mirror of
https://github.com/tursodatabase/libsql.git
synced 2025-01-09 15:46:04 +00:00
1503 lines
45 KiB
C
1503 lines
45 KiB
C
/*
|
|
** 2013-03-14
|
|
**
|
|
** The author disclaims copyright to this source code. In place of
|
|
** a legal notice, here is a blessing:
|
|
**
|
|
** May you do good and not evil.
|
|
** May you find forgiveness for yourself and forgive others.
|
|
** May you share freely, never taking more than you give.
|
|
**
|
|
*************************************************************************
|
|
**
|
|
** This file contains code for a demonstration virtual table that finds
|
|
** "approximate matches" - strings from a finite set that are nearly the
|
|
** same as a single input string. The virtual table is called "amatch".
|
|
**
|
|
** A amatch virtual table is created like this:
|
|
**
|
|
** CREATE VIRTUAL TABLE f USING approximate_match(
|
|
** vocabulary_table=<tablename>, -- V
|
|
** vocabulary_word=<columnname>, -- W
|
|
** vocabulary_language=<columnname>, -- L
|
|
** edit_distances=<edit-cost-table>
|
|
** );
|
|
**
|
|
** When it is created, the new amatch table must be supplied with the
|
|
** the name of a table V and columns V.W and V.L such that
|
|
**
|
|
** SELECT W FROM V WHERE L=$language
|
|
**
|
|
** returns the allowed vocabulary for the match. If the "vocabulary_language"
|
|
** or L columnname is left unspecified or is an empty string, then no
|
|
** filtering of the vocabulary by language is performed.
|
|
**
|
|
** For efficiency, it is essential that the vocabulary table be indexed:
|
|
**
|
|
** CREATE vocab_index ON V(W)
|
|
**
|
|
** A separate edit-cost-table provides scoring information that defines
|
|
** what it means for one string to be "close" to another.
|
|
**
|
|
** The edit-cost-table must contain exactly four columns (more precisely,
|
|
** the statement "SELECT * FROM <edit-cost-table>" must return records
|
|
** that consist of four columns). It does not matter what the columns are
|
|
** named.
|
|
**
|
|
** Each row in the edit-cost-table represents a single character
|
|
** transformation going from user input to the vocabulary. The leftmost
|
|
** column of the row (column 0) contains an integer identifier of the
|
|
** language to which the transformation rule belongs (see "MULTIPLE LANGUAGES"
|
|
** below). The second column of the row (column 1) contains the input
|
|
** character or characters - the characters of user input. The third
|
|
** column contains characters as they appear in the vocabulary table.
|
|
** And the fourth column contains the integer cost of making the
|
|
** transformation. For example:
|
|
**
|
|
** CREATE TABLE f_data(iLang, cFrom, cTo, Cost);
|
|
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
|
|
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
|
|
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
|
|
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
|
|
**
|
|
** The first row inserted into the edit-cost-table by the SQL script
|
|
** above indicates that the cost of having an extra 'a' in the vocabulary
|
|
** table that is missing in the user input 100. (All costs are integers.
|
|
** Overall cost must not exceed 16777216.) The second INSERT statement
|
|
** creates a rule saying that the cost of having a single letter 'b' in
|
|
** user input which is missing in the vocabulary table is 87. The third
|
|
** INSERT statement mean that the cost of matching an 'o' in user input
|
|
** against an 'oe' in the vocabulary table is 38. And so forth.
|
|
**
|
|
** The following rules are special:
|
|
**
|
|
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '?', '', 97);
|
|
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '', '?', 98);
|
|
** INSERT INTO f_data(iLang, cFrom, cTo, Cost) VALUES(0, '?', '?', 99);
|
|
**
|
|
** The '?' to '' rule is the cost of having any single character in the input
|
|
** that is not found in the vocabular. The '' to '?' rule is the cost of
|
|
** having a character in the vocabulary table that is missing from input.
|
|
** And the '?' to '?' rule is the cost of doing an arbitrary character
|
|
** substitution. These three generic rules apply across all languages.
|
|
** In other words, the iLang field is ignored for the generic substitution
|
|
** rules. If more than one cost is given for a generic substitution rule,
|
|
** then the lowest cost is used.
|
|
**
|
|
** Once it has been created, the amatch virtual table can be queried
|
|
** as follows:
|
|
**
|
|
** SELECT word, distance FROM f
|
|
** WHERE word MATCH 'abcdefg'
|
|
** AND distance<200;
|
|
**
|
|
** This query outputs the strings contained in the T(F) field that
|
|
** are close to "abcdefg" and in order of increasing distance. No string
|
|
** is output more than once. If there are multiple ways to transform the
|
|
** target string ("abcdefg") into a string in the vocabulary table then
|
|
** the lowest cost transform is the one that is returned. In this example,
|
|
** the search is limited to strings with a total distance of less than 200.
|
|
**
|
|
** For efficiency, it is important to put tight bounds on the distance.
|
|
** The time and memory space needed to perform this query is exponential
|
|
** in the maximum distance. A good rule of thumb is to limit the distance
|
|
** to no more than 1.5 or 2 times the maximum cost of any rule in the
|
|
** edit-cost-table.
|
|
**
|
|
** The amatch is a read-only table. Any attempt to DELETE, INSERT, or
|
|
** UPDATE on a amatch table will throw an error.
|
|
**
|
|
** It is important to put some kind of a limit on the amatch output. This
|
|
** can be either in the form of a LIMIT clause at the end of the query,
|
|
** or better, a "distance<NNN" constraint where NNN is some number. The
|
|
** running time and memory requirement is exponential in the value of NNN
|
|
** so you want to make sure that NNN is not too big. A value of NNN that
|
|
** is about twice the average transformation cost seems to give good results.
|
|
**
|
|
** The amatch table can be useful for tasks such as spelling correction.
|
|
** Suppose all allowed words are in table vocabulary(w). Then one would create
|
|
** an amatch virtual table like this:
|
|
**
|
|
** CREATE VIRTUAL TABLE ex1 USING amatch(
|
|
** vocabtable=vocabulary,
|
|
** vocabcolumn=w,
|
|
** edit_distances=ec1
|
|
** );
|
|
**
|
|
** Then given an input word $word, look up close spellings this way:
|
|
**
|
|
** SELECT word, distance FROM ex1
|
|
** WHERE word MATCH $word AND distance<200;
|
|
**
|
|
** MULTIPLE LANGUAGES
|
|
**
|
|
** Normally, the "iLang" value associated with all character transformations
|
|
** in the edit-cost-table is zero. However, if required, the amatch
|
|
** virtual table allows multiple languages to be defined. Each query uses
|
|
** only a single iLang value. This allows, for example, a single
|
|
** amatch table to support multiple languages.
|
|
**
|
|
** By default, only the rules with iLang=0 are used. To specify an
|
|
** alternative language, a "language = ?" expression must be added to the
|
|
** WHERE clause of a SELECT, where ? is the integer identifier of the desired
|
|
** language. For example:
|
|
**
|
|
** SELECT word, distance FROM ex1
|
|
** WHERE word MATCH $word
|
|
** AND distance<=200
|
|
** AND language=1 -- Specify use language 1 instead of 0
|
|
**
|
|
** If no "language = ?" constraint is specified in the WHERE clause, language
|
|
** 0 is used.
|
|
**
|
|
** LIMITS
|
|
**
|
|
** The maximum language number is 2147483647. The maximum length of either
|
|
** of the strings in the second or third column of the amatch data table
|
|
** is 50 bytes. The maximum cost on a rule is 1000.
|
|
*/
|
|
#include "sqlite3ext.h"
|
|
SQLITE_EXTENSION_INIT1
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <ctype.h>
|
|
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
|
|
/*
|
|
** Forward declaration of objects used by this implementation
|
|
*/
|
|
typedef struct amatch_vtab amatch_vtab;
|
|
typedef struct amatch_cursor amatch_cursor;
|
|
typedef struct amatch_rule amatch_rule;
|
|
typedef struct amatch_word amatch_word;
|
|
typedef struct amatch_avl amatch_avl;
|
|
|
|
|
|
/*****************************************************************************
|
|
** AVL Tree implementation
|
|
*/
|
|
/*
|
|
** Objects that want to be members of the AVL tree should embedded an
|
|
** instance of this structure.
|
|
*/
|
|
struct amatch_avl {
|
|
amatch_word *pWord; /* Points to the object being stored in the tree */
|
|
char *zKey; /* Key. zero-terminated string. Must be unique */
|
|
amatch_avl *pBefore; /* Other elements less than zKey */
|
|
amatch_avl *pAfter; /* Other elements greater than zKey */
|
|
amatch_avl *pUp; /* Parent element */
|
|
short int height; /* Height of this node. Leaf==1 */
|
|
short int imbalance; /* Height difference between pBefore and pAfter */
|
|
};
|
|
|
|
/* Recompute the amatch_avl.height and amatch_avl.imbalance fields for p.
|
|
** Assume that the children of p have correct heights.
|
|
*/
|
|
static void amatchAvlRecomputeHeight(amatch_avl *p){
|
|
short int hBefore = p->pBefore ? p->pBefore->height : 0;
|
|
short int hAfter = p->pAfter ? p->pAfter->height : 0;
|
|
p->imbalance = hBefore - hAfter; /* -: pAfter higher. +: pBefore higher */
|
|
p->height = (hBefore>hAfter ? hBefore : hAfter)+1;
|
|
}
|
|
|
|
/*
|
|
** P B
|
|
** / \ / \
|
|
** B Z ==> X P
|
|
** / \ / \
|
|
** X Y Y Z
|
|
**
|
|
*/
|
|
static amatch_avl *amatchAvlRotateBefore(amatch_avl *pP){
|
|
amatch_avl *pB = pP->pBefore;
|
|
amatch_avl *pY = pB->pAfter;
|
|
pB->pUp = pP->pUp;
|
|
pB->pAfter = pP;
|
|
pP->pUp = pB;
|
|
pP->pBefore = pY;
|
|
if( pY ) pY->pUp = pP;
|
|
amatchAvlRecomputeHeight(pP);
|
|
amatchAvlRecomputeHeight(pB);
|
|
return pB;
|
|
}
|
|
|
|
/*
|
|
** P A
|
|
** / \ / \
|
|
** X A ==> P Z
|
|
** / \ / \
|
|
** Y Z X Y
|
|
**
|
|
*/
|
|
static amatch_avl *amatchAvlRotateAfter(amatch_avl *pP){
|
|
amatch_avl *pA = pP->pAfter;
|
|
amatch_avl *pY = pA->pBefore;
|
|
pA->pUp = pP->pUp;
|
|
pA->pBefore = pP;
|
|
pP->pUp = pA;
|
|
pP->pAfter = pY;
|
|
if( pY ) pY->pUp = pP;
|
|
amatchAvlRecomputeHeight(pP);
|
|
amatchAvlRecomputeHeight(pA);
|
|
return pA;
|
|
}
|
|
|
|
/*
|
|
** Return a pointer to the pBefore or pAfter pointer in the parent
|
|
** of p that points to p. Or if p is the root node, return pp.
|
|
*/
|
|
static amatch_avl **amatchAvlFromPtr(amatch_avl *p, amatch_avl **pp){
|
|
amatch_avl *pUp = p->pUp;
|
|
if( pUp==0 ) return pp;
|
|
if( pUp->pAfter==p ) return &pUp->pAfter;
|
|
return &pUp->pBefore;
|
|
}
|
|
|
|
/*
|
|
** Rebalance all nodes starting with p and working up to the root.
|
|
** Return the new root.
|
|
*/
|
|
static amatch_avl *amatchAvlBalance(amatch_avl *p){
|
|
amatch_avl *pTop = p;
|
|
amatch_avl **pp;
|
|
while( p ){
|
|
amatchAvlRecomputeHeight(p);
|
|
if( p->imbalance>=2 ){
|
|
amatch_avl *pB = p->pBefore;
|
|
if( pB->imbalance<0 ) p->pBefore = amatchAvlRotateAfter(pB);
|
|
pp = amatchAvlFromPtr(p,&p);
|
|
p = *pp = amatchAvlRotateBefore(p);
|
|
}else if( p->imbalance<=(-2) ){
|
|
amatch_avl *pA = p->pAfter;
|
|
if( pA->imbalance>0 ) p->pAfter = amatchAvlRotateBefore(pA);
|
|
pp = amatchAvlFromPtr(p,&p);
|
|
p = *pp = amatchAvlRotateAfter(p);
|
|
}
|
|
pTop = p;
|
|
p = p->pUp;
|
|
}
|
|
return pTop;
|
|
}
|
|
|
|
/* Search the tree rooted at p for an entry with zKey. Return a pointer
|
|
** to the entry or return NULL.
|
|
*/
|
|
static amatch_avl *amatchAvlSearch(amatch_avl *p, const char *zKey){
|
|
int c;
|
|
while( p && (c = strcmp(zKey, p->zKey))!=0 ){
|
|
p = (c<0) ? p->pBefore : p->pAfter;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
/* Find the first node (the one with the smallest key).
|
|
*/
|
|
static amatch_avl *amatchAvlFirst(amatch_avl *p){
|
|
if( p ) while( p->pBefore ) p = p->pBefore;
|
|
return p;
|
|
}
|
|
|
|
#if 0 /* NOT USED */
|
|
/* Return the node with the next larger key after p.
|
|
*/
|
|
static amatch_avl *amatchAvlNext(amatch_avl *p){
|
|
amatch_avl *pPrev = 0;
|
|
while( p && p->pAfter==pPrev ){
|
|
pPrev = p;
|
|
p = p->pUp;
|
|
}
|
|
if( p && pPrev==0 ){
|
|
p = amatchAvlFirst(p->pAfter);
|
|
}
|
|
return p;
|
|
}
|
|
#endif
|
|
|
|
#if 0 /* NOT USED */
|
|
/* Verify AVL tree integrity
|
|
*/
|
|
static int amatchAvlIntegrity(amatch_avl *pHead){
|
|
amatch_avl *p;
|
|
if( pHead==0 ) return 1;
|
|
if( (p = pHead->pBefore)!=0 ){
|
|
assert( p->pUp==pHead );
|
|
assert( amatchAvlIntegrity(p) );
|
|
assert( strcmp(p->zKey, pHead->zKey)<0 );
|
|
while( p->pAfter ) p = p->pAfter;
|
|
assert( strcmp(p->zKey, pHead->zKey)<0 );
|
|
}
|
|
if( (p = pHead->pAfter)!=0 ){
|
|
assert( p->pUp==pHead );
|
|
assert( amatchAvlIntegrity(p) );
|
|
assert( strcmp(p->zKey, pHead->zKey)>0 );
|
|
p = amatchAvlFirst(p);
|
|
assert( strcmp(p->zKey, pHead->zKey)>0 );
|
|
}
|
|
return 1;
|
|
}
|
|
static int amatchAvlIntegrity2(amatch_avl *pHead){
|
|
amatch_avl *p, *pNext;
|
|
for(p=amatchAvlFirst(pHead); p; p=pNext){
|
|
pNext = amatchAvlNext(p);
|
|
if( pNext==0 ) break;
|
|
assert( strcmp(p->zKey, pNext->zKey)<0 );
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* Insert a new node pNew. Return NULL on success. If the key is not
|
|
** unique, then do not perform the insert but instead leave pNew unchanged
|
|
** and return a pointer to an existing node with the same key.
|
|
*/
|
|
static amatch_avl *amatchAvlInsert(amatch_avl **ppHead, amatch_avl *pNew){
|
|
int c;
|
|
amatch_avl *p = *ppHead;
|
|
if( p==0 ){
|
|
p = pNew;
|
|
pNew->pUp = 0;
|
|
}else{
|
|
while( p ){
|
|
c = strcmp(pNew->zKey, p->zKey);
|
|
if( c<0 ){
|
|
if( p->pBefore ){
|
|
p = p->pBefore;
|
|
}else{
|
|
p->pBefore = pNew;
|
|
pNew->pUp = p;
|
|
break;
|
|
}
|
|
}else if( c>0 ){
|
|
if( p->pAfter ){
|
|
p = p->pAfter;
|
|
}else{
|
|
p->pAfter = pNew;
|
|
pNew->pUp = p;
|
|
break;
|
|
}
|
|
}else{
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
pNew->pBefore = 0;
|
|
pNew->pAfter = 0;
|
|
pNew->height = 1;
|
|
pNew->imbalance = 0;
|
|
*ppHead = amatchAvlBalance(p);
|
|
/* assert( amatchAvlIntegrity(*ppHead) ); */
|
|
/* assert( amatchAvlIntegrity2(*ppHead) ); */
|
|
return 0;
|
|
}
|
|
|
|
/* Remove node pOld from the tree. pOld must be an element of the tree or
|
|
** the AVL tree will become corrupt.
|
|
*/
|
|
static void amatchAvlRemove(amatch_avl **ppHead, amatch_avl *pOld){
|
|
amatch_avl **ppParent;
|
|
amatch_avl *pBalance = 0;
|
|
/* assert( amatchAvlSearch(*ppHead, pOld->zKey)==pOld ); */
|
|
ppParent = amatchAvlFromPtr(pOld, ppHead);
|
|
if( pOld->pBefore==0 && pOld->pAfter==0 ){
|
|
*ppParent = 0;
|
|
pBalance = pOld->pUp;
|
|
}else if( pOld->pBefore && pOld->pAfter ){
|
|
amatch_avl *pX, *pY;
|
|
pX = amatchAvlFirst(pOld->pAfter);
|
|
*amatchAvlFromPtr(pX, 0) = pX->pAfter;
|
|
if( pX->pAfter ) pX->pAfter->pUp = pX->pUp;
|
|
pBalance = pX->pUp;
|
|
pX->pAfter = pOld->pAfter;
|
|
if( pX->pAfter ){
|
|
pX->pAfter->pUp = pX;
|
|
}else{
|
|
assert( pBalance==pOld );
|
|
pBalance = pX;
|
|
}
|
|
pX->pBefore = pY = pOld->pBefore;
|
|
if( pY ) pY->pUp = pX;
|
|
pX->pUp = pOld->pUp;
|
|
*ppParent = pX;
|
|
}else if( pOld->pBefore==0 ){
|
|
*ppParent = pBalance = pOld->pAfter;
|
|
pBalance->pUp = pOld->pUp;
|
|
}else if( pOld->pAfter==0 ){
|
|
*ppParent = pBalance = pOld->pBefore;
|
|
pBalance->pUp = pOld->pUp;
|
|
}
|
|
*ppHead = amatchAvlBalance(pBalance);
|
|
pOld->pUp = 0;
|
|
pOld->pBefore = 0;
|
|
pOld->pAfter = 0;
|
|
/* assert( amatchAvlIntegrity(*ppHead) ); */
|
|
/* assert( amatchAvlIntegrity2(*ppHead) ); */
|
|
}
|
|
/*
|
|
** End of the AVL Tree implementation
|
|
******************************************************************************/
|
|
|
|
|
|
/*
|
|
** Various types.
|
|
**
|
|
** amatch_cost is the "cost" of an edit operation.
|
|
**
|
|
** amatch_len is the length of a matching string.
|
|
**
|
|
** amatch_langid is an ruleset identifier.
|
|
*/
|
|
typedef int amatch_cost;
|
|
typedef signed char amatch_len;
|
|
typedef int amatch_langid;
|
|
|
|
/*
|
|
** Limits
|
|
*/
|
|
#define AMATCH_MX_LENGTH 50 /* Maximum length of a rule string */
|
|
#define AMATCH_MX_LANGID 2147483647 /* Maximum rule ID */
|
|
#define AMATCH_MX_COST 1000 /* Maximum single-rule cost */
|
|
|
|
/*
|
|
** A match or partial match
|
|
*/
|
|
struct amatch_word {
|
|
amatch_word *pNext; /* Next on a list of all amatch_words */
|
|
amatch_avl sCost; /* Linkage of this node into the cost tree */
|
|
amatch_avl sWord; /* Linkage of this node into the word tree */
|
|
amatch_cost rCost; /* Cost of the match so far */
|
|
int iSeq; /* Sequence number */
|
|
char zCost[10]; /* Cost key (text rendering of rCost) */
|
|
short int nMatch; /* Input characters matched */
|
|
char zWord[4]; /* Text of the word. Extra space appended as needed */
|
|
};
|
|
|
|
/*
|
|
** Each transformation rule is stored as an instance of this object.
|
|
** All rules are kept on a linked list sorted by rCost.
|
|
*/
|
|
struct amatch_rule {
|
|
amatch_rule *pNext; /* Next rule in order of increasing rCost */
|
|
char *zFrom; /* Transform from (a string from user input) */
|
|
amatch_cost rCost; /* Cost of this transformation */
|
|
amatch_langid iLang; /* The langauge to which this rule belongs */
|
|
amatch_len nFrom, nTo; /* Length of the zFrom and zTo strings */
|
|
char zTo[4]; /* Tranform to V.W value (extra space appended) */
|
|
};
|
|
|
|
/*
|
|
** A amatch virtual-table object
|
|
*/
|
|
struct amatch_vtab {
|
|
sqlite3_vtab base; /* Base class - must be first */
|
|
char *zClassName; /* Name of this class. Default: "amatch" */
|
|
char *zDb; /* Name of database. (ex: "main") */
|
|
char *zSelf; /* Name of this virtual table */
|
|
char *zCostTab; /* Name of edit-cost-table */
|
|
char *zVocabTab; /* Name of vocabulary table */
|
|
char *zVocabWord; /* Name of vocabulary table word column */
|
|
char *zVocabLang; /* Name of vocabulary table language column */
|
|
amatch_rule *pRule; /* All active rules in this amatch */
|
|
amatch_cost rIns; /* Generic insertion cost '' -> ? */
|
|
amatch_cost rDel; /* Generic deletion cost ? -> '' */
|
|
amatch_cost rSub; /* Generic substitution cost ? -> ? */
|
|
sqlite3 *db; /* The database connection */
|
|
sqlite3_stmt *pVCheck; /* Query to check zVocabTab */
|
|
int nCursor; /* Number of active cursors */
|
|
};
|
|
|
|
/* A amatch cursor object */
|
|
struct amatch_cursor {
|
|
sqlite3_vtab_cursor base; /* Base class - must be first */
|
|
sqlite3_int64 iRowid; /* The rowid of the current word */
|
|
amatch_langid iLang; /* Use this language ID */
|
|
amatch_cost rLimit; /* Maximum cost of any term */
|
|
int nBuf; /* Space allocated for zBuf */
|
|
int oomErr; /* True following an OOM error */
|
|
int nWord; /* Number of amatch_word objects */
|
|
char *zBuf; /* Temp-use buffer space */
|
|
char *zInput; /* Input word to match against */
|
|
amatch_vtab *pVtab; /* The virtual table this cursor belongs to */
|
|
amatch_word *pAllWords; /* List of all amatch_word objects */
|
|
amatch_word *pCurrent; /* Most recent solution */
|
|
amatch_avl *pCost; /* amatch_word objects keyed by iCost */
|
|
amatch_avl *pWord; /* amatch_word objects keyed by zWord */
|
|
};
|
|
|
|
/*
|
|
** The two input rule lists are both sorted in order of increasing
|
|
** cost. Merge them together into a single list, sorted by cost, and
|
|
** return a pointer to the head of that list.
|
|
*/
|
|
static amatch_rule *amatchMergeRules(amatch_rule *pA, amatch_rule *pB){
|
|
amatch_rule head;
|
|
amatch_rule *pTail;
|
|
|
|
pTail = &head;
|
|
while( pA && pB ){
|
|
if( pA->rCost<=pB->rCost ){
|
|
pTail->pNext = pA;
|
|
pTail = pA;
|
|
pA = pA->pNext;
|
|
}else{
|
|
pTail->pNext = pB;
|
|
pTail = pB;
|
|
pB = pB->pNext;
|
|
}
|
|
}
|
|
if( pA==0 ){
|
|
pTail->pNext = pB;
|
|
}else{
|
|
pTail->pNext = pA;
|
|
}
|
|
return head.pNext;
|
|
}
|
|
|
|
/*
|
|
** Statement pStmt currently points to a row in the amatch data table. This
|
|
** function allocates and populates a amatch_rule structure according to
|
|
** the content of the row.
|
|
**
|
|
** If successful, *ppRule is set to point to the new object and SQLITE_OK
|
|
** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
|
|
** to an error message and an SQLite error code returned.
|
|
*/
|
|
static int amatchLoadOneRule(
|
|
amatch_vtab *p, /* Fuzzer virtual table handle */
|
|
sqlite3_stmt *pStmt, /* Base rule on statements current row */
|
|
amatch_rule **ppRule, /* OUT: New rule object */
|
|
char **pzErr /* OUT: Error message */
|
|
){
|
|
sqlite3_int64 iLang = sqlite3_column_int64(pStmt, 0);
|
|
const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
|
|
const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
|
|
amatch_cost rCost = sqlite3_column_int(pStmt, 3);
|
|
|
|
int rc = SQLITE_OK; /* Return code */
|
|
int nFrom; /* Size of string zFrom, in bytes */
|
|
int nTo; /* Size of string zTo, in bytes */
|
|
amatch_rule *pRule = 0; /* New rule object to return */
|
|
|
|
if( zFrom==0 ) zFrom = "";
|
|
if( zTo==0 ) zTo = "";
|
|
nFrom = (int)strlen(zFrom);
|
|
nTo = (int)strlen(zTo);
|
|
|
|
/* Silently ignore null transformations */
|
|
if( strcmp(zFrom, zTo)==0 ){
|
|
if( zFrom[0]=='?' && zFrom[1]==0 ){
|
|
if( p->rSub==0 || p->rSub>rCost ) p->rSub = rCost;
|
|
}
|
|
*ppRule = 0;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
if( rCost<=0 || rCost>AMATCH_MX_COST ){
|
|
*pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
|
|
p->zClassName, AMATCH_MX_COST
|
|
);
|
|
rc = SQLITE_ERROR;
|
|
}else
|
|
if( nFrom>AMATCH_MX_LENGTH || nTo>AMATCH_MX_LENGTH ){
|
|
*pzErr = sqlite3_mprintf("%s: maximum string length is %d",
|
|
p->zClassName, AMATCH_MX_LENGTH
|
|
);
|
|
rc = SQLITE_ERROR;
|
|
}else
|
|
if( iLang<0 || iLang>AMATCH_MX_LANGID ){
|
|
*pzErr = sqlite3_mprintf("%s: iLang must be between 0 and %d",
|
|
p->zClassName, AMATCH_MX_LANGID
|
|
);
|
|
rc = SQLITE_ERROR;
|
|
}else
|
|
if( strcmp(zFrom,"")==0 && strcmp(zTo,"?")==0 ){
|
|
if( p->rIns==0 || p->rIns>rCost ) p->rIns = rCost;
|
|
}else
|
|
if( strcmp(zFrom,"?")==0 && strcmp(zTo,"")==0 ){
|
|
if( p->rDel==0 || p->rDel>rCost ) p->rDel = rCost;
|
|
}else
|
|
{
|
|
pRule = sqlite3_malloc64( sizeof(*pRule) + nFrom + nTo );
|
|
if( pRule==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
memset(pRule, 0, sizeof(*pRule));
|
|
pRule->zFrom = &pRule->zTo[nTo+1];
|
|
pRule->nFrom = (amatch_len)nFrom;
|
|
memcpy(pRule->zFrom, zFrom, nFrom+1);
|
|
memcpy(pRule->zTo, zTo, nTo+1);
|
|
pRule->nTo = (amatch_len)nTo;
|
|
pRule->rCost = rCost;
|
|
pRule->iLang = (int)iLang;
|
|
}
|
|
}
|
|
|
|
*ppRule = pRule;
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Free all the content in the edit-cost-table
|
|
*/
|
|
static void amatchFreeRules(amatch_vtab *p){
|
|
while( p->pRule ){
|
|
amatch_rule *pRule = p->pRule;
|
|
p->pRule = pRule->pNext;
|
|
sqlite3_free(pRule);
|
|
}
|
|
p->pRule = 0;
|
|
}
|
|
|
|
/*
|
|
** Load the content of the amatch data table into memory.
|
|
*/
|
|
static int amatchLoadRules(
|
|
sqlite3 *db, /* Database handle */
|
|
amatch_vtab *p, /* Virtual amatch table to configure */
|
|
char **pzErr /* OUT: Error message */
|
|
){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
char *zSql; /* SELECT used to read from rules table */
|
|
amatch_rule *pHead = 0;
|
|
|
|
zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", p->zDb, p->zCostTab);
|
|
if( zSql==0 ){
|
|
rc = SQLITE_NOMEM;
|
|
}else{
|
|
int rc2; /* finalize() return code */
|
|
sqlite3_stmt *pStmt = 0;
|
|
rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
|
if( rc!=SQLITE_OK ){
|
|
*pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
|
|
}else if( sqlite3_column_count(pStmt)!=4 ){
|
|
*pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
|
|
p->zClassName, p->zCostTab, sqlite3_column_count(pStmt)
|
|
);
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
|
|
amatch_rule *pRule = 0;
|
|
rc = amatchLoadOneRule(p, pStmt, &pRule, pzErr);
|
|
if( pRule ){
|
|
pRule->pNext = pHead;
|
|
pHead = pRule;
|
|
}
|
|
}
|
|
}
|
|
rc2 = sqlite3_finalize(pStmt);
|
|
if( rc==SQLITE_OK ) rc = rc2;
|
|
}
|
|
sqlite3_free(zSql);
|
|
|
|
/* All rules are now in a singly linked list starting at pHead. This
|
|
** block sorts them by cost and then sets amatch_vtab.pRule to point to
|
|
** point to the head of the sorted list.
|
|
*/
|
|
if( rc==SQLITE_OK ){
|
|
unsigned int i;
|
|
amatch_rule *pX;
|
|
amatch_rule *a[15];
|
|
for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
|
|
while( (pX = pHead)!=0 ){
|
|
pHead = pX->pNext;
|
|
pX->pNext = 0;
|
|
for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
|
|
pX = amatchMergeRules(a[i], pX);
|
|
a[i] = 0;
|
|
}
|
|
a[i] = amatchMergeRules(a[i], pX);
|
|
}
|
|
for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
|
|
pX = amatchMergeRules(a[i], pX);
|
|
}
|
|
p->pRule = amatchMergeRules(p->pRule, pX);
|
|
}else{
|
|
/* An error has occurred. Setting p->pRule to point to the head of the
|
|
** allocated list ensures that the list will be cleaned up in this case.
|
|
*/
|
|
assert( p->pRule==0 );
|
|
p->pRule = pHead;
|
|
}
|
|
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** This function converts an SQL quoted string into an unquoted string
|
|
** and returns a pointer to a buffer allocated using sqlite3_malloc()
|
|
** containing the result. The caller should eventually free this buffer
|
|
** using sqlite3_free.
|
|
**
|
|
** Examples:
|
|
**
|
|
** "abc" becomes abc
|
|
** 'xyz' becomes xyz
|
|
** [pqr] becomes pqr
|
|
** `mno` becomes mno
|
|
*/
|
|
static char *amatchDequote(const char *zIn){
|
|
sqlite3_int64 nIn; /* Size of input string, in bytes */
|
|
char *zOut; /* Output (dequoted) string */
|
|
|
|
nIn = strlen(zIn);
|
|
zOut = sqlite3_malloc64(nIn+1);
|
|
if( zOut ){
|
|
char q = zIn[0]; /* Quote character (if any ) */
|
|
|
|
if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
|
|
memcpy(zOut, zIn, (size_t)(nIn+1));
|
|
}else{
|
|
int iOut = 0; /* Index of next byte to write to output */
|
|
int iIn; /* Index of next byte to read from input */
|
|
|
|
if( q=='[' ) q = ']';
|
|
for(iIn=1; iIn<nIn; iIn++){
|
|
if( zIn[iIn]==q ) iIn++;
|
|
zOut[iOut++] = zIn[iIn];
|
|
}
|
|
}
|
|
assert( (int)strlen(zOut)<=nIn );
|
|
}
|
|
return zOut;
|
|
}
|
|
|
|
/*
|
|
** Deallocate the pVCheck prepared statement.
|
|
*/
|
|
static void amatchVCheckClear(amatch_vtab *p){
|
|
if( p->pVCheck ){
|
|
sqlite3_finalize(p->pVCheck);
|
|
p->pVCheck = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
** Deallocate an amatch_vtab object
|
|
*/
|
|
static void amatchFree(amatch_vtab *p){
|
|
if( p ){
|
|
amatchFreeRules(p);
|
|
amatchVCheckClear(p);
|
|
sqlite3_free(p->zClassName);
|
|
sqlite3_free(p->zDb);
|
|
sqlite3_free(p->zCostTab);
|
|
sqlite3_free(p->zVocabTab);
|
|
sqlite3_free(p->zVocabWord);
|
|
sqlite3_free(p->zVocabLang);
|
|
sqlite3_free(p->zSelf);
|
|
memset(p, 0, sizeof(*p));
|
|
sqlite3_free(p);
|
|
}
|
|
}
|
|
|
|
/*
|
|
** xDisconnect/xDestroy method for the amatch module.
|
|
*/
|
|
static int amatchDisconnect(sqlite3_vtab *pVtab){
|
|
amatch_vtab *p = (amatch_vtab*)pVtab;
|
|
assert( p->nCursor==0 );
|
|
amatchFree(p);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Check to see if the argument is of the form:
|
|
**
|
|
** KEY = VALUE
|
|
**
|
|
** If it is, return a pointer to the first character of VALUE.
|
|
** If not, return NULL. Spaces around the = are ignored.
|
|
*/
|
|
static const char *amatchValueOfKey(const char *zKey, const char *zStr){
|
|
int nKey = (int)strlen(zKey);
|
|
int nStr = (int)strlen(zStr);
|
|
int i;
|
|
if( nStr<nKey+1 ) return 0;
|
|
if( memcmp(zStr, zKey, nKey)!=0 ) return 0;
|
|
for(i=nKey; isspace((unsigned char)zStr[i]); i++){}
|
|
if( zStr[i]!='=' ) return 0;
|
|
i++;
|
|
while( isspace((unsigned char)zStr[i]) ){ i++; }
|
|
return zStr+i;
|
|
}
|
|
|
|
/*
|
|
** xConnect/xCreate method for the amatch module. Arguments are:
|
|
**
|
|
** argv[0] -> module name ("approximate_match")
|
|
** argv[1] -> database name
|
|
** argv[2] -> table name
|
|
** argv[3...] -> arguments
|
|
*/
|
|
static int amatchConnect(
|
|
sqlite3 *db,
|
|
void *pAux,
|
|
int argc, const char *const*argv,
|
|
sqlite3_vtab **ppVtab,
|
|
char **pzErr
|
|
){
|
|
int rc = SQLITE_OK; /* Return code */
|
|
amatch_vtab *pNew = 0; /* New virtual table */
|
|
const char *zModule = argv[0];
|
|
const char *zDb = argv[1];
|
|
const char *zVal;
|
|
int i;
|
|
|
|
(void)pAux;
|
|
*ppVtab = 0;
|
|
pNew = sqlite3_malloc( sizeof(*pNew) );
|
|
if( pNew==0 ) return SQLITE_NOMEM;
|
|
rc = SQLITE_NOMEM;
|
|
memset(pNew, 0, sizeof(*pNew));
|
|
pNew->db = db;
|
|
pNew->zClassName = sqlite3_mprintf("%s", zModule);
|
|
if( pNew->zClassName==0 ) goto amatchConnectError;
|
|
pNew->zDb = sqlite3_mprintf("%s", zDb);
|
|
if( pNew->zDb==0 ) goto amatchConnectError;
|
|
pNew->zSelf = sqlite3_mprintf("%s", argv[2]);
|
|
if( pNew->zSelf==0 ) goto amatchConnectError;
|
|
for(i=3; i<argc; i++){
|
|
zVal = amatchValueOfKey("vocabulary_table", argv[i]);
|
|
if( zVal ){
|
|
sqlite3_free(pNew->zVocabTab);
|
|
pNew->zVocabTab = amatchDequote(zVal);
|
|
if( pNew->zVocabTab==0 ) goto amatchConnectError;
|
|
continue;
|
|
}
|
|
zVal = amatchValueOfKey("vocabulary_word", argv[i]);
|
|
if( zVal ){
|
|
sqlite3_free(pNew->zVocabWord);
|
|
pNew->zVocabWord = amatchDequote(zVal);
|
|
if( pNew->zVocabWord==0 ) goto amatchConnectError;
|
|
continue;
|
|
}
|
|
zVal = amatchValueOfKey("vocabulary_language", argv[i]);
|
|
if( zVal ){
|
|
sqlite3_free(pNew->zVocabLang);
|
|
pNew->zVocabLang = amatchDequote(zVal);
|
|
if( pNew->zVocabLang==0 ) goto amatchConnectError;
|
|
continue;
|
|
}
|
|
zVal = amatchValueOfKey("edit_distances", argv[i]);
|
|
if( zVal ){
|
|
sqlite3_free(pNew->zCostTab);
|
|
pNew->zCostTab = amatchDequote(zVal);
|
|
if( pNew->zCostTab==0 ) goto amatchConnectError;
|
|
continue;
|
|
}
|
|
*pzErr = sqlite3_mprintf("unrecognized argument: [%s]\n", argv[i]);
|
|
amatchFree(pNew);
|
|
*ppVtab = 0;
|
|
return SQLITE_ERROR;
|
|
}
|
|
rc = SQLITE_OK;
|
|
if( pNew->zCostTab==0 ){
|
|
*pzErr = sqlite3_mprintf("no edit_distances table specified");
|
|
rc = SQLITE_ERROR;
|
|
}else{
|
|
rc = amatchLoadRules(db, pNew, pzErr);
|
|
}
|
|
if( rc==SQLITE_OK ){
|
|
sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
|
|
rc = sqlite3_declare_vtab(db,
|
|
"CREATE TABLE x(word,distance,language,"
|
|
"command HIDDEN,nword HIDDEN)"
|
|
);
|
|
#define AMATCH_COL_WORD 0
|
|
#define AMATCH_COL_DISTANCE 1
|
|
#define AMATCH_COL_LANGUAGE 2
|
|
#define AMATCH_COL_COMMAND 3
|
|
#define AMATCH_COL_NWORD 4
|
|
}
|
|
if( rc!=SQLITE_OK ){
|
|
amatchFree(pNew);
|
|
}
|
|
*ppVtab = &pNew->base;
|
|
return rc;
|
|
|
|
amatchConnectError:
|
|
amatchFree(pNew);
|
|
return rc;
|
|
}
|
|
|
|
/*
|
|
** Open a new amatch cursor.
|
|
*/
|
|
static int amatchOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
|
amatch_vtab *p = (amatch_vtab*)pVTab;
|
|
amatch_cursor *pCur;
|
|
pCur = sqlite3_malloc( sizeof(*pCur) );
|
|
if( pCur==0 ) return SQLITE_NOMEM;
|
|
memset(pCur, 0, sizeof(*pCur));
|
|
pCur->pVtab = p;
|
|
*ppCursor = &pCur->base;
|
|
p->nCursor++;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Free up all the memory allocated by a cursor. Set it rLimit to 0
|
|
** to indicate that it is at EOF.
|
|
*/
|
|
static void amatchClearCursor(amatch_cursor *pCur){
|
|
amatch_word *pWord, *pNextWord;
|
|
for(pWord=pCur->pAllWords; pWord; pWord=pNextWord){
|
|
pNextWord = pWord->pNext;
|
|
sqlite3_free(pWord);
|
|
}
|
|
pCur->pAllWords = 0;
|
|
sqlite3_free(pCur->zInput);
|
|
pCur->zInput = 0;
|
|
sqlite3_free(pCur->zBuf);
|
|
pCur->zBuf = 0;
|
|
pCur->nBuf = 0;
|
|
pCur->pCost = 0;
|
|
pCur->pWord = 0;
|
|
pCur->pCurrent = 0;
|
|
pCur->rLimit = 1000000;
|
|
pCur->iLang = 0;
|
|
pCur->nWord = 0;
|
|
}
|
|
|
|
/*
|
|
** Close a amatch cursor.
|
|
*/
|
|
static int amatchClose(sqlite3_vtab_cursor *cur){
|
|
amatch_cursor *pCur = (amatch_cursor *)cur;
|
|
amatchClearCursor(pCur);
|
|
pCur->pVtab->nCursor--;
|
|
sqlite3_free(pCur);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Render a 24-bit unsigned integer as a 4-byte base-64 number.
|
|
*/
|
|
static void amatchEncodeInt(int x, char *z){
|
|
static const char a[] =
|
|
"0123456789"
|
|
"ABCDEFGHIJ"
|
|
"KLMNOPQRST"
|
|
"UVWXYZ^abc"
|
|
"defghijklm"
|
|
"nopqrstuvw"
|
|
"xyz~";
|
|
z[0] = a[(x>>18)&0x3f];
|
|
z[1] = a[(x>>12)&0x3f];
|
|
z[2] = a[(x>>6)&0x3f];
|
|
z[3] = a[x&0x3f];
|
|
}
|
|
|
|
/*
|
|
** Write the zCost[] field for a amatch_word object
|
|
*/
|
|
static void amatchWriteCost(amatch_word *pWord){
|
|
amatchEncodeInt(pWord->rCost, pWord->zCost);
|
|
amatchEncodeInt(pWord->iSeq, pWord->zCost+4);
|
|
pWord->zCost[8] = 0;
|
|
}
|
|
|
|
/* Circumvent compiler warnings about the use of strcpy() by supplying
|
|
** our own implementation.
|
|
*/
|
|
static void amatchStrcpy(char *dest, const char *src){
|
|
while( (*(dest++) = *(src++))!=0 ){}
|
|
}
|
|
static void amatchStrcat(char *dest, const char *src){
|
|
while( *dest ) dest++;
|
|
amatchStrcpy(dest, src);
|
|
}
|
|
|
|
/*
|
|
** Add a new amatch_word object to the queue.
|
|
**
|
|
** If a prior amatch_word object with the same zWord, and nMatch
|
|
** already exists, update its rCost (if the new rCost is less) but
|
|
** otherwise leave it unchanged. Do not add a duplicate.
|
|
**
|
|
** Do nothing if the cost exceeds threshold.
|
|
*/
|
|
static void amatchAddWord(
|
|
amatch_cursor *pCur,
|
|
amatch_cost rCost,
|
|
int nMatch,
|
|
const char *zWordBase,
|
|
const char *zWordTail
|
|
){
|
|
amatch_word *pWord;
|
|
amatch_avl *pNode;
|
|
amatch_avl *pOther;
|
|
int nBase, nTail;
|
|
char zBuf[4];
|
|
|
|
if( rCost>pCur->rLimit ){
|
|
return;
|
|
}
|
|
nBase = (int)strlen(zWordBase);
|
|
nTail = (int)strlen(zWordTail);
|
|
if( nBase+nTail+3>pCur->nBuf ){
|
|
pCur->nBuf = nBase+nTail+100;
|
|
pCur->zBuf = sqlite3_realloc(pCur->zBuf, pCur->nBuf);
|
|
if( pCur->zBuf==0 ){
|
|
pCur->nBuf = 0;
|
|
return;
|
|
}
|
|
}
|
|
amatchEncodeInt(nMatch, zBuf);
|
|
memcpy(pCur->zBuf, zBuf+2, 2);
|
|
memcpy(pCur->zBuf+2, zWordBase, nBase);
|
|
memcpy(pCur->zBuf+2+nBase, zWordTail, nTail+1);
|
|
pNode = amatchAvlSearch(pCur->pWord, pCur->zBuf);
|
|
if( pNode ){
|
|
pWord = pNode->pWord;
|
|
if( pWord->rCost>rCost ){
|
|
#ifdef AMATCH_TRACE_1
|
|
printf("UPDATE [%s][%.*s^%s] %d (\"%s\" \"%s\")\n",
|
|
pWord->zWord+2, pWord->nMatch, pCur->zInput, pCur->zInput,
|
|
pWord->rCost, pWord->zWord, pWord->zCost);
|
|
#endif
|
|
amatchAvlRemove(&pCur->pCost, &pWord->sCost);
|
|
pWord->rCost = rCost;
|
|
amatchWriteCost(pWord);
|
|
#ifdef AMATCH_TRACE_1
|
|
printf(" ---> %d (\"%s\" \"%s\")\n",
|
|
pWord->rCost, pWord->zWord, pWord->zCost);
|
|
#endif
|
|
pOther = amatchAvlInsert(&pCur->pCost, &pWord->sCost);
|
|
assert( pOther==0 ); (void)pOther;
|
|
}
|
|
return;
|
|
}
|
|
pWord = sqlite3_malloc64( sizeof(*pWord) + nBase + nTail - 1 );
|
|
if( pWord==0 ) return;
|
|
memset(pWord, 0, sizeof(*pWord));
|
|
pWord->rCost = rCost;
|
|
pWord->iSeq = pCur->nWord++;
|
|
amatchWriteCost(pWord);
|
|
pWord->nMatch = (short)nMatch;
|
|
pWord->pNext = pCur->pAllWords;
|
|
pCur->pAllWords = pWord;
|
|
pWord->sCost.zKey = pWord->zCost;
|
|
pWord->sCost.pWord = pWord;
|
|
pOther = amatchAvlInsert(&pCur->pCost, &pWord->sCost);
|
|
assert( pOther==0 ); (void)pOther;
|
|
pWord->sWord.zKey = pWord->zWord;
|
|
pWord->sWord.pWord = pWord;
|
|
amatchStrcpy(pWord->zWord, pCur->zBuf);
|
|
pOther = amatchAvlInsert(&pCur->pWord, &pWord->sWord);
|
|
assert( pOther==0 ); (void)pOther;
|
|
#ifdef AMATCH_TRACE_1
|
|
printf("INSERT [%s][%.*s^%s] %d (\"%s\" \"%s\")\n", pWord->zWord+2,
|
|
pWord->nMatch, pCur->zInput, pCur->zInput+pWord->nMatch, rCost,
|
|
pWord->zWord, pWord->zCost);
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
** Advance a cursor to its next row of output
|
|
*/
|
|
static int amatchNext(sqlite3_vtab_cursor *cur){
|
|
amatch_cursor *pCur = (amatch_cursor*)cur;
|
|
amatch_word *pWord = 0;
|
|
amatch_avl *pNode;
|
|
int isMatch = 0;
|
|
amatch_vtab *p = pCur->pVtab;
|
|
int nWord;
|
|
int rc;
|
|
int i;
|
|
const char *zW;
|
|
amatch_rule *pRule;
|
|
char *zBuf = 0;
|
|
char nBuf = 0;
|
|
char zNext[8];
|
|
char zNextIn[8];
|
|
int nNextIn;
|
|
|
|
if( p->pVCheck==0 ){
|
|
char *zSql;
|
|
if( p->zVocabLang && p->zVocabLang[0] ){
|
|
zSql = sqlite3_mprintf(
|
|
"SELECT \"%w\" FROM \"%w\"",
|
|
" WHERE \"%w\">=?1 AND \"%w\"=?2"
|
|
" ORDER BY 1",
|
|
p->zVocabWord, p->zVocabTab,
|
|
p->zVocabWord, p->zVocabLang
|
|
);
|
|
}else{
|
|
zSql = sqlite3_mprintf(
|
|
"SELECT \"%w\" FROM \"%w\""
|
|
" WHERE \"%w\">=?1"
|
|
" ORDER BY 1",
|
|
p->zVocabWord, p->zVocabTab,
|
|
p->zVocabWord
|
|
);
|
|
}
|
|
rc = sqlite3_prepare_v2(p->db, zSql, -1, &p->pVCheck, 0);
|
|
sqlite3_free(zSql);
|
|
if( rc ) return rc;
|
|
}
|
|
sqlite3_bind_int(p->pVCheck, 2, pCur->iLang);
|
|
|
|
do{
|
|
pNode = amatchAvlFirst(pCur->pCost);
|
|
if( pNode==0 ){
|
|
pWord = 0;
|
|
break;
|
|
}
|
|
pWord = pNode->pWord;
|
|
amatchAvlRemove(&pCur->pCost, &pWord->sCost);
|
|
|
|
#ifdef AMATCH_TRACE_1
|
|
printf("PROCESS [%s][%.*s^%s] %d (\"%s\" \"%s\")\n",
|
|
pWord->zWord+2, pWord->nMatch, pCur->zInput, pCur->zInput+pWord->nMatch,
|
|
pWord->rCost, pWord->zWord, pWord->zCost);
|
|
#endif
|
|
nWord = (int)strlen(pWord->zWord+2);
|
|
if( nWord+20>nBuf ){
|
|
nBuf = (char)(nWord+100);
|
|
zBuf = sqlite3_realloc(zBuf, nBuf);
|
|
if( zBuf==0 ) return SQLITE_NOMEM;
|
|
}
|
|
amatchStrcpy(zBuf, pWord->zWord+2);
|
|
zNext[0] = 0;
|
|
zNextIn[0] = pCur->zInput[pWord->nMatch];
|
|
if( zNextIn[0] ){
|
|
for(i=1; i<=4 && (pCur->zInput[pWord->nMatch+i]&0xc0)==0x80; i++){
|
|
zNextIn[i] = pCur->zInput[pWord->nMatch+i];
|
|
}
|
|
zNextIn[i] = 0;
|
|
nNextIn = i;
|
|
}else{
|
|
nNextIn = 0;
|
|
}
|
|
|
|
if( zNextIn[0] && zNextIn[0]!='*' ){
|
|
sqlite3_reset(p->pVCheck);
|
|
amatchStrcat(zBuf, zNextIn);
|
|
sqlite3_bind_text(p->pVCheck, 1, zBuf, nWord+nNextIn, SQLITE_STATIC);
|
|
rc = sqlite3_step(p->pVCheck);
|
|
if( rc==SQLITE_ROW ){
|
|
zW = (const char*)sqlite3_column_text(p->pVCheck, 0);
|
|
if( strncmp(zBuf, zW, nWord+nNextIn)==0 ){
|
|
amatchAddWord(pCur, pWord->rCost, pWord->nMatch+nNextIn, zBuf, "");
|
|
}
|
|
}
|
|
zBuf[nWord] = 0;
|
|
}
|
|
|
|
while( 1 ){
|
|
amatchStrcpy(zBuf+nWord, zNext);
|
|
sqlite3_reset(p->pVCheck);
|
|
sqlite3_bind_text(p->pVCheck, 1, zBuf, -1, SQLITE_TRANSIENT);
|
|
rc = sqlite3_step(p->pVCheck);
|
|
if( rc!=SQLITE_ROW ) break;
|
|
zW = (const char*)sqlite3_column_text(p->pVCheck, 0);
|
|
amatchStrcpy(zBuf+nWord, zNext);
|
|
if( strncmp(zW, zBuf, nWord)!=0 ) break;
|
|
if( (zNextIn[0]=='*' && zNextIn[1]==0)
|
|
|| (zNextIn[0]==0 && zW[nWord]==0)
|
|
){
|
|
isMatch = 1;
|
|
zNextIn[0] = 0;
|
|
nNextIn = 0;
|
|
break;
|
|
}
|
|
zNext[0] = zW[nWord];
|
|
for(i=1; i<=4 && (zW[nWord+i]&0xc0)==0x80; i++){
|
|
zNext[i] = zW[nWord+i];
|
|
}
|
|
zNext[i] = 0;
|
|
zBuf[nWord] = 0;
|
|
if( p->rIns>0 ){
|
|
amatchAddWord(pCur, pWord->rCost+p->rIns, pWord->nMatch,
|
|
zBuf, zNext);
|
|
}
|
|
if( p->rSub>0 ){
|
|
amatchAddWord(pCur, pWord->rCost+p->rSub, pWord->nMatch+nNextIn,
|
|
zBuf, zNext);
|
|
}
|
|
if( p->rIns<0 && p->rSub<0 ) break;
|
|
zNext[i-1]++; /* FIX ME */
|
|
}
|
|
sqlite3_reset(p->pVCheck);
|
|
|
|
if( p->rDel>0 ){
|
|
zBuf[nWord] = 0;
|
|
amatchAddWord(pCur, pWord->rCost+p->rDel, pWord->nMatch+nNextIn,
|
|
zBuf, "");
|
|
}
|
|
|
|
for(pRule=p->pRule; pRule; pRule=pRule->pNext){
|
|
if( pRule->iLang!=pCur->iLang ) continue;
|
|
if( strncmp(pRule->zFrom, pCur->zInput+pWord->nMatch, pRule->nFrom)==0 ){
|
|
amatchAddWord(pCur, pWord->rCost+pRule->rCost,
|
|
pWord->nMatch+pRule->nFrom, pWord->zWord+2, pRule->zTo);
|
|
}
|
|
}
|
|
}while( !isMatch );
|
|
pCur->pCurrent = pWord;
|
|
sqlite3_free(zBuf);
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Called to "rewind" a cursor back to the beginning so that
|
|
** it starts its output over again. Always called at least once
|
|
** prior to any amatchColumn, amatchRowid, or amatchEof call.
|
|
*/
|
|
static int amatchFilter(
|
|
sqlite3_vtab_cursor *pVtabCursor,
|
|
int idxNum, const char *idxStr,
|
|
int argc, sqlite3_value **argv
|
|
){
|
|
amatch_cursor *pCur = (amatch_cursor *)pVtabCursor;
|
|
const char *zWord = "*";
|
|
int idx;
|
|
|
|
amatchClearCursor(pCur);
|
|
idx = 0;
|
|
if( idxNum & 1 ){
|
|
zWord = (const char*)sqlite3_value_text(argv[0]);
|
|
idx++;
|
|
}
|
|
if( idxNum & 2 ){
|
|
pCur->rLimit = (amatch_cost)sqlite3_value_int(argv[idx]);
|
|
idx++;
|
|
}
|
|
if( idxNum & 4 ){
|
|
pCur->iLang = (amatch_cost)sqlite3_value_int(argv[idx]);
|
|
idx++;
|
|
}
|
|
pCur->zInput = sqlite3_mprintf("%s", zWord);
|
|
if( pCur->zInput==0 ) return SQLITE_NOMEM;
|
|
amatchAddWord(pCur, 0, 0, "", "");
|
|
amatchNext(pVtabCursor);
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** Only the word and distance columns have values. All other columns
|
|
** return NULL
|
|
*/
|
|
static int amatchColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
|
|
amatch_cursor *pCur = (amatch_cursor*)cur;
|
|
switch( i ){
|
|
case AMATCH_COL_WORD: {
|
|
sqlite3_result_text(ctx, pCur->pCurrent->zWord+2, -1, SQLITE_STATIC);
|
|
break;
|
|
}
|
|
case AMATCH_COL_DISTANCE: {
|
|
sqlite3_result_int(ctx, pCur->pCurrent->rCost);
|
|
break;
|
|
}
|
|
case AMATCH_COL_LANGUAGE: {
|
|
sqlite3_result_int(ctx, pCur->iLang);
|
|
break;
|
|
}
|
|
case AMATCH_COL_NWORD: {
|
|
sqlite3_result_int(ctx, pCur->nWord);
|
|
break;
|
|
}
|
|
default: {
|
|
sqlite3_result_null(ctx);
|
|
break;
|
|
}
|
|
}
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The rowid.
|
|
*/
|
|
static int amatchRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
|
|
amatch_cursor *pCur = (amatch_cursor*)cur;
|
|
*pRowid = pCur->iRowid;
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** EOF indicator
|
|
*/
|
|
static int amatchEof(sqlite3_vtab_cursor *cur){
|
|
amatch_cursor *pCur = (amatch_cursor*)cur;
|
|
return pCur->pCurrent==0;
|
|
}
|
|
|
|
/*
|
|
** Search for terms of these forms:
|
|
**
|
|
** (A) word MATCH $str
|
|
** (B1) distance < $value
|
|
** (B2) distance <= $value
|
|
** (C) language == $language
|
|
**
|
|
** The distance< and distance<= are both treated as distance<=.
|
|
** The query plan number is a bit vector:
|
|
**
|
|
** bit 1: Term of the form (A) found
|
|
** bit 2: Term like (B1) or (B2) found
|
|
** bit 3: Term like (C) found
|
|
**
|
|
** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set
|
|
** then $value is in filter.argv[0] if bit-1 is clear and is in
|
|
** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is
|
|
** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
|
|
** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
|
|
** filter.argv[2] if both bit-1 and bit-2 are set.
|
|
*/
|
|
static int amatchBestIndex(
|
|
sqlite3_vtab *tab,
|
|
sqlite3_index_info *pIdxInfo
|
|
){
|
|
int iPlan = 0;
|
|
int iDistTerm = -1;
|
|
int iLangTerm = -1;
|
|
int i;
|
|
const struct sqlite3_index_constraint *pConstraint;
|
|
|
|
(void)tab;
|
|
pConstraint = pIdxInfo->aConstraint;
|
|
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
|
|
if( pConstraint->usable==0 ) continue;
|
|
if( (iPlan & 1)==0
|
|
&& pConstraint->iColumn==0
|
|
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
|
|
){
|
|
iPlan |= 1;
|
|
pIdxInfo->aConstraintUsage[i].argvIndex = 1;
|
|
pIdxInfo->aConstraintUsage[i].omit = 1;
|
|
}
|
|
if( (iPlan & 2)==0
|
|
&& pConstraint->iColumn==1
|
|
&& (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
|
|
|| pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
|
|
){
|
|
iPlan |= 2;
|
|
iDistTerm = i;
|
|
}
|
|
if( (iPlan & 4)==0
|
|
&& pConstraint->iColumn==2
|
|
&& pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
|
|
){
|
|
iPlan |= 4;
|
|
pIdxInfo->aConstraintUsage[i].omit = 1;
|
|
iLangTerm = i;
|
|
}
|
|
}
|
|
if( iPlan & 2 ){
|
|
pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
|
|
}
|
|
if( iPlan & 4 ){
|
|
int idx = 1;
|
|
if( iPlan & 1 ) idx++;
|
|
if( iPlan & 2 ) idx++;
|
|
pIdxInfo->aConstraintUsage[iLangTerm].argvIndex = idx;
|
|
}
|
|
pIdxInfo->idxNum = iPlan;
|
|
if( pIdxInfo->nOrderBy==1
|
|
&& pIdxInfo->aOrderBy[0].iColumn==1
|
|
&& pIdxInfo->aOrderBy[0].desc==0
|
|
){
|
|
pIdxInfo->orderByConsumed = 1;
|
|
}
|
|
pIdxInfo->estimatedCost = (double)10000;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** The xUpdate() method.
|
|
**
|
|
** This implementation disallows DELETE and UPDATE. The only thing
|
|
** allowed is INSERT into the "command" column.
|
|
*/
|
|
static int amatchUpdate(
|
|
sqlite3_vtab *pVTab,
|
|
int argc,
|
|
sqlite3_value **argv,
|
|
sqlite_int64 *pRowid
|
|
){
|
|
amatch_vtab *p = (amatch_vtab*)pVTab;
|
|
const unsigned char *zCmd;
|
|
(void)pRowid;
|
|
if( argc==1 ){
|
|
pVTab->zErrMsg = sqlite3_mprintf("DELETE from %s is not allowed",
|
|
p->zSelf);
|
|
return SQLITE_ERROR;
|
|
}
|
|
if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){
|
|
pVTab->zErrMsg = sqlite3_mprintf("UPDATE of %s is not allowed",
|
|
p->zSelf);
|
|
return SQLITE_ERROR;
|
|
}
|
|
if( sqlite3_value_type(argv[2+AMATCH_COL_WORD])!=SQLITE_NULL
|
|
|| sqlite3_value_type(argv[2+AMATCH_COL_DISTANCE])!=SQLITE_NULL
|
|
|| sqlite3_value_type(argv[2+AMATCH_COL_LANGUAGE])!=SQLITE_NULL
|
|
){
|
|
pVTab->zErrMsg = sqlite3_mprintf(
|
|
"INSERT INTO %s allowed for column [command] only", p->zSelf);
|
|
return SQLITE_ERROR;
|
|
}
|
|
zCmd = sqlite3_value_text(argv[2+AMATCH_COL_COMMAND]);
|
|
if( zCmd==0 ) return SQLITE_OK;
|
|
|
|
return SQLITE_OK;
|
|
}
|
|
|
|
/*
|
|
** A virtual table module that implements the "approximate_match".
|
|
*/
|
|
static sqlite3_module amatchModule = {
|
|
0, /* iVersion */
|
|
amatchConnect, /* xCreate */
|
|
amatchConnect, /* xConnect */
|
|
amatchBestIndex, /* xBestIndex */
|
|
amatchDisconnect, /* xDisconnect */
|
|
amatchDisconnect, /* xDestroy */
|
|
amatchOpen, /* xOpen - open a cursor */
|
|
amatchClose, /* xClose - close a cursor */
|
|
amatchFilter, /* xFilter - configure scan constraints */
|
|
amatchNext, /* xNext - advance a cursor */
|
|
amatchEof, /* xEof - check for end of scan */
|
|
amatchColumn, /* xColumn - read data */
|
|
amatchRowid, /* xRowid - read data */
|
|
amatchUpdate, /* xUpdate */
|
|
0, /* xBegin */
|
|
0, /* xSync */
|
|
0, /* xCommit */
|
|
0, /* xRollback */
|
|
0, /* xFindMethod */
|
|
0, /* xRename */
|
|
0, /* xSavepoint */
|
|
0, /* xRelease */
|
|
0, /* xRollbackTo */
|
|
0, /* xShadowName */
|
|
0 /* xIntegrity */
|
|
};
|
|
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
|
|
/*
|
|
** Register the amatch virtual table
|
|
*/
|
|
#ifdef _WIN32
|
|
__declspec(dllexport)
|
|
#endif
|
|
int sqlite3_amatch_init(
|
|
sqlite3 *db,
|
|
char **pzErrMsg,
|
|
const sqlite3_api_routines *pApi
|
|
){
|
|
int rc = SQLITE_OK;
|
|
SQLITE_EXTENSION_INIT2(pApi);
|
|
(void)pzErrMsg; /* Not used */
|
|
#ifndef SQLITE_OMIT_VIRTUALTABLE
|
|
rc = sqlite3_create_module(db, "approximate_match", &amatchModule, 0);
|
|
#endif /* SQLITE_OMIT_VIRTUALTABLE */
|
|
return rc;
|
|
}
|