0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2024-11-23 14:26:38 +00:00
libsql/libsql-sqlite3/tool/fuzzershell.c
2023-11-15 14:46:34 +01:00

1268 lines
40 KiB
C

/*
** 2015-04-17
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a utility program designed to aid running the SQLite library
** against an external fuzzer, such as American Fuzzy Lop (AFL)
** (http://lcamtuf.coredump.cx/afl/). Basically, this program reads
** SQL text from standard input and passes it through to SQLite for evaluation,
** just like the "sqlite3" command-line shell. Differences from the
** command-line shell:
**
** (1) The complex "dot-command" extensions are omitted. This
** prevents the fuzzer from discovering that it can run things
** like ".shell rm -rf ~"
**
** (2) The database is opened with the SQLITE_OPEN_MEMORY flag so that
** no disk I/O from the database is permitted. The ATTACH command
** with a filename still uses an in-memory database.
**
** (3) The main in-memory database can be initialized from a template
** disk database so that the fuzzer starts with a database containing
** content.
**
** (4) The eval() SQL function is added, allowing the fuzzer to do
** interesting recursive operations.
**
** (5) An error is raised if there is a memory leak.
**
** The input text can be divided into separate test cases using comments
** of the form:
**
** |****<...>****|
**
** where the "..." is arbitrary text. (Except the "|" should really be "/".
** "|" is used here to avoid compiler errors about nested comments.)
** A separate in-memory SQLite database is created to run each test case.
** This feature allows the "queue" of AFL to be captured into a single big
** file using a command like this:
**
** (for i in id:*; do echo '|****<'$i'>****|'; cat $i; done) >~/all-queue.txt
**
** (Once again, change the "|" to "/") Then all elements of the AFL queue
** can be run in a single go (for regression testing, for example) by typing:
**
** fuzzershell -f ~/all-queue.txt
**
** After running each chunk of SQL, the database connection is closed. The
** program aborts if the close fails or if there is any unfreed memory after
** the close.
**
** New test cases can be appended to all-queue.txt at any time. If redundant
** test cases are added, they can be eliminated by running:
**
** fuzzershell -f ~/all-queue.txt --unique-cases ~/unique-cases.txt
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <stdarg.h>
#include <ctype.h>
#include "sqlite3.h"
#define ISDIGIT(X) isdigit((unsigned char)(X))
/*
** All global variables are gathered into the "g" singleton.
*/
struct GlobalVars {
const char *zArgv0; /* Name of program */
sqlite3_mem_methods sOrigMem; /* Original memory methods */
sqlite3_mem_methods sOomMem; /* Memory methods with OOM simulator */
int iOomCntdown; /* Memory fails on 1 to 0 transition */
int nOomFault; /* Increments for each OOM fault */
int bOomOnce; /* Fail just once if true */
int bOomEnable; /* True to enable OOM simulation */
int nOomBrkpt; /* Number of calls to oomFault() */
char zTestName[100]; /* Name of current test */
} g;
/*
** Maximum number of iterations for an OOM test
*/
#ifndef OOM_MAX
# define OOM_MAX 625
#endif
/*
** This routine is called when a simulated OOM occurs. It exists as a
** convenient place to set a debugger breakpoint.
*/
static void oomFault(void){
g.nOomBrkpt++; /* Prevent oomFault() from being optimized out */
}
/* Versions of malloc() and realloc() that simulate OOM conditions */
static void *oomMalloc(int nByte){
if( nByte>0 && g.bOomEnable && g.iOomCntdown>0 ){
g.iOomCntdown--;
if( g.iOomCntdown==0 ){
if( g.nOomFault==0 ) oomFault();
g.nOomFault++;
if( !g.bOomOnce ) g.iOomCntdown = 1;
return 0;
}
}
return g.sOrigMem.xMalloc(nByte);
}
static void *oomRealloc(void *pOld, int nByte){
if( nByte>0 && g.bOomEnable && g.iOomCntdown>0 ){
g.iOomCntdown--;
if( g.iOomCntdown==0 ){
if( g.nOomFault==0 ) oomFault();
g.nOomFault++;
if( !g.bOomOnce ) g.iOomCntdown = 1;
return 0;
}
}
return g.sOrigMem.xRealloc(pOld, nByte);
}
/*
** Print an error message and abort in such a way to indicate to the
** fuzzer that this counts as a crash.
*/
static void abendError(const char *zFormat, ...){
va_list ap;
if( g.zTestName[0] ){
fprintf(stderr, "%s (%s): ", g.zArgv0, g.zTestName);
}else{
fprintf(stderr, "%s: ", g.zArgv0);
}
va_start(ap, zFormat);
vfprintf(stderr, zFormat, ap);
va_end(ap);
fprintf(stderr, "\n");
abort();
}
/*
** Print an error message and quit, but not in a way that would look
** like a crash.
*/
static void fatalError(const char *zFormat, ...){
va_list ap;
if( g.zTestName[0] ){
fprintf(stderr, "%s (%s): ", g.zArgv0, g.zTestName);
}else{
fprintf(stderr, "%s: ", g.zArgv0);
}
va_start(ap, zFormat);
vfprintf(stderr, zFormat, ap);
va_end(ap);
fprintf(stderr, "\n");
exit(1);
}
/*
** Evaluate some SQL. Abort if unable.
*/
static void sqlexec(sqlite3 *db, const char *zFormat, ...){
va_list ap;
char *zSql;
char *zErrMsg = 0;
int rc;
va_start(ap, zFormat);
zSql = sqlite3_vmprintf(zFormat, ap);
va_end(ap);
rc = sqlite3_exec(db, zSql, 0, 0, &zErrMsg);
if( rc ) abendError("failed sql [%s]: %s", zSql, zErrMsg);
sqlite3_free(zSql);
}
/*
** This callback is invoked by sqlite3_log().
*/
static void shellLog(void *pNotUsed, int iErrCode, const char *zMsg){
printf("LOG: (%d) %s\n", iErrCode, zMsg);
fflush(stdout);
}
static void shellLogNoop(void *pNotUsed, int iErrCode, const char *zMsg){
return;
}
/*
** This callback is invoked by sqlite3_exec() to return query results.
*/
static int execCallback(void *NotUsed, int argc, char **argv, char **colv){
int i;
static unsigned cnt = 0;
printf("ROW #%u:\n", ++cnt);
if( argv ){
for(i=0; i<argc; i++){
printf(" %s=", colv[i]);
if( argv[i] ){
printf("[%s]\n", argv[i]);
}else{
printf("NULL\n");
}
}
}
fflush(stdout);
return 0;
}
static int execNoop(void *NotUsed, int argc, char **argv, char **colv){
return 0;
}
#ifndef SQLITE_OMIT_TRACE
/*
** This callback is invoked by sqlite3_trace() as each SQL statement
** starts.
*/
static void traceCallback(void *NotUsed, const char *zMsg){
printf("TRACE: %s\n", zMsg);
fflush(stdout);
}
static void traceNoop(void *NotUsed, const char *zMsg){
return;
}
#endif
/***************************************************************************
** String accumulator object
*/
typedef struct Str Str;
struct Str {
char *z; /* The string. Memory from malloc() */
sqlite3_uint64 n; /* Bytes of input used */
sqlite3_uint64 nAlloc; /* Bytes allocated to z[] */
int oomErr; /* OOM error has been seen */
};
/* Initialize a Str object */
static void StrInit(Str *p){
memset(p, 0, sizeof(*p));
}
/* Append text to the end of a Str object */
static void StrAppend(Str *p, const char *z){
sqlite3_uint64 n = strlen(z);
if( p->n + n >= p->nAlloc ){
char *zNew;
sqlite3_uint64 nNew;
if( p->oomErr ) return;
nNew = p->nAlloc*2 + 100 + n;
zNew = sqlite3_realloc(p->z, (int)nNew);
if( zNew==0 ){
sqlite3_free(p->z);
memset(p, 0, sizeof(*p));
p->oomErr = 1;
return;
}
p->z = zNew;
p->nAlloc = nNew;
}
memcpy(p->z + p->n, z, (size_t)n);
p->n += n;
p->z[p->n] = 0;
}
/* Return the current string content */
static char *StrStr(Str *p){
return p->z;
}
/* Free the string */
static void StrFree(Str *p){
sqlite3_free(p->z);
StrInit(p);
}
/***************************************************************************
** eval() implementation copied from ../ext/misc/eval.c
*/
/*
** Structure used to accumulate the output
*/
struct EvalResult {
char *z; /* Accumulated output */
const char *zSep; /* Separator */
int szSep; /* Size of the separator string */
sqlite3_int64 nAlloc; /* Number of bytes allocated for z[] */
sqlite3_int64 nUsed; /* Number of bytes of z[] actually used */
};
/*
** Callback from sqlite_exec() for the eval() function.
*/
static int callback(void *pCtx, int argc, char **argv, char **colnames){
struct EvalResult *p = (struct EvalResult*)pCtx;
int i;
for(i=0; i<argc; i++){
const char *z = argv[i] ? argv[i] : "";
size_t sz = strlen(z);
if( (sqlite3_int64)sz+p->nUsed+p->szSep+1 > p->nAlloc ){
char *zNew;
p->nAlloc = p->nAlloc*2 + sz + p->szSep + 1;
/* Using sqlite3_realloc64() would be better, but it is a recent
** addition and will cause a segfault if loaded by an older version
** of SQLite. */
zNew = p->nAlloc<=0x7fffffff ? sqlite3_realloc(p->z, (int)p->nAlloc) : 0;
if( zNew==0 ){
sqlite3_free(p->z);
memset(p, 0, sizeof(*p));
return 1;
}
p->z = zNew;
}
if( p->nUsed>0 ){
memcpy(&p->z[p->nUsed], p->zSep, p->szSep);
p->nUsed += p->szSep;
}
memcpy(&p->z[p->nUsed], z, sz);
p->nUsed += sz;
}
return 0;
}
/*
** Implementation of the eval(X) and eval(X,Y) SQL functions.
**
** Evaluate the SQL text in X. Return the results, using string
** Y as the separator. If Y is omitted, use a single space character.
*/
static void sqlEvalFunc(
sqlite3_context *context,
int argc,
sqlite3_value **argv
){
const char *zSql;
sqlite3 *db;
char *zErr = 0;
int rc;
struct EvalResult x;
memset(&x, 0, sizeof(x));
x.zSep = " ";
zSql = (const char*)sqlite3_value_text(argv[0]);
if( zSql==0 ) return;
if( argc>1 ){
x.zSep = (const char*)sqlite3_value_text(argv[1]);
if( x.zSep==0 ) return;
}
x.szSep = (int)strlen(x.zSep);
db = sqlite3_context_db_handle(context);
rc = sqlite3_exec(db, zSql, callback, &x, &zErr);
if( rc!=SQLITE_OK ){
sqlite3_result_error(context, zErr, -1);
sqlite3_free(zErr);
}else if( x.zSep==0 ){
sqlite3_result_error_nomem(context);
sqlite3_free(x.z);
}else{
sqlite3_result_text(context, x.z, (int)x.nUsed, sqlite3_free);
}
}
/* End of the eval() implementation
******************************************************************************/
/******************************************************************************
** The generate_series(START,END,STEP) eponymous table-valued function.
**
** This code is copy/pasted from ext/misc/series.c in the SQLite source tree.
*/
/* series_cursor is a subclass of sqlite3_vtab_cursor which will
** serve as the underlying representation of a cursor that scans
** over rows of the result
*/
typedef struct series_cursor series_cursor;
struct series_cursor {
sqlite3_vtab_cursor base; /* Base class - must be first */
int isDesc; /* True to count down rather than up */
sqlite3_int64 iRowid; /* The rowid */
sqlite3_int64 iValue; /* Current value ("value") */
sqlite3_int64 mnValue; /* Mimimum value ("start") */
sqlite3_int64 mxValue; /* Maximum value ("stop") */
sqlite3_int64 iStep; /* Increment ("step") */
};
/*
** The seriesConnect() method is invoked to create a new
** series_vtab that describes the generate_series virtual table.
**
** Think of this routine as the constructor for series_vtab objects.
**
** All this routine needs to do is:
**
** (1) Allocate the series_vtab object and initialize all fields.
**
** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the
** result set of queries against generate_series will look like.
*/
static int seriesConnect(
sqlite3 *db,
void *pAux,
int argc, const char *const*argv,
sqlite3_vtab **ppVtab,
char **pzErr
){
sqlite3_vtab *pNew;
int rc;
/* Column numbers */
#define SERIES_COLUMN_VALUE 0
#define SERIES_COLUMN_START 1
#define SERIES_COLUMN_STOP 2
#define SERIES_COLUMN_STEP 3
rc = sqlite3_declare_vtab(db,
"CREATE TABLE x(value,start hidden,stop hidden,step hidden)");
if( rc==SQLITE_OK ){
pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) );
if( pNew==0 ) return SQLITE_NOMEM;
memset(pNew, 0, sizeof(*pNew));
}
return rc;
}
/*
** This method is the destructor for series_cursor objects.
*/
static int seriesDisconnect(sqlite3_vtab *pVtab){
sqlite3_free(pVtab);
return SQLITE_OK;
}
/*
** Constructor for a new series_cursor object.
*/
static int seriesOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){
series_cursor *pCur;
pCur = sqlite3_malloc( sizeof(*pCur) );
if( pCur==0 ) return SQLITE_NOMEM;
memset(pCur, 0, sizeof(*pCur));
*ppCursor = &pCur->base;
return SQLITE_OK;
}
/*
** Destructor for a series_cursor.
*/
static int seriesClose(sqlite3_vtab_cursor *cur){
sqlite3_free(cur);
return SQLITE_OK;
}
/*
** Advance a series_cursor to its next row of output.
*/
static int seriesNext(sqlite3_vtab_cursor *cur){
series_cursor *pCur = (series_cursor*)cur;
if( pCur->isDesc ){
pCur->iValue -= pCur->iStep;
}else{
pCur->iValue += pCur->iStep;
}
pCur->iRowid++;
return SQLITE_OK;
}
/*
** Return values of columns for the row at which the series_cursor
** is currently pointing.
*/
static int seriesColumn(
sqlite3_vtab_cursor *cur, /* The cursor */
sqlite3_context *ctx, /* First argument to sqlite3_result_...() */
int i /* Which column to return */
){
series_cursor *pCur = (series_cursor*)cur;
sqlite3_int64 x = 0;
switch( i ){
case SERIES_COLUMN_START: x = pCur->mnValue; break;
case SERIES_COLUMN_STOP: x = pCur->mxValue; break;
case SERIES_COLUMN_STEP: x = pCur->iStep; break;
default: x = pCur->iValue; break;
}
sqlite3_result_int64(ctx, x);
return SQLITE_OK;
}
/*
** Return the rowid for the current row. In this implementation, the
** rowid is the same as the output value.
*/
static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
series_cursor *pCur = (series_cursor*)cur;
*pRowid = pCur->iRowid;
return SQLITE_OK;
}
/*
** Return TRUE if the cursor has been moved off of the last
** row of output.
*/
static int seriesEof(sqlite3_vtab_cursor *cur){
series_cursor *pCur = (series_cursor*)cur;
if( pCur->isDesc ){
return pCur->iValue < pCur->mnValue;
}else{
return pCur->iValue > pCur->mxValue;
}
}
/* True to cause run-time checking of the start=, stop=, and/or step=
** parameters. The only reason to do this is for testing the
** constraint checking logic for virtual tables in the SQLite core.
*/
#ifndef SQLITE_SERIES_CONSTRAINT_VERIFY
# define SQLITE_SERIES_CONSTRAINT_VERIFY 0
#endif
/*
** This method is called to "rewind" the series_cursor object back
** to the first row of output. This method is always called at least
** once prior to any call to seriesColumn() or seriesRowid() or
** seriesEof().
**
** The query plan selected by seriesBestIndex is passed in the idxNum
** parameter. (idxStr is not used in this implementation.) idxNum
** is a bitmask showing which constraints are available:
**
** 1: start=VALUE
** 2: stop=VALUE
** 4: step=VALUE
**
** Also, if bit 8 is set, that means that the series should be output
** in descending order rather than in ascending order.
**
** This routine should initialize the cursor and position it so that it
** is pointing at the first row, or pointing off the end of the table
** (so that seriesEof() will return true) if the table is empty.
*/
static int seriesFilter(
sqlite3_vtab_cursor *pVtabCursor,
int idxNum, const char *idxStr,
int argc, sqlite3_value **argv
){
series_cursor *pCur = (series_cursor *)pVtabCursor;
int i = 0;
if( idxNum & 1 ){
pCur->mnValue = sqlite3_value_int64(argv[i++]);
}else{
pCur->mnValue = 0;
}
if( idxNum & 2 ){
pCur->mxValue = sqlite3_value_int64(argv[i++]);
}else{
pCur->mxValue = 0xffffffff;
}
if( idxNum & 4 ){
pCur->iStep = sqlite3_value_int64(argv[i++]);
if( pCur->iStep<1 ) pCur->iStep = 1;
}else{
pCur->iStep = 1;
}
if( idxNum & 8 ){
pCur->isDesc = 1;
pCur->iValue = pCur->mxValue;
if( pCur->iStep>0 ){
pCur->iValue -= (pCur->mxValue - pCur->mnValue)%pCur->iStep;
}
}else{
pCur->isDesc = 0;
pCur->iValue = pCur->mnValue;
}
pCur->iRowid = 1;
return SQLITE_OK;
}
/*
** SQLite will invoke this method one or more times while planning a query
** that uses the generate_series virtual table. This routine needs to create
** a query plan for each invocation and compute an estimated cost for that
** plan.
**
** In this implementation idxNum is used to represent the
** query plan. idxStr is unused.
**
** The query plan is represented by bits in idxNum:
**
** (1) start = $value -- constraint exists
** (2) stop = $value -- constraint exists
** (4) step = $value -- constraint exists
** (8) output in descending order
*/
static int seriesBestIndex(
sqlite3_vtab *tab,
sqlite3_index_info *pIdxInfo
){
int i; /* Loop over constraints */
int idxNum = 0; /* The query plan bitmask */
int startIdx = -1; /* Index of the start= constraint, or -1 if none */
int stopIdx = -1; /* Index of the stop= constraint, or -1 if none */
int stepIdx = -1; /* Index of the step= constraint, or -1 if none */
int nArg = 0; /* Number of arguments that seriesFilter() expects */
const struct sqlite3_index_constraint *pConstraint;
pConstraint = pIdxInfo->aConstraint;
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
if( pConstraint->usable==0 ) continue;
if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue;
switch( pConstraint->iColumn ){
case SERIES_COLUMN_START:
startIdx = i;
idxNum |= 1;
break;
case SERIES_COLUMN_STOP:
stopIdx = i;
idxNum |= 2;
break;
case SERIES_COLUMN_STEP:
stepIdx = i;
idxNum |= 4;
break;
}
}
if( startIdx>=0 ){
pIdxInfo->aConstraintUsage[startIdx].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[startIdx].omit= !SQLITE_SERIES_CONSTRAINT_VERIFY;
}
if( stopIdx>=0 ){
pIdxInfo->aConstraintUsage[stopIdx].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[stopIdx].omit = !SQLITE_SERIES_CONSTRAINT_VERIFY;
}
if( stepIdx>=0 ){
pIdxInfo->aConstraintUsage[stepIdx].argvIndex = ++nArg;
pIdxInfo->aConstraintUsage[stepIdx].omit = !SQLITE_SERIES_CONSTRAINT_VERIFY;
}
if( (idxNum & 3)==3 ){
/* Both start= and stop= boundaries are available. This is the
** the preferred case */
pIdxInfo->estimatedCost = (double)(2 - ((idxNum&4)!=0));
pIdxInfo->estimatedRows = 1000;
if( pIdxInfo->nOrderBy==1 ){
if( pIdxInfo->aOrderBy[0].desc ) idxNum |= 8;
pIdxInfo->orderByConsumed = 1;
}
}else{
/* If either boundary is missing, we have to generate a huge span
** of numbers. Make this case very expensive so that the query
** planner will work hard to avoid it. */
pIdxInfo->estimatedCost = (double)2147483647;
pIdxInfo->estimatedRows = 2147483647;
}
pIdxInfo->idxNum = idxNum;
return SQLITE_OK;
}
/*
** This following structure defines all the methods for the
** generate_series virtual table.
*/
static sqlite3_module seriesModule = {
0, /* iVersion */
0, /* xCreate */
seriesConnect, /* xConnect */
seriesBestIndex, /* xBestIndex */
seriesDisconnect, /* xDisconnect */
0, /* xDestroy */
seriesOpen, /* xOpen - open a cursor */
seriesClose, /* xClose - close a cursor */
seriesFilter, /* xFilter - configure scan constraints */
seriesNext, /* xNext - advance a cursor */
seriesEof, /* xEof - check for end of scan */
seriesColumn, /* xColumn - read data */
seriesRowid, /* xRowid - read data */
0, /* xUpdate */
0, /* xBegin */
0, /* xSync */
0, /* xCommit */
0, /* xRollback */
0, /* xFindMethod */
0, /* xRename */
0, /* xSavepoint */
0, /* xRelease */
0, /* xRollbackTo */
0, /* xShadowName */
0 /* xIntegrity */
};
/* END the generate_series(START,END,STEP) implementation
*********************************************************************************/
/*
** Print sketchy documentation for this utility program
*/
static void showHelp(void){
printf("Usage: %s [options] ?FILE...?\n", g.zArgv0);
printf(
"Read SQL text from FILE... (or from standard input if FILE... is omitted)\n"
"and then evaluate each block of SQL contained therein.\n"
"Options:\n"
" --autovacuum Enable AUTOVACUUM mode\n"
" --database FILE Use database FILE instead of an in-memory database\n"
" --disable-lookaside Turn off lookaside memory\n"
" --heap SZ MIN Memory allocator uses SZ bytes & min allocation MIN\n"
" --help Show this help text\n"
" --lookaside N SZ Configure lookaside for N slots of SZ bytes each\n"
" --oom Run each test multiple times in a simulated OOM loop\n"
" --pagesize N Set the page size to N\n"
" --pcache N SZ Configure N pages of pagecache each of size SZ bytes\n"
" -q Reduced output\n"
" --quiet Reduced output\n"
" --scratch N SZ Configure scratch memory for N slots of SZ bytes each\n"
" --unique-cases FILE Write all unique test cases to FILE\n"
" --utf16be Set text encoding to UTF-16BE\n"
" --utf16le Set text encoding to UTF-16LE\n"
" -v Increased output\n"
" --verbose Increased output\n"
);
}
/*
** Return the value of a hexadecimal digit. Return -1 if the input
** is not a hex digit.
*/
static int hexDigitValue(char c){
if( c>='0' && c<='9' ) return c - '0';
if( c>='a' && c<='f' ) return c - 'a' + 10;
if( c>='A' && c<='F' ) return c - 'A' + 10;
return -1;
}
/*
** Interpret zArg as an integer value, possibly with suffixes.
*/
static int integerValue(const char *zArg){
sqlite3_int64 v = 0;
static const struct { char *zSuffix; int iMult; } aMult[] = {
{ "KiB", 1024 },
{ "MiB", 1024*1024 },
{ "GiB", 1024*1024*1024 },
{ "KB", 1000 },
{ "MB", 1000000 },
{ "GB", 1000000000 },
{ "K", 1000 },
{ "M", 1000000 },
{ "G", 1000000000 },
};
int i;
int isNeg = 0;
if( zArg[0]=='-' ){
isNeg = 1;
zArg++;
}else if( zArg[0]=='+' ){
zArg++;
}
if( zArg[0]=='0' && zArg[1]=='x' ){
int x;
zArg += 2;
while( (x = hexDigitValue(zArg[0]))>=0 ){
v = (v<<4) + x;
zArg++;
}
}else{
while( ISDIGIT(zArg[0]) ){
v = v*10 + zArg[0] - '0';
zArg++;
}
}
for(i=0; i<sizeof(aMult)/sizeof(aMult[0]); i++){
if( sqlite3_stricmp(aMult[i].zSuffix, zArg)==0 ){
v *= aMult[i].iMult;
break;
}
}
if( v>0x7fffffff ) abendError("parameter too large - max 2147483648");
return (int)(isNeg? -v : v);
}
/* Return the current wall-clock time */
static sqlite3_int64 timeOfDay(void){
static sqlite3_vfs *clockVfs = 0;
sqlite3_int64 t;
if( clockVfs==0 ) clockVfs = sqlite3_vfs_find(0);
if( clockVfs->iVersion>=1 && clockVfs->xCurrentTimeInt64!=0 ){
clockVfs->xCurrentTimeInt64(clockVfs, &t);
}else{
double r;
clockVfs->xCurrentTime(clockVfs, &r);
t = (sqlite3_int64)(r*86400000.0);
}
return t;
}
int main(int argc, char **argv){
char *zIn = 0; /* Input text */
int nAlloc = 0; /* Number of bytes allocated for zIn[] */
int nIn = 0; /* Number of bytes of zIn[] used */
size_t got; /* Bytes read from input */
int rc = SQLITE_OK; /* Result codes from API functions */
int i; /* Loop counter */
int iNext; /* Next block of SQL */
sqlite3 *db; /* Open database */
char *zErrMsg = 0; /* Error message returned from sqlite3_exec() */
const char *zEncoding = 0; /* --utf16be or --utf16le */
int nHeap = 0, mnHeap = 0; /* Heap size from --heap */
int nLook = 0, szLook = 0; /* --lookaside configuration */
int nPCache = 0, szPCache = 0;/* --pcache configuration */
int nScratch = 0, szScratch=0;/* --scratch configuration */
int pageSize = 0; /* Desired page size. 0 means default */
void *pHeap = 0; /* Allocated heap space */
void *pLook = 0; /* Allocated lookaside space */
void *pPCache = 0; /* Allocated storage for pcache */
void *pScratch = 0; /* Allocated storage for scratch */
int doAutovac = 0; /* True for --autovacuum */
char *zSql; /* SQL to run */
char *zToFree = 0; /* Call sqlite3_free() on this afte running zSql */
int verboseFlag = 0; /* --verbose or -v flag */
int quietFlag = 0; /* --quiet or -q flag */
int nTest = 0; /* Number of test cases run */
int multiTest = 0; /* True if there will be multiple test cases */
int lastPct = -1; /* Previous percentage done output */
sqlite3 *dataDb = 0; /* Database holding compacted input data */
sqlite3_stmt *pStmt = 0; /* Statement to insert testcase into dataDb */
const char *zDataOut = 0; /* Write compacted data to this output file */
int nHeader = 0; /* Bytes of header comment text on input file */
int oomFlag = 0; /* --oom */
int oomCnt = 0; /* Counter for the OOM loop */
char zErrBuf[200]; /* Space for the error message */
const char *zFailCode; /* Value of the TEST_FAILURE environment var */
const char *zPrompt; /* Initial prompt when large-file fuzzing */
int nInFile = 0; /* Number of input files to read */
char **azInFile = 0; /* Array of input file names */
int jj; /* Loop counter for azInFile[] */
sqlite3_int64 iBegin; /* Start time for the whole program */
sqlite3_int64 iStart, iEnd; /* Start and end-times for a test case */
const char *zDbName = 0; /* Name of an on-disk database file to open */
iBegin = timeOfDay();
sqlite3_shutdown();
zFailCode = getenv("TEST_FAILURE");
g.zArgv0 = argv[0];
zPrompt = "<stdin>";
for(i=1; i<argc; i++){
const char *z = argv[i];
if( z[0]=='-' ){
z++;
if( z[0]=='-' ) z++;
if( strcmp(z,"autovacuum")==0 ){
doAutovac = 1;
}else
if( strcmp(z,"database")==0 ){
if( i>=argc-1 ) abendError("missing argument on %s\n", argv[i]);
zDbName = argv[i+1];
i += 1;
}else
if( strcmp(z,"disable-lookaside")==0 ){
nLook = 1;
szLook = 0;
}else
if( strcmp(z, "f")==0 && i+1<argc ){
i++;
goto addNewInFile;
}else
if( strcmp(z,"heap")==0 ){
if( i>=argc-2 ) abendError("missing arguments on %s\n", argv[i]);
nHeap = integerValue(argv[i+1]);
mnHeap = integerValue(argv[i+2]);
i += 2;
}else
if( strcmp(z,"help")==0 ){
showHelp();
return 0;
}else
if( strcmp(z,"lookaside")==0 ){
if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]);
nLook = integerValue(argv[i+1]);
szLook = integerValue(argv[i+2]);
i += 2;
}else
if( strcmp(z,"oom")==0 ){
oomFlag = 1;
}else
if( strcmp(z,"pagesize")==0 ){
if( i>=argc-1 ) abendError("missing argument on %s", argv[i]);
pageSize = integerValue(argv[++i]);
}else
if( strcmp(z,"pcache")==0 ){
if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]);
nPCache = integerValue(argv[i+1]);
szPCache = integerValue(argv[i+2]);
i += 2;
}else
if( strcmp(z,"quiet")==0 || strcmp(z,"q")==0 ){
quietFlag = 1;
verboseFlag = 0;
}else
if( strcmp(z,"scratch")==0 ){
if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]);
nScratch = integerValue(argv[i+1]);
szScratch = integerValue(argv[i+2]);
i += 2;
}else
if( strcmp(z, "unique-cases")==0 ){
if( i>=argc-1 ) abendError("missing arguments on %s", argv[i]);
if( zDataOut ) abendError("only one --minimize allowed");
zDataOut = argv[++i];
}else
if( strcmp(z,"utf16le")==0 ){
zEncoding = "utf16le";
}else
if( strcmp(z,"utf16be")==0 ){
zEncoding = "utf16be";
}else
if( strcmp(z,"verbose")==0 || strcmp(z,"v")==0 ){
quietFlag = 0;
verboseFlag = 1;
}else
{
abendError("unknown option: %s", argv[i]);
}
}else{
addNewInFile:
nInFile++;
azInFile = realloc(azInFile, sizeof(azInFile[0])*nInFile);
if( azInFile==0 ) abendError("out of memory");
azInFile[nInFile-1] = argv[i];
}
}
/* Do global SQLite initialization */
sqlite3_config(SQLITE_CONFIG_LOG, verboseFlag ? shellLog : shellLogNoop, 0);
if( nHeap>0 ){
pHeap = malloc( nHeap );
if( pHeap==0 ) fatalError("cannot allocate %d-byte heap\n", nHeap);
rc = sqlite3_config(SQLITE_CONFIG_HEAP, pHeap, nHeap, mnHeap);
if( rc ) abendError("heap configuration failed: %d\n", rc);
}
if( oomFlag ){
sqlite3_config(SQLITE_CONFIG_GETMALLOC, &g.sOrigMem);
g.sOomMem = g.sOrigMem;
g.sOomMem.xMalloc = oomMalloc;
g.sOomMem.xRealloc = oomRealloc;
sqlite3_config(SQLITE_CONFIG_MALLOC, &g.sOomMem);
}
if( nLook>0 ){
sqlite3_config(SQLITE_CONFIG_LOOKASIDE, 0, 0);
if( szLook>0 ){
pLook = malloc( nLook*szLook );
if( pLook==0 ) fatalError("out of memory");
}
}
if( nScratch>0 && szScratch>0 ){
pScratch = malloc( nScratch*(sqlite3_int64)szScratch );
if( pScratch==0 ) fatalError("cannot allocate %lld-byte scratch",
nScratch*(sqlite3_int64)szScratch);
rc = sqlite3_config(SQLITE_CONFIG_SCRATCH, pScratch, szScratch, nScratch);
if( rc ) abendError("scratch configuration failed: %d\n", rc);
}
if( nPCache>0 && szPCache>0 ){
pPCache = malloc( nPCache*(sqlite3_int64)szPCache );
if( pPCache==0 ) fatalError("cannot allocate %lld-byte pcache",
nPCache*(sqlite3_int64)szPCache);
rc = sqlite3_config(SQLITE_CONFIG_PAGECACHE, pPCache, szPCache, nPCache);
if( rc ) abendError("pcache configuration failed: %d", rc);
}
/* If the --unique-cases option was supplied, open the database that will
** be used to gather unique test cases.
*/
if( zDataOut ){
rc = sqlite3_open(":memory:", &dataDb);
if( rc ) abendError("cannot open :memory: database");
rc = sqlite3_exec(dataDb,
"CREATE TABLE testcase(sql BLOB PRIMARY KEY, tm) WITHOUT ROWID;",0,0,0);
if( rc ) abendError("%s", sqlite3_errmsg(dataDb));
rc = sqlite3_prepare_v2(dataDb,
"INSERT OR IGNORE INTO testcase(sql,tm)VALUES(?1,?2)",
-1, &pStmt, 0);
if( rc ) abendError("%s", sqlite3_errmsg(dataDb));
}
/* Initialize the input buffer used to hold SQL text */
if( nInFile==0 ) nInFile = 1;
nAlloc = 1000;
zIn = malloc(nAlloc);
if( zIn==0 ) fatalError("out of memory");
/* Loop over all input files */
for(jj=0; jj<nInFile; jj++){
/* Read the complete content of the next input file into zIn[] */
FILE *in;
if( azInFile ){
int j, k;
in = fopen(azInFile[jj],"rb");
if( in==0 ){
abendError("cannot open %s for reading", azInFile[jj]);
}
zPrompt = azInFile[jj];
for(j=k=0; zPrompt[j]; j++) if( zPrompt[j]=='/' ) k = j+1;
zPrompt += k;
}else{
in = stdin;
zPrompt = "<stdin>";
}
while( !feof(in) ){
got = fread(zIn+nIn, 1, nAlloc-nIn-1, in);
nIn += (int)got;
zIn[nIn] = 0;
if( got==0 ) break;
if( nAlloc - nIn - 1 < 100 ){
nAlloc += nAlloc+1000;
zIn = realloc(zIn, nAlloc);
if( zIn==0 ) fatalError("out of memory");
}
}
if( in!=stdin ) fclose(in);
lastPct = -1;
/* Skip initial lines of the input file that begin with "#" */
for(i=0; i<nIn; i=iNext+1){
if( zIn[i]!='#' ) break;
for(iNext=i+1; iNext<nIn && zIn[iNext]!='\n'; iNext++){}
}
nHeader = i;
/* Process all test cases contained within the input file.
*/
for(; i<nIn; i=iNext, nTest++, g.zTestName[0]=0){
char cSaved;
if( strncmp(&zIn[i], "/****<",6)==0 ){
char *z = strstr(&zIn[i], ">****/");
if( z ){
z += 6;
sqlite3_snprintf(sizeof(g.zTestName), g.zTestName, "%.*s",
(int)(z-&zIn[i]) - 12, &zIn[i+6]);
if( verboseFlag ){
printf("%.*s\n", (int)(z-&zIn[i]), &zIn[i]);
fflush(stdout);
}
i += (int)(z-&zIn[i]);
multiTest = 1;
}
}
for(iNext=i; iNext<nIn && strncmp(&zIn[iNext],"/****<",6)!=0; iNext++){}
cSaved = zIn[iNext];
zIn[iNext] = 0;
/* Print out the SQL of the next test case is --verbose is enabled
*/
zSql = &zIn[i];
if( verboseFlag ){
printf("INPUT (offset: %d, size: %d): [%s]\n",
i, (int)strlen(&zIn[i]), &zIn[i]);
}else if( multiTest && !quietFlag ){
if( oomFlag ){
printf("%s\n", g.zTestName);
}else{
int pct = (10*iNext)/nIn;
if( pct!=lastPct ){
if( lastPct<0 ) printf("%s:", zPrompt);
printf(" %d%%", pct*10);
lastPct = pct;
}
}
}else if( nInFile>1 ){
printf("%s\n", zPrompt);
}
fflush(stdout);
/* Run the next test case. Run it multiple times in --oom mode
*/
if( oomFlag ){
oomCnt = g.iOomCntdown = 1;
g.nOomFault = 0;
g.bOomOnce = 1;
if( verboseFlag ){
printf("Once.%d\n", oomCnt);
fflush(stdout);
}
}else{
oomCnt = 0;
}
do{
Str sql;
StrInit(&sql);
if( zDbName ){
rc = sqlite3_open_v2(zDbName, &db, SQLITE_OPEN_READWRITE, 0);
if( rc!=SQLITE_OK ){
abendError("Cannot open database file %s", zDbName);
}
}else{
rc = sqlite3_open_v2(
"main.db", &db,
SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY,
0);
if( rc!=SQLITE_OK ){
abendError("Unable to open the in-memory database");
}
}
if( pLook ){
rc = sqlite3_db_config(db, SQLITE_DBCONFIG_LOOKASIDE,pLook,szLook,nLook);
if( rc!=SQLITE_OK ) abendError("lookaside configuration filed: %d", rc);
}
#ifndef SQLITE_OMIT_TRACE
sqlite3_trace(db, verboseFlag ? traceCallback : traceNoop, 0);
#endif
sqlite3_create_function(db, "eval", 1, SQLITE_UTF8, 0, sqlEvalFunc, 0, 0);
sqlite3_create_function(db, "eval", 2, SQLITE_UTF8, 0, sqlEvalFunc, 0, 0);
sqlite3_create_module(db, "generate_series", &seriesModule, 0);
sqlite3_limit(db, SQLITE_LIMIT_LENGTH, 1000000);
if( zEncoding ) sqlexec(db, "PRAGMA encoding=%s", zEncoding);
if( pageSize ) sqlexec(db, "PRAGMA pagesize=%d", pageSize);
if( doAutovac ) sqlexec(db, "PRAGMA auto_vacuum=FULL");
iStart = timeOfDay();
/* If using an input database file and that database contains a table
** named "autoexec" with a column "sql", then replace the input SQL
** with the concatenated text of the autoexec table. In this way,
** if the database file is the input being fuzzed, the SQL text is
** fuzzed at the same time. */
if( sqlite3_table_column_metadata(db,0,"autoexec","sql",0,0,0,0,0)==0 ){
sqlite3_stmt *pStmt2;
rc = sqlite3_prepare_v2(db,"SELECT sql FROM autoexec",-1,&pStmt2,0);
if( rc==SQLITE_OK ){
while( sqlite3_step(pStmt2)==SQLITE_ROW ){
StrAppend(&sql, (const char*)sqlite3_column_text(pStmt2, 0));
StrAppend(&sql, "\n");
}
}
sqlite3_finalize(pStmt2);
zSql = StrStr(&sql);
}
g.bOomEnable = 1;
if( verboseFlag ){
zErrMsg = 0;
rc = sqlite3_exec(db, zSql, execCallback, 0, &zErrMsg);
if( zErrMsg ){
sqlite3_snprintf(sizeof(zErrBuf),zErrBuf,"%z", zErrMsg);
zErrMsg = 0;
}
}else {
rc = sqlite3_exec(db, zSql, execNoop, 0, 0);
}
g.bOomEnable = 0;
iEnd = timeOfDay();
StrFree(&sql);
rc = sqlite3_close(db);
if( rc ){
abendError("sqlite3_close() failed with rc=%d", rc);
}
if( !zDataOut && sqlite3_memory_used()>0 ){
abendError("memory in use after close: %lld bytes",sqlite3_memory_used());
}
if( oomFlag ){
/* Limit the number of iterations of the OOM loop to OOM_MAX. If the
** first pass (single failure) exceeds 2/3rds of OOM_MAX this skip the
** second pass (continuous failure after first) completely. */
if( g.nOomFault==0 || oomCnt>OOM_MAX ){
if( g.bOomOnce && oomCnt<=(OOM_MAX*2/3) ){
oomCnt = g.iOomCntdown = 1;
g.bOomOnce = 0;
}else{
oomCnt = 0;
}
}else{
g.iOomCntdown = ++oomCnt;
g.nOomFault = 0;
}
if( oomCnt ){
if( verboseFlag ){
printf("%s.%d\n", g.bOomOnce ? "Once" : "Multi", oomCnt);
fflush(stdout);
}
nTest++;
}
}
}while( oomCnt>0 );
/* Store unique test cases in the in the dataDb database if the
** --unique-cases flag is present
*/
if( zDataOut ){
sqlite3_bind_blob(pStmt, 1, &zIn[i], iNext-i, SQLITE_STATIC);
sqlite3_bind_int64(pStmt, 2, iEnd - iStart);
rc = sqlite3_step(pStmt);
if( rc!=SQLITE_DONE ) abendError("%s", sqlite3_errmsg(dataDb));
sqlite3_reset(pStmt);
}
/* Free the SQL from the current test case
*/
if( zToFree ){
sqlite3_free(zToFree);
zToFree = 0;
}
zIn[iNext] = cSaved;
/* Show test-case results in --verbose mode
*/
if( verboseFlag ){
printf("RESULT-CODE: %d\n", rc);
if( zErrMsg ){
printf("ERROR-MSG: [%s]\n", zErrBuf);
}
fflush(stdout);
}
/* Simulate an error if the TEST_FAILURE environment variable is "5".
** This is used to verify that automated test script really do spot
** errors that occur in this test program.
*/
if( zFailCode ){
if( zFailCode[0]=='5' && zFailCode[1]==0 ){
abendError("simulated failure");
}else if( zFailCode[0]!=0 ){
/* If TEST_FAILURE is something other than 5, just exit the test
** early */
printf("\nExit early due to TEST_FAILURE being set");
break;
}
}
}
if( !verboseFlag && multiTest && !quietFlag && !oomFlag ) printf("\n");
}
/* Report total number of tests run
*/
if( nTest>1 && !quietFlag ){
sqlite3_int64 iElapse = timeOfDay() - iBegin;
printf("%s: 0 errors out of %d tests in %d.%03d seconds\nSQLite %s %s\n",
g.zArgv0, nTest, (int)(iElapse/1000), (int)(iElapse%1000),
sqlite3_libversion(), sqlite3_sourceid());
}
/* Write the unique test cases if the --unique-cases flag was used
*/
if( zDataOut ){
int n = 0;
FILE *out = fopen(zDataOut, "wb");
if( out==0 ) abendError("cannot open %s for writing", zDataOut);
if( nHeader>0 ) fwrite(zIn, nHeader, 1, out);
sqlite3_finalize(pStmt);
rc = sqlite3_prepare_v2(dataDb, "SELECT sql, tm FROM testcase ORDER BY tm, sql",
-1, &pStmt, 0);
if( rc ) abendError("%s", sqlite3_errmsg(dataDb));
while( sqlite3_step(pStmt)==SQLITE_ROW ){
fprintf(out,"/****<%d:%dms>****/", ++n, sqlite3_column_int(pStmt,1));
fwrite(sqlite3_column_blob(pStmt,0),sqlite3_column_bytes(pStmt,0),1,out);
}
fclose(out);
sqlite3_finalize(pStmt);
sqlite3_close(dataDb);
}
/* Clean up and exit.
*/
free(azInFile);
free(zIn);
free(pHeap);
free(pLook);
free(pScratch);
free(pPCache);
return 0;
}