = sqlite3_column_int64(pStmt, 2);
sqlite3_int64 iLEnd = sqlite3_column_int64(pStmt, 3);
sqlite3_int64 iEnd = sqlite3_column_int64(pStmt, 4);
char rtag[20];
if( iLevel!=prevLevel ){
printf("level %2d idx %2d", iLevel, iIdx);
prevLevel = iLevel;
}else{
printf(" idx %2d", iIdx);
}
sqlite3_snprintf(sizeof(rtag), rtag, "r%lld",
sqlite3_column_int64(pStmt,5));
printf(" root %9s\n", rtag);
if( iLEnd>iStart ){
sqlite3_int64 iLower, iPrev = 0, iX;
if( iLEnd+1<=iEnd ){
sqlite3_bind_int64(pStmt2, 1, iLEnd+1);
sqlite3_bind_int64(pStmt2, 2, iEnd);
iLower = -1;
while( sqlite3_step(pStmt2)==SQLITE_ROW ){
iX = sqlite3_column_int64(pStmt2, 0);
if( iLower<0 ){
iLower = iPrev = iX;
}else if( iX==iPrev+1 ){
iPrev = iX;
}else{
printTreeLine(iLower, iPrev);
iLower = iPrev = iX;
}
}
sqlite3_reset(pStmt2);
if( iLower>=0 ){
if( iLower==iPrev && iLower==iEnd
&& isNullSegment(db,zTab,iLower)
){
printf(" null %9lld\n", iLower);
}else{
printTreeLine(iLower, iPrev);
}
}
}
printf(" leaves %9lld thru %9lld (%lld blocks)\n",
iStart, iLEnd, iLEnd - iStart + 1);
}
}
sqlite3_reset(pStmt);
}
sqlite3_finalize(pStmt);
sqlite3_finalize(pStmt2);
}
/*
** Decode a single segment block and display the results on stdout.
*/
static void decodeSegment(
const unsigned char *aData, /* Content to print */
int nData /* Number of bytes of content */
){
sqlite3_int64 iChild = 0;
sqlite3_int64 iPrefix;
sqlite3_int64 nTerm;
sqlite3_int64 n;
sqlite3_int64 iDocsz;
int iHeight;
sqlite3_int64 i = 0;
int cnt = 0;
char zTerm[1000];
i += getVarint(aData, &n);
iHeight = (int)n;
printf("height: %d\n", iHeight);
if( iHeight>0 ){
i += getVarint(aData+i, &iChild);
printf("left-child: %lld\n", iChild);
}
while( i<nData ){
if( (cnt++)>0 ){
i += getVarint(aData+i, &iPrefix);
}else{
iPrefix = 0;
}
i += getVarint(aData+i, &nTerm);
if( iPrefix+nTerm+1 >= sizeof(zTerm) ){
fprintf(stderr, "term to long\n");
exit(1);
}
memcpy(zTerm+iPrefix, aData+i, (size_t)nTerm);
zTerm[iPrefix+nTerm] = 0;
i += nTerm;
if( iHeight==0 ){
i += getVarint(aData+i, &iDocsz);
printf("term: %-25s doclist %7lld bytes offset %lld\n", zTerm, iDocsz, i);
i += iDocsz;
}else{
printf("term: %-25s child %lld\n", zTerm, ++iChild);
}
}
}
/*
** Print a a blob as hex and ascii.
*/
static void printBlob(
const unsigned char *aData, /* Content to print */
int nData /* Number of bytes of content */
){
int i, j;
const char *zOfstFmt;
const int perLine = 16;
if( (nData&~0xfff)==0 ){
zOfstFmt = " %03x: ";
}else if( (nData&~0xffff)==0 ){
zOfstFmt = " %04x: ";
}else if( (nData&~0xfffff)==0 ){
zOfstFmt = " %05x: ";
}else if( (nData&~0xffffff)==0 ){
zOfstFmt = " %06x: ";
}else{
zOfstFmt = " %08x: ";
}
for(i=0; i<nData; i += perLine){
fprintf(stdout, zOfstFmt, i);
for(j=0; j<perLine; j++){
if( i+j>nData ){
fprintf(stdout, " ");
}else{
fprintf(stdout,"%02x ", aData[i+j]);
}
}
for(j=0; j<perLine; j++){
if( i+j>nData ){
fprintf(stdout, " ");
}else{
fprintf(stdout,"%c", isprint(aData[i+j]) ? aData[i+j] : '.');
}
}
fprintf(stdout,"\n");
}
}
/*
** Convert text to a 64-bit integer
*/
static sqlite3_int64 atoi64(const char *z){
sqlite3_int64 v = 0;
while( z[0]>='0' && z[0]<='9' ){
v = v*10 + z[0] - '0';
z++;
}
return v;
}
/*
** Return a prepared statement which, when stepped, will return in its
** first column the blob associated with segment zId. If zId begins with
** 'r' then it is a rowid of a %_segdir entry. Otherwise it is a
** %_segment entry.
*/
static sqlite3_stmt *prepareToGetSegment(
sqlite3 *db, /* The database */
const char *zTab, /* The FTS3/4 table name */
const char *zId /* ID of the segment to open */
){
sqlite3_stmt *pStmt;
if( zId[0]=='r' ){
pStmt = prepare(db, "SELECT root FROM '%q_segdir' WHERE rowid=%lld",
zTab, atoi64(zId+1));
}else{
pStmt = prepare(db, "SELECT block FROM '%q_segments' WHERE blockid=%lld",
zTab, atoi64(zId));
}
return pStmt;
}
/*
** Print the content of a segment or of the root of a segdir. The segment
** or root is identified by azExtra[0]. If the first character of azExtra[0]
** is 'r' then the remainder is the integer rowid of the %_segdir entry.
** If the first character of azExtra[0] is not 'r' then, then all of
** azExtra[0] is an integer which is the block number.
**
** If the --raw option is present in azExtra, then a hex dump is provided.
** Otherwise a decoding is shown.
*/
static void showSegment(sqlite3 *db, const char *zTab){
const unsigned char *aData;
int nData;
sqlite3_stmt *pStmt;
pStmt = prepareToGetSegment(db, zTab, azExtra[0]);
if( sqlite3_step(pStmt)!=SQLITE_ROW ){
sqlite3_finalize(pStmt);
return;
}
nData = sqlite3_column_bytes(pStmt, 0);
aData = sqlite3_column_blob(pStmt, 0);
printf("Segment %s of size %d bytes:\n", azExtra[0], nData);
if( findOption("raw", 0, 0)!=0 ){
printBlob(aData, nData);
}else{
decodeSegment(aData, nData);
}
sqlite3_finalize(pStmt);
}
/*
** Decode a single doclist and display the results on stdout.
*/
static void decodeDoclist(
const unsigned char *aData, /* Content to print */
int nData /* Number of bytes of content */
){
sqlite3_int64 iPrevDocid = 0;
sqlite3_int64 iDocid;
sqlite3_int64 iPos;
sqlite3_int64 iPrevPos = 0;
sqlite3_int64 iCol;
int i = 0;
while( i<nData ){
i += getVarint(aData+i, &iDocid);
printf("docid %lld col0", iDocid+iPrevDocid);
iPrevDocid += iDocid;
iPrevPos = 0;
while( 1 ){
i += getVarint(aData+i, &iPos);
if( iPos==1 ){
i += getVarint(aData+i, &iCol);
printf(" col%lld", iCol);
iPrevPos = 0;
}else if( iPos==0 ){
printf("\n");
break;
}else{
iPrevPos += iPos - 2;
printf(" %lld", iPrevPos);
}
}
}
}
/*
** Print the content of a doclist. The segment or segdir-root is
** identified by azExtra[0]. If the first character of azExtra[0]
** is 'r' then the remainder is the integer rowid of the %_segdir entry.
** If the first character of azExtra[0] is not 'r' then, then all of
** azExtra[0] is an integer which is the block number. The offset
** into the segment is identified by azExtra[1]. The size of the doclist
** is azExtra[2].
**
** If the --raw option is present in azExtra, then a hex dump is provided.
** Otherwise a decoding is shown.
*/
static void showDoclist(sqlite3 *db, const char *zTab){
const unsigned char *aData;
sqlite3_int64 offset;
int nData;
sqlite3_stmt *pStmt;
offset = atoi64(azExtra[1]);
nData = atoi(azExtra[2]);
pStmt = prepareToGetSegment(db, zTab, azExtra[0]);
if( sqlite3_step(pStmt)!=SQLITE_ROW ){
sqlite3_finalize(pStmt);
return;
}
aData = sqlite3_column_blob(pStmt, 0);
printf("Doclist at %s offset %lld of size %d bytes:\n",
azExtra[0], offset, nData);
if( findOption("raw", 0, 0)!=0 ){
printBlob(aData+offset, nData);
}else{
decodeDoclist(aData+offset, nData);
}
sqlite3_finalize(pStmt);
}
/*
** Show the top N largest segments
*/
static void listBigSegments(sqlite3 *db, const char *zTab){
int nTop, i;
sqlite3_stmt *pStmt;
sqlite3_int64 sz;
sqlite3_int64 id;
nTop = atoi(findOption("top", 1, "25"));
printf("The %d largest segments:\n", nTop);
pStmt = prepare(db,
"SELECT blockid, length(block) AS len FROM '%q_segments'"
" ORDER BY 2 DESC, 1"
" LIMIT %d", zTab, nTop);
i = 0;
while( sqlite3_step(pStmt)==SQLITE_ROW ){
i++;
id = sqlite3_column_int64(pStmt, 0);
sz = sqlite3_column_int64(pStmt, 1);
printf(" %2d. %9lld size %lld\n", i, id, sz);
}
sqlite3_finalize(pStmt);
}
static void usage(const char *argv0){
fprintf(stderr, "Usage: %s DATABASE\n"
" or: %s DATABASE FTS3TABLE ARGS...\n", argv0, argv0);
fprintf(stderr,
"ARGS:\n"
" big-segments [--top N] show the largest segments\n"
" doclist BLOCKID OFFSET SIZE [--raw] Decode a doclist\n"
" schema FTS table schema\n"
" segdir directory of segments\n"
" segment BLOCKID [--raw] content of a segment\n"
" segment-stats info on segment sizes\n"
" stat the %%_stat table\n"
" vocabulary [--top N] document vocabulary\n"
);
exit(1);
}
int main(int argc, char **argv){
sqlite3 *db;
int rc;
const char *zTab;
const char *zCmd;
if( argc<2 ) usage(argv[0]);
rc = sqlite3_open(argv[1], &db);
if( rc ){
fprintf(stderr, "Cannot open %s\n", argv[1]);
exit(1);
}
if( argc==2 ){
sqlite3_stmt *pStmt;
int cnt = 0;
pStmt = prepare(db, "SELECT b.sql"
" FROM sqlite_schema a, sqlite_schema b"
" WHERE a.name GLOB '*_segdir'"
" AND b.name=substr(a.name,1,length(a.name)-7)"
" ORDER BY 1");
while( sqlite3_step(pStmt)==SQLITE_ROW ){
cnt++;
printf("%s;\n", sqlite3_column_text(pStmt, 0));
}
sqlite3_finalize(pStmt);
if( cnt==0 ){
printf("/* No FTS3/4 tables found in database %s */\n", argv[1]);
}
return 0;
}
if( argc<4 ) usage(argv[0]);
zTab = argv[2];
zCmd = argv[3];
nExtra = argc-4;
azExtra = argv+4;
if( strcmp(zCmd,"big-segments")==0 ){
listBigSegments(db, zTab);
}else if( strcmp(zCmd,"doclist")==0 ){
if( argc<7 ) usage(argv[0]);
showDoclist(db, zTab);
}else if( strcmp(zCmd,"schema")==0 ){
showSchema(db, zTab);
}else if( strcmp(zCmd,"segdir")==0 ){
showSegdirMap(db, zTab);
}else if( strcmp(zCmd,"segment")==0 ){
if( argc<5 ) usage(argv[0]);
showSegment(db, zTab);
}else if( strcmp(zCmd,"segment-stats")==0 ){
showSegmentStats(db, zTab);
}else if( strcmp(zCmd,"stat")==0 ){
showStat(db, zTab);
}else if( strcmp(zCmd,"vocabulary")==0 ){
showVocabulary(db, zTab);
}else{
usage(argv[0]);
}
return 0;
}