0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2024-11-23 14:26:38 +00:00
libsql/libsql-sqlite3/tool/mksourceid.c
2023-10-16 13:58:16 +02:00

836 lines
23 KiB
C

/*
** Run this program with a single argument which is the name of the
** Fossil "manifest" file for a project, and this program will emit on
** standard output the "source id" for for the program.
**
** (1) The "source id" is the date of check-in together with the
** SHA3 hash of the manifest file.
**
** (2) All individual file hashes in the manifest are verified. If any
** source file has changed, the SHA3 hash ends with "modified".
**
*/
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/types.h>
#include <ctype.h>
/* Portable 64-bit unsigned integers */
#if defined(_MSC_VER) || defined(__BORLANDC__)
typedef unsigned __int64 u64;
#else
typedef unsigned long long int u64;
#endif
/*
** Macros to determine whether the machine is big or little endian,
** and whether or not that determination is run-time or compile-time.
**
** For best performance, an attempt is made to guess at the byte-order
** using C-preprocessor macros. If that is unsuccessful, or if
** -DBYTEORDER=0 is set, then byte-order is determined
** at run-time.
*/
#ifndef BYTEORDER
# if defined(i386) || defined(__i386__) || defined(_M_IX86) || \
defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \
defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \
defined(__arm__)
# define BYTEORDER 1234
# elif defined(sparc) || defined(__ppc__)
# define BYTEORDER 4321
# else
# define BYTEORDER 0
# endif
#endif
/*
** State structure for a SHA3 hash in progress
*/
typedef struct SHA3Context SHA3Context;
struct SHA3Context {
union {
u64 s[25]; /* Keccak state. 5x5 lines of 64 bits each */
unsigned char x[1600]; /* ... or 1600 bytes */
} u;
unsigned nRate; /* Bytes of input accepted per Keccak iteration */
unsigned nLoaded; /* Input bytes loaded into u.x[] so far this cycle */
unsigned ixMask; /* Insert next input into u.x[nLoaded^ixMask]. */
};
/*
** A single step of the Keccak mixing function for a 1600-bit state
*/
static void KeccakF1600Step(SHA3Context *p){
int i;
u64 B0, B1, B2, B3, B4;
u64 C0, C1, C2, C3, C4;
u64 D0, D1, D2, D3, D4;
static const u64 RC[] = {
0x0000000000000001ULL, 0x0000000000008082ULL,
0x800000000000808aULL, 0x8000000080008000ULL,
0x000000000000808bULL, 0x0000000080000001ULL,
0x8000000080008081ULL, 0x8000000000008009ULL,
0x000000000000008aULL, 0x0000000000000088ULL,
0x0000000080008009ULL, 0x000000008000000aULL,
0x000000008000808bULL, 0x800000000000008bULL,
0x8000000000008089ULL, 0x8000000000008003ULL,
0x8000000000008002ULL, 0x8000000000000080ULL,
0x000000000000800aULL, 0x800000008000000aULL,
0x8000000080008081ULL, 0x8000000000008080ULL,
0x0000000080000001ULL, 0x8000000080008008ULL
};
# define A00 (p->u.s[0])
# define A01 (p->u.s[1])
# define A02 (p->u.s[2])
# define A03 (p->u.s[3])
# define A04 (p->u.s[4])
# define A10 (p->u.s[5])
# define A11 (p->u.s[6])
# define A12 (p->u.s[7])
# define A13 (p->u.s[8])
# define A14 (p->u.s[9])
# define A20 (p->u.s[10])
# define A21 (p->u.s[11])
# define A22 (p->u.s[12])
# define A23 (p->u.s[13])
# define A24 (p->u.s[14])
# define A30 (p->u.s[15])
# define A31 (p->u.s[16])
# define A32 (p->u.s[17])
# define A33 (p->u.s[18])
# define A34 (p->u.s[19])
# define A40 (p->u.s[20])
# define A41 (p->u.s[21])
# define A42 (p->u.s[22])
# define A43 (p->u.s[23])
# define A44 (p->u.s[24])
# define ROL64(a,x) ((a<<x)|(a>>(64-x)))
for(i=0; i<24; i+=4){
C0 = A00^A10^A20^A30^A40;
C1 = A01^A11^A21^A31^A41;
C2 = A02^A12^A22^A32^A42;
C3 = A03^A13^A23^A33^A43;
C4 = A04^A14^A24^A34^A44;
D0 = C4^ROL64(C1, 1);
D1 = C0^ROL64(C2, 1);
D2 = C1^ROL64(C3, 1);
D3 = C2^ROL64(C4, 1);
D4 = C3^ROL64(C0, 1);
B0 = (A00^D0);
B1 = ROL64((A11^D1), 44);
B2 = ROL64((A22^D2), 43);
B3 = ROL64((A33^D3), 21);
B4 = ROL64((A44^D4), 14);
A00 = B0 ^((~B1)& B2 );
A00 ^= RC[i];
A11 = B1 ^((~B2)& B3 );
A22 = B2 ^((~B3)& B4 );
A33 = B3 ^((~B4)& B0 );
A44 = B4 ^((~B0)& B1 );
B2 = ROL64((A20^D0), 3);
B3 = ROL64((A31^D1), 45);
B4 = ROL64((A42^D2), 61);
B0 = ROL64((A03^D3), 28);
B1 = ROL64((A14^D4), 20);
A20 = B0 ^((~B1)& B2 );
A31 = B1 ^((~B2)& B3 );
A42 = B2 ^((~B3)& B4 );
A03 = B3 ^((~B4)& B0 );
A14 = B4 ^((~B0)& B1 );
B4 = ROL64((A40^D0), 18);
B0 = ROL64((A01^D1), 1);
B1 = ROL64((A12^D2), 6);
B2 = ROL64((A23^D3), 25);
B3 = ROL64((A34^D4), 8);
A40 = B0 ^((~B1)& B2 );
A01 = B1 ^((~B2)& B3 );
A12 = B2 ^((~B3)& B4 );
A23 = B3 ^((~B4)& B0 );
A34 = B4 ^((~B0)& B1 );
B1 = ROL64((A10^D0), 36);
B2 = ROL64((A21^D1), 10);
B3 = ROL64((A32^D2), 15);
B4 = ROL64((A43^D3), 56);
B0 = ROL64((A04^D4), 27);
A10 = B0 ^((~B1)& B2 );
A21 = B1 ^((~B2)& B3 );
A32 = B2 ^((~B3)& B4 );
A43 = B3 ^((~B4)& B0 );
A04 = B4 ^((~B0)& B1 );
B3 = ROL64((A30^D0), 41);
B4 = ROL64((A41^D1), 2);
B0 = ROL64((A02^D2), 62);
B1 = ROL64((A13^D3), 55);
B2 = ROL64((A24^D4), 39);
A30 = B0 ^((~B1)& B2 );
A41 = B1 ^((~B2)& B3 );
A02 = B2 ^((~B3)& B4 );
A13 = B3 ^((~B4)& B0 );
A24 = B4 ^((~B0)& B1 );
C0 = A00^A20^A40^A10^A30;
C1 = A11^A31^A01^A21^A41;
C2 = A22^A42^A12^A32^A02;
C3 = A33^A03^A23^A43^A13;
C4 = A44^A14^A34^A04^A24;
D0 = C4^ROL64(C1, 1);
D1 = C0^ROL64(C2, 1);
D2 = C1^ROL64(C3, 1);
D3 = C2^ROL64(C4, 1);
D4 = C3^ROL64(C0, 1);
B0 = (A00^D0);
B1 = ROL64((A31^D1), 44);
B2 = ROL64((A12^D2), 43);
B3 = ROL64((A43^D3), 21);
B4 = ROL64((A24^D4), 14);
A00 = B0 ^((~B1)& B2 );
A00 ^= RC[i+1];
A31 = B1 ^((~B2)& B3 );
A12 = B2 ^((~B3)& B4 );
A43 = B3 ^((~B4)& B0 );
A24 = B4 ^((~B0)& B1 );
B2 = ROL64((A40^D0), 3);
B3 = ROL64((A21^D1), 45);
B4 = ROL64((A02^D2), 61);
B0 = ROL64((A33^D3), 28);
B1 = ROL64((A14^D4), 20);
A40 = B0 ^((~B1)& B2 );
A21 = B1 ^((~B2)& B3 );
A02 = B2 ^((~B3)& B4 );
A33 = B3 ^((~B4)& B0 );
A14 = B4 ^((~B0)& B1 );
B4 = ROL64((A30^D0), 18);
B0 = ROL64((A11^D1), 1);
B1 = ROL64((A42^D2), 6);
B2 = ROL64((A23^D3), 25);
B3 = ROL64((A04^D4), 8);
A30 = B0 ^((~B1)& B2 );
A11 = B1 ^((~B2)& B3 );
A42 = B2 ^((~B3)& B4 );
A23 = B3 ^((~B4)& B0 );
A04 = B4 ^((~B0)& B1 );
B1 = ROL64((A20^D0), 36);
B2 = ROL64((A01^D1), 10);
B3 = ROL64((A32^D2), 15);
B4 = ROL64((A13^D3), 56);
B0 = ROL64((A44^D4), 27);
A20 = B0 ^((~B1)& B2 );
A01 = B1 ^((~B2)& B3 );
A32 = B2 ^((~B3)& B4 );
A13 = B3 ^((~B4)& B0 );
A44 = B4 ^((~B0)& B1 );
B3 = ROL64((A10^D0), 41);
B4 = ROL64((A41^D1), 2);
B0 = ROL64((A22^D2), 62);
B1 = ROL64((A03^D3), 55);
B2 = ROL64((A34^D4), 39);
A10 = B0 ^((~B1)& B2 );
A41 = B1 ^((~B2)& B3 );
A22 = B2 ^((~B3)& B4 );
A03 = B3 ^((~B4)& B0 );
A34 = B4 ^((~B0)& B1 );
C0 = A00^A40^A30^A20^A10;
C1 = A31^A21^A11^A01^A41;
C2 = A12^A02^A42^A32^A22;
C3 = A43^A33^A23^A13^A03;
C4 = A24^A14^A04^A44^A34;
D0 = C4^ROL64(C1, 1);
D1 = C0^ROL64(C2, 1);
D2 = C1^ROL64(C3, 1);
D3 = C2^ROL64(C4, 1);
D4 = C3^ROL64(C0, 1);
B0 = (A00^D0);
B1 = ROL64((A21^D1), 44);
B2 = ROL64((A42^D2), 43);
B3 = ROL64((A13^D3), 21);
B4 = ROL64((A34^D4), 14);
A00 = B0 ^((~B1)& B2 );
A00 ^= RC[i+2];
A21 = B1 ^((~B2)& B3 );
A42 = B2 ^((~B3)& B4 );
A13 = B3 ^((~B4)& B0 );
A34 = B4 ^((~B0)& B1 );
B2 = ROL64((A30^D0), 3);
B3 = ROL64((A01^D1), 45);
B4 = ROL64((A22^D2), 61);
B0 = ROL64((A43^D3), 28);
B1 = ROL64((A14^D4), 20);
A30 = B0 ^((~B1)& B2 );
A01 = B1 ^((~B2)& B3 );
A22 = B2 ^((~B3)& B4 );
A43 = B3 ^((~B4)& B0 );
A14 = B4 ^((~B0)& B1 );
B4 = ROL64((A10^D0), 18);
B0 = ROL64((A31^D1), 1);
B1 = ROL64((A02^D2), 6);
B2 = ROL64((A23^D3), 25);
B3 = ROL64((A44^D4), 8);
A10 = B0 ^((~B1)& B2 );
A31 = B1 ^((~B2)& B3 );
A02 = B2 ^((~B3)& B4 );
A23 = B3 ^((~B4)& B0 );
A44 = B4 ^((~B0)& B1 );
B1 = ROL64((A40^D0), 36);
B2 = ROL64((A11^D1), 10);
B3 = ROL64((A32^D2), 15);
B4 = ROL64((A03^D3), 56);
B0 = ROL64((A24^D4), 27);
A40 = B0 ^((~B1)& B2 );
A11 = B1 ^((~B2)& B3 );
A32 = B2 ^((~B3)& B4 );
A03 = B3 ^((~B4)& B0 );
A24 = B4 ^((~B0)& B1 );
B3 = ROL64((A20^D0), 41);
B4 = ROL64((A41^D1), 2);
B0 = ROL64((A12^D2), 62);
B1 = ROL64((A33^D3), 55);
B2 = ROL64((A04^D4), 39);
A20 = B0 ^((~B1)& B2 );
A41 = B1 ^((~B2)& B3 );
A12 = B2 ^((~B3)& B4 );
A33 = B3 ^((~B4)& B0 );
A04 = B4 ^((~B0)& B1 );
C0 = A00^A30^A10^A40^A20;
C1 = A21^A01^A31^A11^A41;
C2 = A42^A22^A02^A32^A12;
C3 = A13^A43^A23^A03^A33;
C4 = A34^A14^A44^A24^A04;
D0 = C4^ROL64(C1, 1);
D1 = C0^ROL64(C2, 1);
D2 = C1^ROL64(C3, 1);
D3 = C2^ROL64(C4, 1);
D4 = C3^ROL64(C0, 1);
B0 = (A00^D0);
B1 = ROL64((A01^D1), 44);
B2 = ROL64((A02^D2), 43);
B3 = ROL64((A03^D3), 21);
B4 = ROL64((A04^D4), 14);
A00 = B0 ^((~B1)& B2 );
A00 ^= RC[i+3];
A01 = B1 ^((~B2)& B3 );
A02 = B2 ^((~B3)& B4 );
A03 = B3 ^((~B4)& B0 );
A04 = B4 ^((~B0)& B1 );
B2 = ROL64((A10^D0), 3);
B3 = ROL64((A11^D1), 45);
B4 = ROL64((A12^D2), 61);
B0 = ROL64((A13^D3), 28);
B1 = ROL64((A14^D4), 20);
A10 = B0 ^((~B1)& B2 );
A11 = B1 ^((~B2)& B3 );
A12 = B2 ^((~B3)& B4 );
A13 = B3 ^((~B4)& B0 );
A14 = B4 ^((~B0)& B1 );
B4 = ROL64((A20^D0), 18);
B0 = ROL64((A21^D1), 1);
B1 = ROL64((A22^D2), 6);
B2 = ROL64((A23^D3), 25);
B3 = ROL64((A24^D4), 8);
A20 = B0 ^((~B1)& B2 );
A21 = B1 ^((~B2)& B3 );
A22 = B2 ^((~B3)& B4 );
A23 = B3 ^((~B4)& B0 );
A24 = B4 ^((~B0)& B1 );
B1 = ROL64((A30^D0), 36);
B2 = ROL64((A31^D1), 10);
B3 = ROL64((A32^D2), 15);
B4 = ROL64((A33^D3), 56);
B0 = ROL64((A34^D4), 27);
A30 = B0 ^((~B1)& B2 );
A31 = B1 ^((~B2)& B3 );
A32 = B2 ^((~B3)& B4 );
A33 = B3 ^((~B4)& B0 );
A34 = B4 ^((~B0)& B1 );
B3 = ROL64((A40^D0), 41);
B4 = ROL64((A41^D1), 2);
B0 = ROL64((A42^D2), 62);
B1 = ROL64((A43^D3), 55);
B2 = ROL64((A44^D4), 39);
A40 = B0 ^((~B1)& B2 );
A41 = B1 ^((~B2)& B3 );
A42 = B2 ^((~B3)& B4 );
A43 = B3 ^((~B4)& B0 );
A44 = B4 ^((~B0)& B1 );
}
}
/*
** Initialize a new hash. iSize determines the size of the hash
** in bits and should be one of 224, 256, 384, or 512. Or iSize
** can be zero to use the default hash size of 256 bits.
*/
static void SHA3Init(SHA3Context *p, int iSize){
memset(p, 0, sizeof(*p));
if( iSize>=128 && iSize<=512 ){
p->nRate = (1600 - ((iSize + 31)&~31)*2)/8;
}else{
p->nRate = (1600 - 2*256)/8;
}
#if BYTEORDER==1234
/* Known to be little-endian at compile-time. No-op */
#elif BYTEORDER==4321
p->ixMask = 7; /* Big-endian */
#else
{
static unsigned int one = 1;
if( 1==*(unsigned char*)&one ){
/* Little endian. No byte swapping. */
p->ixMask = 0;
}else{
/* Big endian. Byte swap. */
p->ixMask = 7;
}
}
#endif
}
/*
** Make consecutive calls to the SHA3Update function to add new content
** to the hash
*/
static void SHA3Update(
SHA3Context *p,
const unsigned char *aData,
unsigned int nData
){
unsigned int i = 0;
#if BYTEORDER==1234
if( (p->nLoaded % 8)==0 && ((aData - (const unsigned char*)0)&7)==0 ){
for(; i+7<nData; i+=8){
p->u.s[p->nLoaded/8] ^= *(u64*)&aData[i];
p->nLoaded += 8;
if( p->nLoaded>=p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
#endif
for(; i<nData; i++){
#if BYTEORDER==1234
p->u.x[p->nLoaded] ^= aData[i];
#elif BYTEORDER==4321
p->u.x[p->nLoaded^0x07] ^= aData[i];
#else
p->u.x[p->nLoaded^p->ixMask] ^= aData[i];
#endif
p->nLoaded++;
if( p->nLoaded==p->nRate ){
KeccakF1600Step(p);
p->nLoaded = 0;
}
}
}
/*
** After all content has been added, invoke SHA3Final() to compute
** the final hash. The function returns a pointer to the binary
** hash value.
*/
static unsigned char *SHA3Final(SHA3Context *p){
unsigned int i;
if( p->nLoaded==p->nRate-1 ){
const unsigned char c1 = 0x86;
SHA3Update(p, &c1, 1);
}else{
const unsigned char c2 = 0x06;
const unsigned char c3 = 0x80;
SHA3Update(p, &c2, 1);
p->nLoaded = p->nRate - 1;
SHA3Update(p, &c3, 1);
}
for(i=0; i<p->nRate; i++){
p->u.x[i+p->nRate] = p->u.x[i^p->ixMask];
}
return &p->u.x[p->nRate];
}
/*
** Convert a digest into base-16. digest should be declared as
** "unsigned char digest[20]" in the calling function. The SHA3
** digest is stored in the first 20 bytes. zBuf should
** be "char zBuf[41]".
*/
static void DigestToBase16(unsigned char *digest, char *zBuf, int nByte){
static const char zEncode[] = "0123456789abcdef";
int ix;
for(ix=0; ix<nByte; ix++){
*zBuf++ = zEncode[(*digest>>4)&0xf];
*zBuf++ = zEncode[*digest++ & 0xf];
}
*zBuf = '\0';
}
/*
** Compute the SHA3 checksum of a file on disk. Store the resulting
** checksum in the blob pCksum. pCksum is assumed to be initialized.
**
** Return the number of errors.
*/
static int sha3sum_file(const char *zFilename, int iSize, char *pCksum){
FILE *in;
SHA3Context ctx;
char zBuf[10240];
in = fopen(zFilename,"rb");
if( in==0 ){
return 1;
}
SHA3Init(&ctx, iSize);
for(;;){
int n = (int)fread(zBuf, 1, sizeof(zBuf), in);
if( n<=0 ) break;
SHA3Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
}
fclose(in);
DigestToBase16(SHA3Final(&ctx), pCksum, iSize/8);
return 0;
}
/*
** The SHA1 implementation below is adapted from:
**
** $NetBSD: sha1.c,v 1.6 2009/11/06 20:31:18 joerg Exp $
** $OpenBSD: sha1.c,v 1.9 1997/07/23 21:12:32 kstailey Exp $
**
** SHA-1 in C
** By Steve Reid <steve@edmweb.com>
** 100% Public Domain
*/
typedef struct SHA1Context SHA1Context;
struct SHA1Context {
unsigned int state[5];
unsigned int count[2];
unsigned char buffer[64];
};
/*
* blk0() and blk() perform the initial expand.
* I got the idea of expanding during the round function from SSLeay
*
* blk0le() for little-endian and blk0be() for big-endian.
*/
#define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r))
#define rol(x,k) SHA_ROT(x,k,32-(k))
#define ror(x,k) SHA_ROT(x,32-(k),k)
#define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \
|(rol(block[i],8)&0x00FF00FF))
#define blk0be(i) block[i]
#define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \
^block[(i+2)&15]^block[i&15],1))
/*
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
*
* Rl0() for little-endian and Rb0() for big-endian. Endianness is
* determined at run-time.
*/
#define Rl0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define Rb0(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R1(v,w,x,y,z,i) \
z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2);
#define R2(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2);
#define R3(v,w,x,y,z,i) \
z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2);
#define R4(v,w,x,y,z,i) \
z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2);
/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/
#define a qq[0]
#define b qq[1]
#define c qq[2]
#define d qq[3]
#define e qq[4]
static void SHA1Transform(
unsigned int state[5],
const unsigned char buffer[64]
){
unsigned int qq[5]; /* a, b, c, d, e; */
static int one = 1;
unsigned int block[16];
memcpy(block, buffer, 64);
memcpy(qq,state,5*sizeof(unsigned int));
/* Copy context->state[] to working vars */
/*
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
*/
/* 4 rounds of 20 operations each. Loop unrolled. */
if( 1 == *(unsigned char*)&one ){
Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3);
Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7);
Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11);
Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15);
}else{
Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3);
Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7);
Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11);
Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15);
}
R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19);
R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23);
R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27);
R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31);
R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35);
R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39);
R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43);
R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47);
R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51);
R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55);
R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59);
R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63);
R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67);
R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71);
R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75);
R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
}
/*
* SHA1Init - Initialize new context
*/
static void SHA1Init(SHA1Context *context){
/* SHA1 initialization constants */
context->state[0] = 0x67452301;
context->state[1] = 0xEFCDAB89;
context->state[2] = 0x98BADCFE;
context->state[3] = 0x10325476;
context->state[4] = 0xC3D2E1F0;
context->count[0] = context->count[1] = 0;
}
/*
* Run your data through this.
*/
static void SHA1Update(
SHA1Context *context,
const unsigned char *data,
unsigned int len
){
unsigned int i, j;
j = context->count[0];
if ((context->count[0] += len << 3) < j)
context->count[1] += (len>>29)+1;
j = (j >> 3) & 63;
if ((j + len) > 63) {
(void)memcpy(&context->buffer[j], data, (i = 64-j));
SHA1Transform(context->state, context->buffer);
for ( ; i + 63 < len; i += 64)
SHA1Transform(context->state, &data[i]);
j = 0;
} else {
i = 0;
}
(void)memcpy(&context->buffer[j], &data[i], len - i);
}
/*
* Add padding and return the message digest.
*/
static void SHA1Final(unsigned char *digest, SHA1Context *context){
unsigned int i;
unsigned char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = (unsigned char)((context->count[(i >= 4 ? 0 : 1)]
>> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */
}
SHA1Update(context, (const unsigned char *)"\200", 1);
while ((context->count[0] & 504) != 448)
SHA1Update(context, (const unsigned char *)"\0", 1);
SHA1Update(context, finalcount, 8); /* Should cause a SHA1Transform() */
if (digest) {
for (i = 0; i < 20; i++)
digest[i] = (unsigned char)
((context->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255);
}
}
/*
** Compute the SHA1 checksum of a file on disk. Store the resulting
** checksum in the blob pCksum. pCksum is assumed to be initialized.
**
** Return the number of errors.
*/
static int sha1sum_file(const char *zFilename, char *pCksum){
FILE *in;
SHA1Context ctx;
unsigned char zResult[20];
char zBuf[10240];
in = fopen(zFilename,"rb");
if( in==0 ){
return 1;
}
SHA1Init(&ctx);
for(;;){
int n = (int)fread(zBuf, 1, sizeof(zBuf), in);
if( n<=0 ) break;
SHA1Update(&ctx, (unsigned char*)zBuf, (unsigned)n);
}
fclose(in);
SHA1Final(zResult, &ctx);
DigestToBase16(zResult, pCksum, 20);
return 0;
}
/*
** Print a usage comment and quit.
*/
static void usage(const char *argv0){
fprintf(stderr,
"Usage: %s manifest\n"
"Options:\n"
" -v Diagnostic output\n"
, argv0);
exit(1);
}
/*
** Find the first whitespace character in a string. Set that whitespace
** to a \000 terminator and return a pointer to the next character.
*/
static char *nextToken(char *z){
while( *z && !isspace(*z) ) z++;
if( *z==0 ) return z;
*z = 0;
return &z[1];
}
int main(int argc, char **argv){
const char *zManifest = 0;
int i;
int bVerbose = 0;
FILE *in;
int allValid = 1;
int rc;
SHA3Context ctx;
char zDate[50];
char zHash[100];
char zLine[20000];
for(i=1; i<argc; i++){
const char *z = argv[i];
if( z[0]=='-' ){
if( z[1]=='-' ) z++;
if( strcmp(z, "-v")==0 ){
bVerbose = 1;
}else
{
fprintf(stderr, "unknown option \"%s\"", argv[i]);
exit(1);
}
}else if( zManifest!=0 ){
usage(argv[0]);
}else{
zManifest = z;
}
}
if( zManifest==0 ) usage(argv[0]);
zDate[0] = 0;
in = fopen(zManifest, "rb");
if( in==0 ){
fprintf(stderr, "cannot open \"%s\" for reading\n", zManifest);
exit(1);
}
SHA3Init(&ctx, 256);
while( fgets(zLine, sizeof(zLine), in) ){
if( strncmp(zLine,"# Remove this line", 18)!=0 ){
SHA3Update(&ctx, (unsigned char*)zLine, (unsigned)strlen(zLine));
}
if( strncmp(zLine, "D 20", 4)==0 ){
memcpy(zDate, &zLine[2], 10);
zDate[10] = ' ';
memcpy(&zDate[11], &zLine[13], 8);
zDate[19] = 0;
continue;
}
if( strncmp(zLine, "F ", 2)==0 ){
char *zFilename = &zLine[2];
char *zMHash = nextToken(zFilename);
nextToken(zMHash);
if( strlen(zMHash)==40 ){
rc = sha1sum_file(zFilename, zHash);
}else{
rc = sha3sum_file(zFilename, 256, zHash);
}
if( rc ){
allValid = 0;
if( bVerbose ){
printf("hash failed: %s\n", zFilename);
}
}else if( strcmp(zHash, zMHash)!=0 ){
allValid = 0;
if( bVerbose ){
printf("wrong hash: %s\n", zFilename);
printf("... expected: %s\n", zMHash);
printf("... got: %s\n", zHash);
}
}
}
}
fclose(in);
DigestToBase16(SHA3Final(&ctx), zHash, 256/8);
if( !allValid ){
printf("%s %.60salt1\n", zDate, zHash);
}else{
printf("%s %s\n", zDate, zHash);
}
return 0;
}