0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2025-01-09 08:49:02 +00:00
Pekka Enberg 61558b2a9e libsql-{sqlite3,ffi}: Add xReadFrameRaw() to the virtual WAL API
This adds a new xReadFrameRaw() function to the virtual WAL API, which
upper layers can use to fetch the full frame, including the page number,
that is useful for appending frames to a WAL.
2024-10-29 13:30:27 +02:00

4651 lines
173 KiB
C

/*
** 2010 February 1
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file contains the implementation of a write-ahead log (WAL) used in
** "journal_mode=WAL" mode.
**
** WRITE-AHEAD LOG (WAL) FILE FORMAT
**
** A WAL file consists of a header followed by zero or more "frames".
** Each frame records the revised content of a single page from the
** database file. All changes to the database are recorded by writing
** frames into the WAL. Transactions commit when a frame is written that
** contains a commit marker. A single WAL can and usually does record
** multiple transactions. Periodically, the content of the WAL is
** transferred back into the database file in an operation called a
** "checkpoint".
**
** A single WAL file can be used multiple times. In other words, the
** WAL can fill up with frames and then be checkpointed and then new
** frames can overwrite the old ones. A WAL always grows from beginning
** toward the end. Checksums and counters attached to each frame are
** used to determine which frames within the WAL are valid and which
** are leftovers from prior checkpoints.
**
** The WAL header is 32 bytes in size and consists of the following eight
** big-endian 32-bit unsigned integer values:
**
** 0: Magic number. 0x377f0682 or 0x377f0683
** 4: File format version. Currently 3007000
** 8: Database page size. Example: 1024
** 12: Checkpoint sequence number
** 16: Salt-1, random integer incremented with each checkpoint
** 20: Salt-2, a different random integer changing with each ckpt
** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
**
** Immediately following the wal-header are zero or more frames. Each
** frame consists of a 24-byte frame-header followed by a <page-size> bytes
** of page data. The frame-header is six big-endian 32-bit unsigned
** integer values, as follows:
**
** 0: Page number.
** 4: For commit records, the size of the database image in pages
** after the commit. For all other records, zero.
** 8: Salt-1 (copied from the header)
** 12: Salt-2 (copied from the header)
** 16: Checksum-1.
** 20: Checksum-2.
**
** A frame is considered valid if and only if the following conditions are
** true:
**
** (1) The salt-1 and salt-2 values in the frame-header match
** salt values in the wal-header
**
** (2) The checksum values in the final 8 bytes of the frame-header
** exactly match the checksum computed consecutively on the
** WAL header and the first 8 bytes and the content of all frames
** up to and including the current frame.
**
** The checksum is computed using 32-bit big-endian integers if the
** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
** is computed using little-endian if the magic number is 0x377f0682.
** The checksum values are always stored in the frame header in a
** big-endian format regardless of which byte order is used to compute
** the checksum. The checksum is computed by interpreting the input as
** an even number of unsigned 32-bit integers: x[0] through x[N]. The
** algorithm used for the checksum is as follows:
**
** for i from 0 to n-1 step 2:
** s0 += x[i] + s1;
** s1 += x[i+1] + s0;
** endfor
**
** Note that s0 and s1 are both weighted checksums using fibonacci weights
** in reverse order (the largest fibonacci weight occurs on the first element
** of the sequence being summed.) The s1 value spans all 32-bit
** terms of the sequence whereas s0 omits the final term.
**
** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
** WAL is transferred into the database, then the database is VFS.xSync-ed.
** The VFS.xSync operations serve as write barriers - all writes launched
** before the xSync must complete before any write that launches after the
** xSync begins.
**
** After each checkpoint, the salt-1 value is incremented and the salt-2
** value is randomized. This prevents old and new frames in the WAL from
** being considered valid at the same time and being checkpointing together
** following a crash.
**
** READER ALGORITHM
**
** To read a page from the database (call it page number P), a reader
** first checks the WAL to see if it contains page P. If so, then the
** last valid instance of page P that is a followed by a commit frame
** or is a commit frame itself becomes the value read. If the WAL
** contains no copies of page P that are valid and which are a commit
** frame or are followed by a commit frame, then page P is read from
** the database file.
**
** To start a read transaction, the reader records the index of the last
** valid frame in the WAL. The reader uses this recorded "mxFrame" value
** for all subsequent read operations. New transactions can be appended
** to the WAL, but as long as the reader uses its original mxFrame value
** and ignores the newly appended content, it will see a consistent snapshot
** of the database from a single point in time. This technique allows
** multiple concurrent readers to view different versions of the database
** content simultaneously.
**
** The reader algorithm in the previous paragraphs works correctly, but
** because frames for page P can appear anywhere within the WAL, the
** reader has to scan the entire WAL looking for page P frames. If the
** WAL is large (multiple megabytes is typical) that scan can be slow,
** and read performance suffers. To overcome this problem, a separate
** data structure called the wal-index is maintained to expedite the
** search for frames of a particular page.
**
** WAL-INDEX FORMAT
**
** Conceptually, the wal-index is shared memory, though VFS implementations
** might choose to implement the wal-index using a mmapped file. Because
** the wal-index is shared memory, SQLite does not support journal_mode=WAL
** on a network filesystem. All users of the database must be able to
** share memory.
**
** In the default unix and windows implementation, the wal-index is a mmapped
** file whose name is the database name with a "-shm" suffix added. For that
** reason, the wal-index is sometimes called the "shm" file.
**
** The wal-index is transient. After a crash, the wal-index can (and should
** be) reconstructed from the original WAL file. In fact, the VFS is required
** to either truncate or zero the header of the wal-index when the last
** connection to it closes. Because the wal-index is transient, it can
** use an architecture-specific format; it does not have to be cross-platform.
** Hence, unlike the database and WAL file formats which store all values
** as big endian, the wal-index can store multi-byte values in the native
** byte order of the host computer.
**
** The purpose of the wal-index is to answer this question quickly: Given
** a page number P and a maximum frame index M, return the index of the
** last frame in the wal before frame M for page P in the WAL, or return
** NULL if there are no frames for page P in the WAL prior to M.
**
** The wal-index consists of a header region, followed by an one or
** more index blocks.
**
** The wal-index header contains the total number of frames within the WAL
** in the mxFrame field.
**
** Each index block except for the first contains information on
** HASHTABLE_NPAGE frames. The first index block contains information on
** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
** HASHTABLE_NPAGE are selected so that together the wal-index header and
** first index block are the same size as all other index blocks in the
** wal-index. The values are:
**
** HASHTABLE_NPAGE 4096
** HASHTABLE_NPAGE_ONE 4062
**
** Each index block contains two sections, a page-mapping that contains the
** database page number associated with each wal frame, and a hash-table
** that allows readers to query an index block for a specific page number.
** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
** for the first index block) 32-bit page numbers. The first entry in the
** first index-block contains the database page number corresponding to the
** first frame in the WAL file. The first entry in the second index block
** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
** the log, and so on.
**
** The last index block in a wal-index usually contains less than the full
** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
** depending on the contents of the WAL file. This does not change the
** allocated size of the page-mapping array - the page-mapping array merely
** contains unused entries.
**
** Even without using the hash table, the last frame for page P
** can be found by scanning the page-mapping sections of each index block
** starting with the last index block and moving toward the first, and
** within each index block, starting at the end and moving toward the
** beginning. The first entry that equals P corresponds to the frame
** holding the content for that page.
**
** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
** hash table for each page number in the mapping section, so the hash
** table is never more than half full. The expected number of collisions
** prior to finding a match is 1. Each entry of the hash table is an
** 1-based index of an entry in the mapping section of the same
** index block. Let K be the 1-based index of the largest entry in
** the mapping section. (For index blocks other than the last, K will
** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
** contain a value of 0.
**
** To look for page P in the hash table, first compute a hash iKey on
** P as follows:
**
** iKey = (P * 383) % HASHTABLE_NSLOT
**
** Then start scanning entries of the hash table, starting with iKey
** (wrapping around to the beginning when the end of the hash table is
** reached) until an unused hash slot is found. Let the first unused slot
** be at index iUnused. (iUnused might be less than iKey if there was
** wrap-around.) Because the hash table is never more than half full,
** the search is guaranteed to eventually hit an unused entry. Let
** iMax be the value between iKey and iUnused, closest to iUnused,
** where aHash[iMax]==P. If there is no iMax entry (if there exists
** no hash slot such that aHash[i]==p) then page P is not in the
** current index block. Otherwise the iMax-th mapping entry of the
** current index block corresponds to the last entry that references
** page P.
**
** A hash search begins with the last index block and moves toward the
** first index block, looking for entries corresponding to page P. On
** average, only two or three slots in each index block need to be
** examined in order to either find the last entry for page P, or to
** establish that no such entry exists in the block. Each index block
** holds over 4000 entries. So two or three index blocks are sufficient
** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
** comparisons (on average) suffice to either locate a frame in the
** WAL or to establish that the frame does not exist in the WAL. This
** is much faster than scanning the entire 10MB WAL.
**
** Note that entries are added in order of increasing K. Hence, one
** reader might be using some value K0 and a second reader that started
** at a later time (after additional transactions were added to the WAL
** and to the wal-index) might be using a different value K1, where K1>K0.
** Both readers can use the same hash table and mapping section to get
** the correct result. There may be entries in the hash table with
** K>K0 but to the first reader, those entries will appear to be unused
** slots in the hash table and so the first reader will get an answer as
** if no values greater than K0 had ever been inserted into the hash table
** in the first place - which is what reader one wants. Meanwhile, the
** second reader using K1 will see additional values that were inserted
** later, which is exactly what reader two wants.
**
** When a rollback occurs, the value of K is decreased. Hash table entries
** that correspond to frames greater than the new K value are removed
** from the hash table at this point.
*/
#include "sqliteInt.h"
#ifndef SQLITE_OMIT_WAL
#include "wal.h"
int libsql_pager_codec(libsql_pghdr *p, void **ret);
typedef libsql_pghdr PgHdr;
typedef sqlite3_wal Wal;
static int sqlite3WalCheckpoint(
Wal *pWal, /* Wal connection */
sqlite3 *db, /* Check this handle's interrupt flag */
int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
int (*xBusy)(void*), /* Function to call when busy */
void *pBusyArg, /* Context argument for xBusyHandler */
int sync_flags, /* Flags to sync db file with (or 0) */
int nBuf, /* Size of temporary buffer */
u8 *zBuf, /* Temporary buffer to use */
int *pnLog, /* OUT: Number of frames in WAL */
int *pnCkpt, /* OUT: Number of backfilled frames in WAL */
int (*xCb)(void*, int, const unsigned char*, int, int, int),
void *pCbData
);
static void sqlite3WalEndReadTransaction(Wal *pWal);
static int sqlite3WalEndWriteTransaction(Wal *pWal);
static int walFindFrame(
Wal *pWal, /* WAL handle */
Pgno pgno, /* Database page number to read data for */
u32 iLast, /* Last page in WAL for this reader */
u32 *piRead /* OUT: Frame number (or zero) */
);
/*
** Trace output macros
*/
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
int sqlite3WalTrace = 0;
# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
#else
# define WALTRACE(X)
#endif
/*
** The maximum (and only) versions of the wal and wal-index formats
** that may be interpreted by this version of SQLite.
**
** If a client begins recovering a WAL file and finds that (a) the checksum
** values in the wal-header are correct and (b) the version field is not
** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
**
** Similarly, if a client successfully reads a wal-index header (i.e. the
** checksum test is successful) and finds that the version field is not
** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
** returns SQLITE_CANTOPEN.
*/
#define WAL_MAX_VERSION 3007000
#define WALINDEX_MAX_VERSION 3007000
/*
** Index numbers for various locking bytes. WAL_NREADER is the number
** of available reader locks and should be at least 3. The default
** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
**
** Technically, the various VFSes are free to implement these locks however
** they see fit. However, compatibility is encouraged so that VFSes can
** interoperate. The standard implementation used on both unix and windows
** is for the index number to indicate a byte offset into the
** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
** should be 120) is the location in the shm file for the first locking
** byte.
*/
#define WAL_WRITE_LOCK 0
#define WAL_ALL_BUT_WRITE 1
#define WAL_CKPT_LOCK 1
#define WAL_RECOVER_LOCK 2
#define WAL_READ_LOCK(I) (3+(I))
#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
/*
** A copy of the following object occurs in the wal-index immediately
** following the second copy of the WalIndexHdr. This object stores
** information used by checkpoint.
**
** nBackfill is the number of frames in the WAL that have been written
** back into the database. (We call the act of moving content from WAL to
** database "backfilling".) The nBackfill number is never greater than
** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
** mxFrame back to zero when the WAL is reset.
**
** nBackfillAttempted is the largest value of nBackfill that a checkpoint
** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
** the nBackfillAttempted is set before any backfilling is done and the
** nBackfill is only set after all backfilling completes. So if a checkpoint
** crashes, nBackfillAttempted might be larger than nBackfill. The
** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
**
** The aLock[] field is a set of bytes used for locking. These bytes should
** never be read or written.
**
** There is one entry in aReadMark[] for each reader lock. If a reader
** holds read-lock K, then the value in aReadMark[K] is no greater than
** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
** for any aReadMark[] means that entry is unused. aReadMark[0] is
** a special case; its value is never used and it exists as a place-holder
** to avoid having to offset aReadMark[] indexes by one. Readers holding
** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
** directly from the database.
**
** The value of aReadMark[K] may only be changed by a thread that
** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
** aReadMark[K] cannot changed while there is a reader is using that mark
** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
**
** The checkpointer may only transfer frames from WAL to database where
** the frame numbers are less than or equal to every aReadMark[] that is
** in use (that is, every aReadMark[j] for which there is a corresponding
** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
** largest value and will increase an unused aReadMark[] to mxFrame if there
** is not already an aReadMark[] equal to mxFrame. The exception to the
** previous sentence is when nBackfill equals mxFrame (meaning that everything
** in the WAL has been backfilled into the database) then new readers
** will choose aReadMark[0] which has value 0 and hence such reader will
** get all their all content directly from the database file and ignore
** the WAL.
**
** Writers normally append new frames to the end of the WAL. However,
** if nBackfill equals mxFrame (meaning that all WAL content has been
** written back into the database) and if no readers are using the WAL
** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
** the writer will first "reset" the WAL back to the beginning and start
** writing new content beginning at frame 1.
**
** We assume that 32-bit loads are atomic and so no locks are needed in
** order to read from any aReadMark[] entries.
*/
struct WalCkptInfo {
u32 nBackfill; /* Number of WAL frames backfilled into DB */
u32 aReadMark[WAL_NREADER]; /* Reader marks */
u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
u32 notUsed0; /* Available for future enhancements */
};
#define READMARK_NOT_USED 0xffffffff
/*
** This is a schematic view of the complete 136-byte header of the
** wal-index file (also known as the -shm file):
**
** +-----------------------------+
** 0: | iVersion | \
** +-----------------------------+ |
** 4: | (unused padding) | |
** +-----------------------------+ |
** 8: | iChange | |
** +-------+-------+-------------+ |
** 12: | bInit | bBig | szPage | |
** +-------+-------+-------------+ |
** 16: | mxFrame | | First copy of the
** +-----------------------------+ | WalIndexHdr object
** 20: | nPage | |
** +-----------------------------+ |
** 24: | aFrameCksum | |
** | | |
** +-----------------------------+ |
** 32: | aSalt | |
** | | |
** +-----------------------------+ |
** 40: | aCksum | |
** | | /
** +-----------------------------+
** 48: | iVersion | \
** +-----------------------------+ |
** 52: | (unused padding) | |
** +-----------------------------+ |
** 56: | iChange | |
** +-------+-------+-------------+ |
** 60: | bInit | bBig | szPage | |
** +-------+-------+-------------+ | Second copy of the
** 64: | mxFrame | | WalIndexHdr
** +-----------------------------+ |
** 68: | nPage | |
** +-----------------------------+ |
** 72: | aFrameCksum | |
** | | |
** +-----------------------------+ |
** 80: | aSalt | |
** | | |
** +-----------------------------+ |
** 88: | aCksum | |
** | | /
** +-----------------------------+
** 96: | nBackfill |
** +-----------------------------+
** 100: | 5 read marks |
** | |
** | |
** | |
** | |
** +-------+-------+------+------+
** 120: | Write | Ckpt | Rcvr | Rd0 | \
** +-------+-------+------+------+ ) 8 lock bytes
** | Read1 | Read2 | Rd3 | Rd4 | /
** +-------+-------+------+------+
** 128: | nBackfillAttempted |
** +-----------------------------+
** 132: | (unused padding) |
** +-----------------------------+
*/
/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
** only support mandatory file-locks, we do not read or write data
** from the region of the file on which locks are applied.
*/
#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
/* Size of header before each frame in wal */
#define WAL_FRAME_HDRSIZE 24
/* Size of write ahead log header, including checksum. */
#define WAL_HDRSIZE 32
/* WAL magic value. Either this value, or the same value with the least
** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
** big-endian format in the first 4 bytes of a WAL file.
**
** If the LSB is set, then the checksums for each frame within the WAL
** file are calculated by treating all data as an array of 32-bit
** big-endian words. Otherwise, they are calculated by interpreting
** all data as 32-bit little-endian words.
*/
#define WAL_MAGIC 0x377f0682
/*
** Return the offset of frame iFrame in the write-ahead log file,
** assuming a database page size of szPage bytes. The offset returned
** is to the start of the write-ahead log frame-header.
*/
#define walFrameOffset(iFrame, szPage) ( \
WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
)
/*
** Candidate values for Wal.exclusiveMode.
*/
#define WAL_NORMAL_MODE 0
#define WAL_EXCLUSIVE_MODE 1
#define WAL_HEAPMEMORY_MODE 2
/*
** Possible values for WAL.readOnly
*/
#define WAL_RDWR 0 /* Normal read/write connection */
#define WAL_RDONLY 1 /* The WAL file is readonly */
#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
/*
** Each page of the wal-index mapping contains a hash-table made up of
** an array of HASHTABLE_NSLOT elements of the following type.
*/
typedef u16 ht_slot;
/*
** This structure is used to implement an iterator that loops through
** all frames in the WAL in database page order. Where two or more frames
** correspond to the same database page, the iterator visits only the
** frame most recently written to the WAL (in other words, the frame with
** the largest index).
**
** The internals of this structure are only accessed by:
**
** walIteratorInit() - Create a new iterator,
** walIteratorNext() - Step an iterator,
** walIteratorFree() - Free an iterator.
**
** This functionality is used by the checkpoint code (see walCheckpoint()).
*/
struct WalIterator {
u32 iPrior; /* Last result returned from the iterator */
int nSegment; /* Number of entries in aSegment[] */
struct WalSegment {
int iNext; /* Next slot in aIndex[] not yet returned */
ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
u32 *aPgno; /* Array of page numbers. */
int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
int iZero; /* Frame number associated with aPgno[0] */
} aSegment[1]; /* One for every 32KB page in the wal-index */
};
struct WalIteratorRev {
u32 current;
/* A sparse array of page no, where frames[frame_no] = page_no if frame_no is the most recent version of this page, page_no = 0 otherwise */
u32 *frames;
};
/*
** Define the parameters of the hash tables in the wal-index file. There
** is a hash-table following every HASHTABLE_NPAGE page numbers in the
** wal-index.
**
** Changing any of these constants will alter the wal-index format and
** create incompatibilities.
*/
#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
#define HASHTABLE_HASH_1 383 /* Should be prime */
#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
/*
** The block of page numbers associated with the first hash-table in a
** wal-index is smaller than usual. This is so that there is a complete
** hash-table on each aligned 32KB page of the wal-index.
*/
#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
#define WALINDEX_PGSZ ( \
sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
)
/*
** Structured Exception Handling (SEH) is a Windows-specific technique
** for catching exceptions raised while accessing memory-mapped files.
**
** The -DSQLITE_USE_SEH compile-time option means to use SEH to catch and
** deal with system-level errors that arise during WAL -shm file processing.
** Without this compile-time option, any system-level faults that appear
** while accessing the memory-mapped -shm file will cause a process-wide
** signal to be deliver, which will more than likely cause the entire
** process to exit.
*/
#ifdef SQLITE_USE_SEH
# error "SEH is not supported in libSQL due to virtual WAL backward compatibility!"
#else
# define SEH_TRY
# define SEH_EXCEPT(X)
# define SEH_INJECT_FAULT
# define SEH_FREE_ON_ERROR(X,Y)
# define SEH_SET_ON_ERROR(X,Y)
#endif /* ifdef SQLITE_USE_SEH */
/*
** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
** numbered from zero.
**
** If the wal-index is currently smaller the iPage pages then the size
** of the wal-index might be increased, but only if it is safe to do
** so. It is safe to enlarge the wal-index if pWal->writeLock is true
** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
**
** Three possible result scenarios:
**
** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page
** (2) rc>=SQLITE_ERROR and *ppPage==NULL
** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0
**
** Scenario (3) can only occur when pWal->writeLock is false and iPage==0
*/
static SQLITE_NOINLINE int walIndexPageRealloc(
Wal *pWal, /* The WAL context */
int iPage, /* The page we seek */
volatile u32 **ppPage /* Write the page pointer here */
){
int rc = SQLITE_OK;
/* Enlarge the pWal->apWiData[] array if required */
if( pWal->nWiData<=iPage ){
sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
volatile u32 **apNew;
apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
if( !apNew ){
*ppPage = 0;
return SQLITE_NOMEM_BKPT;
}
memset((void*)&apNew[pWal->nWiData], 0,
sizeof(u32*)*(iPage+1-pWal->nWiData));
pWal->apWiData = apNew;
pWal->nWiData = iPage+1;
}
/* Request a pointer to the required page from the VFS */
assert( pWal->apWiData[iPage]==0 );
if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
}else{
rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
);
assert( pWal->apWiData[iPage]!=0
|| rc!=SQLITE_OK
|| (pWal->writeLock==0 && iPage==0) );
testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
if( rc==SQLITE_OK ){
if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
}else if( (rc&0xff)==SQLITE_READONLY ){
pWal->readOnly |= WAL_SHM_RDONLY;
if( rc==SQLITE_READONLY ){
rc = SQLITE_OK;
}
}
}
*ppPage = pWal->apWiData[iPage];
assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
return rc;
}
static int walIndexPage(
Wal *pWal, /* The WAL context */
int iPage, /* The page we seek */
volatile u32 **ppPage /* Write the page pointer here */
){
SEH_INJECT_FAULT;
if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
return walIndexPageRealloc(pWal, iPage, ppPage);
}
return SQLITE_OK;
}
/*
** Return a pointer to the WalCkptInfo structure in the wal-index.
*/
static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
assert( pWal->nWiData>0 && pWal->apWiData[0] );
SEH_INJECT_FAULT;
return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
}
/*
** Return a pointer to the WalIndexHdr structure in the wal-index.
*/
static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
assert( pWal->nWiData>0 && pWal->apWiData[0] );
SEH_INJECT_FAULT;
return (volatile WalIndexHdr*)pWal->apWiData[0];
}
/*
** The argument to this macro must be of type u32. On a little-endian
** architecture, it returns the u32 value that results from interpreting
** the 4 bytes as a big-endian value. On a big-endian architecture, it
** returns the value that would be produced by interpreting the 4 bytes
** of the input value as a little-endian integer.
*/
#define BYTESWAP32(x) ( \
(((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
+ (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
)
/*
** Generate or extend an 8 byte checksum based on the data in
** array aByte[] and the initial values of aIn[0] and aIn[1] (or
** initial values of 0 and 0 if aIn==NULL).
**
** The checksum is written back into aOut[] before returning.
**
** nByte must be a positive multiple of 8.
*/
static void walChecksumBytes(
int nativeCksum, /* True for native byte-order, false for non-native */
u8 *a, /* Content to be checksummed */
int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
const u32 *aIn, /* Initial checksum value input */
u32 *aOut /* OUT: Final checksum value output */
){
u32 s1, s2;
u32 *aData = (u32 *)a;
u32 *aEnd = (u32 *)&a[nByte];
if( aIn ){
s1 = aIn[0];
s2 = aIn[1];
}else{
s1 = s2 = 0;
}
assert( nByte>=8 );
assert( (nByte&0x00000007)==0 );
assert( nByte<=65536 );
assert( nByte%4==0 );
if( !nativeCksum ){
do {
s1 += BYTESWAP32(aData[0]) + s2;
s2 += BYTESWAP32(aData[1]) + s1;
aData += 2;
}while( aData<aEnd );
}else if( nByte%64==0 ){
do {
s1 += *aData++ + s2;
s2 += *aData++ + s1;
s1 += *aData++ + s2;
s2 += *aData++ + s1;
s1 += *aData++ + s2;
s2 += *aData++ + s1;
s1 += *aData++ + s2;
s2 += *aData++ + s1;
s1 += *aData++ + s2;
s2 += *aData++ + s1;
s1 += *aData++ + s2;
s2 += *aData++ + s1;
s1 += *aData++ + s2;
s2 += *aData++ + s1;
s1 += *aData++ + s2;
s2 += *aData++ + s1;
}while( aData<aEnd );
}else{
do {
s1 += *aData++ + s2;
s2 += *aData++ + s1;
}while( aData<aEnd );
}
assert( aData==aEnd );
aOut[0] = s1;
aOut[1] = s2;
}
/*
** If there is the possibility of concurrent access to the SHM file
** from multiple threads and/or processes, then do a memory barrier.
*/
static void walShmBarrier(Wal *pWal){
if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
sqlite3OsShmBarrier(pWal->pDbFd);
}
}
/*
** Add the SQLITE_NO_TSAN as part of the return-type of a function
** definition as a hint that the function contains constructs that
** might give false-positive TSAN warnings.
**
** See tag-20200519-1.
*/
#if defined(__clang__) && !defined(SQLITE_NO_TSAN)
# define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
#else
# define SQLITE_NO_TSAN
#endif
/*
** Write the header information in pWal->hdr into the wal-index.
**
** The checksum on pWal->hdr is updated before it is written.
*/
static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
const int nCksum = offsetof(WalIndexHdr, aCksum);
assert( pWal->writeLock );
pWal->hdr.isInit = 1;
pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
/* Possible TSAN false-positive. See tag-20200519-1 */
memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
walShmBarrier(pWal);
memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
}
/*
** This function encodes a single frame header and writes it to a buffer
** supplied by the caller. A frame-header is made up of a series of
** 4-byte big-endian integers, as follows:
**
** 0: Page number.
** 4: For commit records, the size of the database image in pages
** after the commit. For all other records, zero.
** 8: Salt-1 (copied from the wal-header)
** 12: Salt-2 (copied from the wal-header)
** 16: Checksum-1.
** 20: Checksum-2.
*/
static void walEncodeFrame(
Wal *pWal, /* The write-ahead log */
u32 iPage, /* Database page number for frame */
u32 nTruncate, /* New db size (or 0 for non-commit frames) */
u8 *aData, /* Pointer to page data */
u8 *aFrame /* OUT: Write encoded frame here */
){
int nativeCksum; /* True for native byte-order checksums */
u32 *aCksum = pWal->hdr.aFrameCksum;
assert( WAL_FRAME_HDRSIZE==24 );
sqlite3Put4byte(&aFrame[0], iPage);
sqlite3Put4byte(&aFrame[4], nTruncate);
if( pWal->iReCksum==0 ){
memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
sqlite3Put4byte(&aFrame[16], aCksum[0]);
sqlite3Put4byte(&aFrame[20], aCksum[1]);
}else{
memset(&aFrame[8], 0, 16);
}
}
/*
** Check to see if the frame with header in aFrame[] and content
** in aData[] is valid. If it is a valid frame, fill *piPage and
** *pnTruncate and return true. Return if the frame is not valid.
*/
static int walDecodeFrame(
Wal *pWal, /* The write-ahead log */
u32 *piPage, /* OUT: Database page number for frame */
u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
u8 *aData, /* Pointer to page data (for checksum) */
u8 *aFrame /* Frame data */
){
int nativeCksum; /* True for native byte-order checksums */
u32 *aCksum = pWal->hdr.aFrameCksum;
u32 pgno; /* Page number of the frame */
assert( WAL_FRAME_HDRSIZE==24 );
/* A frame is only valid if the salt values in the frame-header
** match the salt values in the wal-header.
*/
if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
return 0;
}
/* A frame is only valid if the page number is greater than zero.
*/
pgno = sqlite3Get4byte(&aFrame[0]);
if( pgno==0 ){
return 0;
}
/* A frame is only valid if a checksum of the WAL header,
** all prior frames, the first 16 bytes of this frame-header,
** and the frame-data matches the checksum in the last 8
** bytes of this frame-header.
*/
nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
|| aCksum[1]!=sqlite3Get4byte(&aFrame[20])
){
/* Checksum failed. */
return 0;
}
/* If we reach this point, the frame is valid. Return the page number
** and the new database size.
*/
*piPage = pgno;
*pnTruncate = sqlite3Get4byte(&aFrame[4]);
return 1;
}
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
/*
** Names of locks. This routine is used to provide debugging output and is not
** a part of an ordinary build.
*/
static const char *walLockName(int lockIdx){
if( lockIdx==WAL_WRITE_LOCK ){
return "WRITE-LOCK";
}else if( lockIdx==WAL_CKPT_LOCK ){
return "CKPT-LOCK";
}else if( lockIdx==WAL_RECOVER_LOCK ){
return "RECOVER-LOCK";
}else{
static char zName[15];
sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
lockIdx-WAL_READ_LOCK(0));
return zName;
}
}
#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
/*
** Set or release locks on the WAL. Locks are either shared or exclusive.
** A lock cannot be moved directly between shared and exclusive - it must go
** through the unlocked state first.
**
** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
*/
static int walLockShared(Wal *pWal, int lockIdx){
int rc;
if( pWal->exclusiveMode ) return SQLITE_OK;
rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
walLockName(lockIdx), rc ? "failed" : "ok"));
VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
return rc;
}
static void walUnlockShared(Wal *pWal, int lockIdx){
if( pWal->exclusiveMode ) return;
(void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
}
static int walLockExclusive(Wal *pWal, int lockIdx, int n){
int rc;
if( pWal->exclusiveMode ) return SQLITE_OK;
rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
walLockName(lockIdx), n, rc ? "failed" : "ok"));
VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
return rc;
}
static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
if( pWal->exclusiveMode ) return;
(void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
walLockName(lockIdx), n));
}
/*
** Compute a hash on a page number. The resulting hash value must land
** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
** the hash to the next value in the event of a collision.
*/
static int walHash(u32 iPage){
assert( iPage>0 );
assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
}
static int walNextHash(int iPriorHash){
return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
}
/*
** An instance of the WalHashLoc object is used to describe the location
** of a page hash table in the wal-index. This becomes the return value
** from walHashGet().
*/
typedef struct WalHashLoc WalHashLoc;
struct WalHashLoc {
volatile ht_slot *aHash; /* Start of the wal-index hash table */
volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
u32 iZero; /* One less than the frame number of first indexed*/
};
/*
** Return pointers to the hash table and page number array stored on
** page iHash of the wal-index. The wal-index is broken into 32KB pages
** numbered starting from 0.
**
** Set output variable pLoc->aHash to point to the start of the hash table
** in the wal-index file. Set pLoc->iZero to one less than the frame
** number of the first frame indexed by this hash table. If a
** slot in the hash table is set to N, it refers to frame number
** (pLoc->iZero+N) in the log.
**
** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the
** first frame indexed by the hash table, frame (pLoc->iZero).
*/
static int walHashGet(
Wal *pWal, /* WAL handle */
int iHash, /* Find the iHash'th table */
WalHashLoc *pLoc /* OUT: Hash table location */
){
int rc; /* Return code */
rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
assert( rc==SQLITE_OK || iHash>0 );
if( pLoc->aPgno ){
pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
if( iHash==0 ){
pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
pLoc->iZero = 0;
}else{
pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
}
}else if( NEVER(rc==SQLITE_OK) ){
rc = SQLITE_ERROR;
}
return rc;
}
/*
** Return the number of the wal-index page that contains the hash-table
** and page-number array that contain entries corresponding to WAL frame
** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
** are numbered starting from 0.
*/
static int walFramePage(u32 iFrame){
int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
&& (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
&& (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
&& (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
&& (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
);
assert( iHash>=0 );
return iHash;
}
/*
** Return the page number associated with frame iFrame in this WAL.
*/
static u32 walFramePgno(Wal *pWal, u32 iFrame){
int iHash = walFramePage(iFrame);
SEH_INJECT_FAULT;
if( iHash==0 ){
return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
}
volatile u32 *page;
int rc = walIndexPage(pWal, iHash, &page);
assert( rc==SQLITE_OK || iHash>0 );
if (rc != SQLITE_OK) {
return 0;
}
return page[(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
}
/*
** Remove entries from the hash table that point to WAL slots greater
** than pWal->hdr.mxFrame.
**
** This function is called whenever pWal->hdr.mxFrame is decreased due
** to a rollback or savepoint.
**
** At most only the hash table containing pWal->hdr.mxFrame needs to be
** updated. Any later hash tables will be automatically cleared when
** pWal->hdr.mxFrame advances to the point where those hash tables are
** actually needed.
*/
static void walCleanupHash(Wal *pWal){
WalHashLoc sLoc; /* Hash table location */
int iLimit = 0; /* Zero values greater than this */
int nByte; /* Number of bytes to zero in aPgno[] */
int i; /* Used to iterate through aHash[] */
assert( pWal->writeLock );
testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
if( pWal->hdr.mxFrame==0 ) return;
/* Obtain pointers to the hash-table and page-number array containing
** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
** that the page said hash-table and array reside on is already mapped.(1)
*/
assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
/* Zero all hash-table entries that correspond to frame numbers greater
** than pWal->hdr.mxFrame.
*/
iLimit = pWal->hdr.mxFrame - sLoc.iZero;
assert( iLimit>0 );
for(i=0; i<HASHTABLE_NSLOT; i++){
if( sLoc.aHash[i]>iLimit ){
sLoc.aHash[i] = 0;
}
}
/* Zero the entries in the aPgno array that correspond to frames with
** frame numbers greater than pWal->hdr.mxFrame.
*/
nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]);
assert( nByte>=0 );
memset((void *)&sLoc.aPgno[iLimit], 0, nByte);
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
/* Verify that the every entry in the mapping region is still reachable
** via the hash table even after the cleanup.
*/
if( iLimit ){
int j; /* Loop counter */
int iKey; /* Hash key */
for(j=0; j<iLimit; j++){
for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
if( sLoc.aHash[iKey]==j+1 ) break;
}
assert( sLoc.aHash[iKey]==j+1 );
}
}
#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
}
/*
** Set an entry in the wal-index that will map database page number
** pPage into WAL frame iFrame.
*/
static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
int rc; /* Return code */
WalHashLoc sLoc; /* Wal-index hash table location */
rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
/* Assuming the wal-index file was successfully mapped, populate the
** page number array and hash table entry.
*/
if( rc==SQLITE_OK ){
int iKey; /* Hash table key */
int idx; /* Value to write to hash-table slot */
int nCollide; /* Number of hash collisions */
idx = iFrame - sLoc.iZero;
assert( idx <= HASHTABLE_NSLOT/2 + 1 );
/* If this is the first entry to be added to this hash-table, zero the
** entire hash table and aPgno[] array before proceeding.
*/
if( idx==1 ){
int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno);
assert( nByte>=0 );
memset((void*)sLoc.aPgno, 0, nByte);
}
/* If the entry in aPgno[] is already set, then the previous writer
** must have exited unexpectedly in the middle of a transaction (after
** writing one or more dirty pages to the WAL to free up memory).
** Remove the remnants of that writers uncommitted transaction from
** the hash-table before writing any new entries.
*/
if( sLoc.aPgno[idx-1] ){
walCleanupHash(pWal);
assert( !sLoc.aPgno[idx-1] );
}
/* Write the aPgno[] array entry and the hash-table slot. */
nCollide = idx;
for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
}
sLoc.aPgno[idx-1] = iPage;
AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
/* Verify that the number of entries in the hash table exactly equals
** the number of entries in the mapping region.
*/
{
int i; /* Loop counter */
int nEntry = 0; /* Number of entries in the hash table */
for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
assert( nEntry==idx );
}
/* Verify that the every entry in the mapping region is reachable
** via the hash table. This turns out to be a really, really expensive
** thing to check, so only do this occasionally - not on every
** iteration.
*/
if( (idx&0x3ff)==0 ){
int i; /* Loop counter */
for(i=0; i<idx; i++){
for(iKey=walHash(sLoc.aPgno[i]);
sLoc.aHash[iKey];
iKey=walNextHash(iKey)){
if( sLoc.aHash[iKey]==i+1 ) break;
}
assert( sLoc.aHash[iKey]==i+1 );
}
}
#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
}
return rc;
}
/*
** Recover the wal-index by reading the write-ahead log file.
**
** This routine first tries to establish an exclusive lock on the
** wal-index to prevent other threads/processes from doing anything
** with the WAL or wal-index while recovery is running. The
** WAL_RECOVER_LOCK is also held so that other threads will know
** that this thread is running recovery. If unable to establish
** the necessary locks, this routine returns SQLITE_BUSY.
*/
static int walIndexRecover(Wal *pWal){
int rc; /* Return Code */
i64 nSize; /* Size of log file */
u32 aFrameCksum[2] = {0, 0};
int iLock; /* Lock offset to lock for checkpoint */
/* Obtain an exclusive lock on all byte in the locking range not already
** locked by the caller. The caller is guaranteed to have locked the
** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
** If successful, the same bytes that are locked here are unlocked before
** this function returns.
*/
assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
assert( pWal->writeLock );
iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
if( rc ){
return rc;
}
WALTRACE(("WAL%p: recovery begin...\n", pWal));
memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
if( rc!=SQLITE_OK ){
goto recovery_error;
}
if( nSize>WAL_HDRSIZE ){
u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */
u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
int szFrame; /* Number of bytes in buffer aFrame[] */
u8 *aData; /* Pointer to data part of aFrame buffer */
int szPage; /* Page size according to the log */
u32 magic; /* Magic value read from WAL header */
u32 version; /* Magic value read from WAL header */
int isValid; /* True if this frame is valid */
u32 iPg; /* Current 32KB wal-index page */
u32 iLastFrame; /* Last frame in wal, based on nSize alone */
/* Read in the WAL header. */
rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
if( rc!=SQLITE_OK ){
goto recovery_error;
}
/* If the database page size is not a power of two, or is greater than
** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
** data. Similarly, if the 'magic' value is invalid, ignore the whole
** WAL file.
*/
magic = sqlite3Get4byte(&aBuf[0]);
szPage = sqlite3Get4byte(&aBuf[8]);
if( (magic&0xFFFFFFFE)!=WAL_MAGIC
|| szPage&(szPage-1)
|| szPage>SQLITE_MAX_PAGE_SIZE
|| szPage<512
){
goto finished;
}
pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
pWal->szPage = szPage;
pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
/* Verify that the WAL header checksum is correct */
walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
);
if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
|| pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
){
goto finished;
}
/* Verify that the version number on the WAL format is one that
** are able to understand */
version = sqlite3Get4byte(&aBuf[4]);
if( version!=WAL_MAX_VERSION ){
rc = SQLITE_CANTOPEN_BKPT;
goto finished;
}
/* Malloc a buffer to read frames into. */
szFrame = szPage + WAL_FRAME_HDRSIZE;
aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
SEH_FREE_ON_ERROR(0, aFrame);
if( !aFrame ){
rc = SQLITE_NOMEM_BKPT;
goto recovery_error;
}
aData = &aFrame[WAL_FRAME_HDRSIZE];
aPrivate = (u32*)&aData[szPage];
/* Read all frames from the log file. */
iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
u32 *aShare;
u32 iFrame; /* Index of last frame read */
u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
u32 nHdr, nHdr32;
rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
assert( aShare!=0 || rc!=SQLITE_OK );
if( aShare==0 ) break;
SEH_SET_ON_ERROR(iPg, aShare);
pWal->apWiData[iPg] = aPrivate;
for(iFrame=iFirst; iFrame<=iLast; iFrame++){
i64 iOffset = walFrameOffset(iFrame, szPage);
u32 pgno; /* Database page number for frame */
u32 nTruncate; /* dbsize field from frame header */
/* Read and decode the next log frame. */
rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
if( rc!=SQLITE_OK ) break;
isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
if( !isValid ) break;
rc = walIndexAppend(pWal, iFrame, pgno);
if( NEVER(rc!=SQLITE_OK) ) break;
/* If nTruncate is non-zero, this is a commit record. */
if( nTruncate ){
pWal->hdr.mxFrame = iFrame;
pWal->hdr.nPage = nTruncate;
pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
testcase( szPage<=32768 );
testcase( szPage>=65536 );
aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
}
}
pWal->apWiData[iPg] = aShare;
SEH_SET_ON_ERROR(0,0);
nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
nHdr32 = nHdr / sizeof(u32);
#ifndef SQLITE_SAFER_WALINDEX_RECOVERY
/* Memcpy() should work fine here, on all reasonable implementations.
** Technically, memcpy() might change the destination to some
** intermediate value before setting to the final value, and that might
** cause a concurrent reader to malfunction. Memcpy() is allowed to
** do that, according to the spec, but no memcpy() implementation that
** we know of actually does that, which is why we say that memcpy()
** is safe for this. Memcpy() is certainly a lot faster.
*/
memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
#else
/* In the event that some platform is found for which memcpy()
** changes the destination to some intermediate value before
** setting the final value, this alternative copy routine is
** provided.
*/
{
int i;
for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
if( aShare[i]!=aPrivate[i] ){
/* Atomic memory operations are not required here because if
** the value needs to be changed, that means it is not being
** accessed concurrently. */
aShare[i] = aPrivate[i];
}
}
}
#endif
SEH_INJECT_FAULT;
if( iFrame<=iLast ) break;
}
SEH_FREE_ON_ERROR(aFrame, 0);
sqlite3_free(aFrame);
}
finished:
if( rc==SQLITE_OK ){
volatile WalCkptInfo *pInfo;
int i;
pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
walIndexWriteHdr(pWal);
/* Reset the checkpoint-header. This is safe because this thread is
** currently holding locks that exclude all other writers and
** checkpointers. Then set the values of read-mark slots 1 through N.
*/
pInfo = walCkptInfo(pWal);
pInfo->nBackfill = 0;
pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
pInfo->aReadMark[0] = 0;
for(i=1; i<WAL_NREADER; i++){
rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
if( rc==SQLITE_OK ){
if( i==1 && pWal->hdr.mxFrame ){
pInfo->aReadMark[i] = pWal->hdr.mxFrame;
}else{
pInfo->aReadMark[i] = READMARK_NOT_USED;
}
SEH_INJECT_FAULT;
walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
}else if( rc!=SQLITE_BUSY ){
goto recovery_error;
}
}
/* If more than one frame was recovered from the log file, report an
** event via sqlite3_log(). This is to help with identifying performance
** problems caused by applications routinely shutting down without
** checkpointing the log file.
*/
if( pWal->hdr.nPage ){
sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
"recovered %d frames from WAL file %s",
pWal->hdr.mxFrame, pWal->zWalName
);
}
}
recovery_error:
WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
return rc;
}
/*
** Close an open wal-index.
*/
static void walIndexClose(Wal *pWal, int isDelete){
if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
int i;
for(i=0; i<pWal->nWiData; i++){
sqlite3_free((void *)pWal->apWiData[i]);
pWal->apWiData[i] = 0;
}
}
if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
}
}
/*
** Change the size to which the WAL file is truncated on each reset.
*/
static void sqlite3WalLimit(Wal *pWal, i64 iLimit){
if( pWal ) pWal->mxWalSize = iLimit;
}
/*
** Find the smallest page number out of all pages held in the WAL that
** has not been returned by any prior invocation of this method on the
** same WalIterator object. Write into *piFrame the frame index where
** that page was last written into the WAL. Write into *piPage the page
** number.
**
** Return 0 on success. If there are no pages in the WAL with a page
** number larger than *piPage, then return 1.
*/
static int walIteratorNext(
WalIterator *p, /* Iterator */
u32 *piPage, /* OUT: The page number of the next page */
u32 *piFrame /* OUT: Wal frame index of next page */
){
u32 iMin; /* Result pgno must be greater than iMin */
u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
int i; /* For looping through segments */
iMin = p->iPrior;
assert( iMin<0xffffffff );
for(i=p->nSegment-1; i>=0; i--){
struct WalSegment *pSegment = &p->aSegment[i];
while( pSegment->iNext<pSegment->nEntry ){
u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
if( iPg>iMin ){
if( iPg<iRet ){
iRet = iPg;
*piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
}
break;
}
pSegment->iNext++;
}
}
*piPage = p->iPrior = iRet;
return (iRet==0xFFFFFFFF);
}
/*
** Return 0 on success. If there are no pages in the WAL with a page
** number larger than *piPage, then return 1.
*/
static int walIteratorRevNext(
struct WalIteratorRev *p, /* Iterator */
u32 *piPage, /* OUT: The page number of the next page */
u32 *piFrame /* OUT: Wal frame index of next page */
){
while (p->current > 0 && p->frames[p->current] == 0) {
p->current -= 1;
}
if (p->current == 0) {
return 1;
}
*piFrame = p->current;
*piPage = p->frames[p->current];
p->current--;
return 0;
}
/*
** This function merges two sorted lists into a single sorted list.
**
** aLeft[] and aRight[] are arrays of indices. The sort key is
** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
** is guaranteed for all J<K:
**
** aContent[aLeft[J]] < aContent[aLeft[K]]
** aContent[aRight[J]] < aContent[aRight[K]]
**
** This routine overwrites aRight[] with a new (probably longer) sequence
** of indices such that the aRight[] contains every index that appears in
** either aLeft[] or the old aRight[] and such that the second condition
** above is still met.
**
** The aContent[aLeft[X]] values will be unique for all X. And the
** aContent[aRight[X]] values will be unique too. But there might be
** one or more combinations of X and Y such that
**
** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
**
** When that happens, omit the aLeft[X] and use the aRight[Y] index.
*/
static void walMerge(
const u32 *aContent, /* Pages in wal - keys for the sort */
ht_slot *aLeft, /* IN: Left hand input list */
int nLeft, /* IN: Elements in array *paLeft */
ht_slot **paRight, /* IN/OUT: Right hand input list */
int *pnRight, /* IN/OUT: Elements in *paRight */
ht_slot *aTmp /* Temporary buffer */
){
int iLeft = 0; /* Current index in aLeft */
int iRight = 0; /* Current index in aRight */
int iOut = 0; /* Current index in output buffer */
int nRight = *pnRight;
ht_slot *aRight = *paRight;
assert( nLeft>0 && nRight>0 );
while( iRight<nRight || iLeft<nLeft ){
ht_slot logpage;
Pgno dbpage;
if( (iLeft<nLeft)
&& (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
){
logpage = aLeft[iLeft++];
}else{
logpage = aRight[iRight++];
}
dbpage = aContent[logpage];
aTmp[iOut++] = logpage;
if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
}
*paRight = aLeft;
*pnRight = iOut;
memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
}
/*
** Sort the elements in list aList using aContent[] as the sort key.
** Remove elements with duplicate keys, preferring to keep the
** larger aList[] values.
**
** The aList[] entries are indices into aContent[]. The values in
** aList[] are to be sorted so that for all J<K:
**
** aContent[aList[J]] < aContent[aList[K]]
**
** For any X and Y such that
**
** aContent[aList[X]] == aContent[aList[Y]]
**
** Keep the larger of the two values aList[X] and aList[Y] and discard
** the smaller.
*/
static void walMergesort(
const u32 *aContent, /* Pages in wal */
ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
ht_slot *aList, /* IN/OUT: List to sort */
int *pnList /* IN/OUT: Number of elements in aList[] */
){
struct Sublist {
int nList; /* Number of elements in aList */
ht_slot *aList; /* Pointer to sub-list content */
};
const int nList = *pnList; /* Size of input list */
int nMerge = 0; /* Number of elements in list aMerge */
ht_slot *aMerge = 0; /* List to be merged */
int iList; /* Index into input list */
u32 iSub = 0; /* Index into aSub array */
struct Sublist aSub[13]; /* Array of sub-lists */
memset(aSub, 0, sizeof(aSub));
assert( nList<=HASHTABLE_NPAGE && nList>0 );
assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
for(iList=0; iList<nList; iList++){
nMerge = 1;
aMerge = &aList[iList];
for(iSub=0; iList & (1<<iSub); iSub++){
struct Sublist *p;
assert( iSub<ArraySize(aSub) );
p = &aSub[iSub];
assert( p->aList && p->nList<=(1<<iSub) );
assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
}
aSub[iSub].aList = aMerge;
aSub[iSub].nList = nMerge;
}
for(iSub++; iSub<ArraySize(aSub); iSub++){
if( nList & (1<<iSub) ){
struct Sublist *p;
assert( iSub<ArraySize(aSub) );
p = &aSub[iSub];
assert( p->nList<=(1<<iSub) );
assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
}
}
assert( aMerge==aList );
*pnList = nMerge;
#ifdef SQLITE_DEBUG
{
int i;
for(i=1; i<*pnList; i++){
assert( aContent[aList[i]] > aContent[aList[i-1]] );
}
}
#endif
}
/*
** Free an iterator allocated by walIteratorInit().
*/
static void walIteratorFree(WalIterator *p){
sqlite3_free(p);
}
/*
** Construct a WalInterator object that can be used to loop over all
** pages in the WAL following frame nBackfill in ascending order. Frames
** nBackfill or earlier may be included - excluding them is an optimization
** only. The caller must hold the checkpoint lock.
**
** On success, make *pp point to the newly allocated WalInterator object
** return SQLITE_OK. Otherwise, return an error code. If this routine
** returns an error, the value of *pp is undefined.
**
** The calling routine should invoke walIteratorFree() to destroy the
** WalIterator object when it has finished with it.
*/
static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
WalIterator *p; /* Return value */
int nSegment; /* Number of segments to merge */
u32 iLast; /* Last frame in log */
sqlite3_int64 nByte; /* Number of bytes to allocate */
int i; /* Iterator variable */
ht_slot *aTmp; /* Temp space used by merge-sort */
int rc = SQLITE_OK; /* Return Code */
/* This routine only runs while holding the checkpoint lock. And
** it only runs if there is actually content in the log (mxFrame>0).
*/
assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
iLast = pWal->hdr.mxFrame;
/* Allocate space for the WalIterator object. */
nSegment = walFramePage(iLast) + 1;
nByte = sizeof(WalIterator)
+ (nSegment-1)*sizeof(struct WalSegment)
+ iLast*sizeof(ht_slot);
p = (WalIterator *)sqlite3_malloc64(nByte
+ sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
);
if( !p ){
return SQLITE_NOMEM_BKPT;
}
memset(p, 0, nByte);
p->nSegment = nSegment;
aTmp = (ht_slot*)&(((u8*)p)[nByte]);
SEH_FREE_ON_ERROR(0, p);
for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
WalHashLoc sLoc;
rc = walHashGet(pWal, i, &sLoc);
if( rc==SQLITE_OK ){
int j; /* Counter variable */
int nEntry; /* Number of entries in this segment */
ht_slot *aIndex; /* Sorted index for this segment */
if( (i+1)==nSegment ){
nEntry = (int)(iLast - sLoc.iZero);
}else{
nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
}
aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
sLoc.iZero++;
for(j=0; j<nEntry; j++){
aIndex[j] = (ht_slot)j;
}
walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
p->aSegment[i].iZero = sLoc.iZero;
p->aSegment[i].nEntry = nEntry;
p->aSegment[i].aIndex = aIndex;
p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
}
}
if( rc!=SQLITE_OK ){
SEH_FREE_ON_ERROR(p, 0);
walIteratorFree(p);
p = 0;
}
*pp = p;
return rc;
}
static int walIteratorRevInit(Wal *pWal, u32 nBackfill, struct WalIteratorRev *p, u32 mxSafeFrame, int ignoreFrameIfNewerExist){
WalIterator *pIter;
u32 *frames;
u32 iFrame, iPageno;
int rc;
frames = (u32*)sqlite3MallocZero((pWal->hdr.mxFrame + 1) * sizeof(u32));
if (!frames) return SQLITE_NOMEM_BKPT;
rc = walIteratorInit(pWal, nBackfill, &pIter);
if (rc || !pIter) {
sqlite3_free(frames);
return rc;
}
while (walIteratorNext(pIter, &iPageno, &iFrame) == 0) {
/*
* If we get a page with a frame_no greater than mxSafeFrame, and ignoreFrameIfNewerExist is false,
* then we replace it with the latest page with frame_no <= mxSafeFrame.
*/
if (iFrame > mxSafeFrame && !ignoreFrameIfNewerExist) {
rc = walFindFrame(pWal, iPageno, mxSafeFrame, &iFrame);
if( rc!=SQLITE_OK ) break;
if (iFrame == 0) {
continue;
}
}
frames[iFrame] = iPageno;
}
walIteratorFree(pIter);
if (rc != 0) {
sqlite3_free(frames);
return rc;
}
p->current = pWal->hdr.mxFrame;
p->frames = frames;
return SQLITE_OK;
}
static void walIteratorRevFree(struct WalIteratorRev *p) {
p->current = 0;
sqlite3_free(p->frames);
}
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
/*
** Attempt to enable blocking locks that block for nMs ms. Return 1 if
** blocking locks are successfully enabled, or 0 otherwise.
*/
static int walEnableBlockingMs(Wal *pWal, int nMs){
int rc = sqlite3OsFileControl(
pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&nMs
);
return (rc==SQLITE_OK);
}
/*
** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
** they are supported by the VFS, and (b) the database handle is configured
** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
** or 0 otherwise.
*/
static int walEnableBlocking(Wal *pWal){
int res = 0;
if( pWal->db ){
int tmout = pWal->db->busyTimeout;
if( tmout ){
res = walEnableBlockingMs(pWal, tmout);
}
}
return res;
}
/*
** Disable blocking locks.
*/
static void walDisableBlocking(Wal *pWal){
int tmout = 0;
sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
}
/*
** If parameter bLock is true, attempt to enable blocking locks, take
** the WRITER lock, and then disable blocking locks. If blocking locks
** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
** an error if blocking locks can not be enabled.
**
** If the bLock parameter is false and the WRITER lock is held, release it.
*/
static int sqlite3WalWriteLock(Wal *pWal, int bLock){
int rc = SQLITE_OK;
assert( pWal->readLock<0 || bLock==0 );
if( bLock ){
assert( pWal->db );
if( walEnableBlocking(pWal) ){
rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
if( rc==SQLITE_OK ){
pWal->writeLock = 1;
}
walDisableBlocking(pWal);
}
}else if( pWal->writeLock ){
walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
pWal->writeLock = 0;
}
return rc;
}
/*
** Take an exclusive WRITE lock. Blocking if so configured.
*/
static int walLockWriter(Wal *pWal){
int rc;
walEnableBlocking(pWal);
rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
walDisableBlocking(pWal);
return rc;
}
#else
# define walEnableBlocking(x) 0
# define walDisableBlocking(x)
# define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
#endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
/*
** Set the database handle used to determine if blocking locks are required.
*/
static void sqlite3WalDb(Wal *pWal, sqlite3 *db){
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
pWal->db = db;
#endif
}
/*
** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
** n. If the attempt fails and parameter xBusy is not NULL, then it is a
** busy-handler function. Invoke it and retry the lock until either the
** lock is successfully obtained or the busy-handler returns 0.
*/
static int walBusyLock(
Wal *pWal, /* WAL connection */
int (*xBusy)(void*), /* Function to call when busy */
void *pBusyArg, /* Context argument for xBusyHandler */
int lockIdx, /* Offset of first byte to lock */
int n /* Number of bytes to lock */
){
int rc;
do {
rc = walLockExclusive(pWal, lockIdx, n);
}while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
if( rc==SQLITE_BUSY_TIMEOUT ){
walDisableBlocking(pWal);
rc = SQLITE_BUSY;
}
#endif
return rc;
}
/*
** The cache of the wal-index header must be valid to call this function.
** Return the page-size in bytes used by the database.
*/
static int walPagesize(Wal *pWal){
return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
}
/*
** The following is guaranteed when this function is called:
**
** a) the WRITER lock is held,
** b) the entire log file has been checkpointed, and
** c) any existing readers are reading exclusively from the database
** file - there are no readers that may attempt to read a frame from
** the log file.
**
** This function updates the shared-memory structures so that the next
** client to write to the database (which may be this one) does so by
** writing frames into the start of the log file.
**
** The value of parameter salt1 is used as the aSalt[1] value in the
** new wal-index header. It should be passed a pseudo-random value (i.e.
** one obtained from sqlite3_randomness()).
*/
static void walRestartHdr(Wal *pWal, u32 salt1){
volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
int i; /* Loop counter */
u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
pWal->nCkpt++;
pWal->hdr.mxFrame = 0;
sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
walIndexWriteHdr(pWal);
AtomicStore(&pInfo->nBackfill, 0);
pInfo->nBackfillAttempted = 0;
pInfo->aReadMark[1] = 0;
for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
assert( pInfo->aReadMark[0]==0 );
}
/*
** Copy as much content as we can from the WAL back into the database file
** in response to an sqlite3_wal_checkpoint() request or the equivalent.
**
** The amount of information copies from WAL to database might be limited
** by active readers. This routine will never overwrite a database page
** that a concurrent reader might be using.
**
** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
** checkpoints are always run by a background thread or background
** process, foreground threads will never block on a lengthy fsync call.
**
** Fsync is called on the WAL before writing content out of the WAL and
** into the database. This ensures that if the new content is persistent
** in the WAL and can be recovered following a power-loss or hard reset.
**
** Fsync is also called on the database file if (and only if) the entire
** WAL content is copied into the database file. This second fsync makes
** it safe to delete the WAL since the new content will persist in the
** database file.
**
** This routine uses and updates the nBackfill field of the wal-index header.
** This is the only routine that will increase the value of nBackfill.
** (A WAL reset or recovery will revert nBackfill to zero, but not increase
** its value.)
**
** The caller must be holding sufficient locks to ensure that no other
** checkpoint is running (in any other thread or process) at the same
** time.
*/
static int walCheckpoint(
Wal *pWal, /* Wal connection */
sqlite3 *db, /* Check for interrupts on this handle */
int eMode, /* One of PASSIVE, FULL or RESTART */
int (*xBusy)(void*), /* Function to call when busy */
void *pBusyArg, /* Context argument for xBusyHandler */
int sync_flags, /* Flags for OsSync() (or 0) */
u8 *zBuf, /* Temporary buffer to use */
void *pCbData, /* User data passed to xCb */
int (*xCb)(void* pCbData, int mxSafeFrame, const unsigned char* pPage, int nPage, int pageNo, int frameNo) /* Checkpoint callback */
){
int rc = SQLITE_OK; /* Return code */
int szPage; /* Database page-size */
struct WalIteratorRev pIter = { 0 }; /* Wal iterator context */
u32 iDbpage = 0; /* Next database page to write */
u32 iFrame = 0; /* Wal frame containing data for iDbpage */
u32 mxSafeFrame; /* Max frame that can be backfilled */
u32 mxPage; /* Max database page to write */
int i; /* Loop counter */
volatile WalCkptInfo *pInfo; /* The checkpoint status information */
szPage = walPagesize(pWal);
testcase( szPage<=32768 );
testcase( szPage>=65536 );
pInfo = walCkptInfo(pWal);
if( pInfo->nBackfill<pWal->hdr.mxFrame ){
/* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
** in the SQLITE_CHECKPOINT_PASSIVE mode. */
assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
/* Compute in mxSafeFrame the index of the last frame of the WAL that is
** safe to write into the database. Frames beyond mxSafeFrame might
** overwrite database pages that are in use by active readers and thus
** cannot be backfilled from the WAL.
*/
mxSafeFrame = pWal->hdr.mxFrame;
mxPage = pWal->hdr.nPage;
for(i=1; i<WAL_NREADER; i++){
u32 y = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT;
if( mxSafeFrame>y ){
assert( y<=pWal->hdr.mxFrame );
rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
if( rc==SQLITE_OK ){
u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
AtomicStore(pInfo->aReadMark+i, iMark); SEH_INJECT_FAULT;
walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
}else if( rc==SQLITE_BUSY ){
mxSafeFrame = y;
xBusy = 0;
}else{
goto walcheckpoint_out;
}
}
}
/* Allocate the iterator */
if( pInfo->nBackfill<mxSafeFrame ){
rc = walIteratorRevInit(pWal, pInfo->nBackfill, &pIter, mxSafeFrame, xCb == NULL);
assert(rc == SQLITE_OK || pIter.frames == NULL);
}
if(( pIter.frames != NULL && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK)){
u32 nBackfill = pInfo->nBackfill;
pInfo->nBackfillAttempted = mxSafeFrame; SEH_INJECT_FAULT;
/* Sync the WAL to disk */
rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
/* If the database may grow as a result of this checkpoint, hint
** about the eventual size of the db file to the VFS layer.
*/
if( rc==SQLITE_OK ){
i64 nReq = ((i64)mxPage * szPage);
i64 nSize; /* Current size of database file */
sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
if( rc==SQLITE_OK && nSize<nReq ){
if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
/* If the size of the final database is larger than the current
** database plus the amount of data in the wal file, plus the
** maximum size of the pending-byte page (65536 bytes), then
** must be corruption somewhere. */
rc = SQLITE_CORRUPT_BKPT;
}else{
sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
}
}
}
/* Iterate through the contents of the WAL, copying data to the db file */
while( rc==SQLITE_OK && 0==walIteratorRevNext(&pIter, &iDbpage, &iFrame) ){
i64 iOffset;
assert( walFramePgno(pWal, iFrame)==iDbpage );
SEH_INJECT_FAULT;
if( AtomicLoad(&db->u1.isInterrupted) ){
rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
break;
}
if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
continue;
}
iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
/* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
if( rc!=SQLITE_OK ) break;
iOffset = (iDbpage-1)*(i64)szPage;
testcase( IS_BIG_INT(iOffset) );
rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
if( rc!=SQLITE_OK ) break;
if (xCb) {
rc = (xCb)(pCbData, mxSafeFrame, zBuf, szPage, iDbpage, iFrame);
}
if( rc!=SQLITE_OK ) break;
}
sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
/* If work was actually accomplished... */
if( rc==SQLITE_OK ){
if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
if (xCb) {
rc = (xCb)(pCbData, mxSafeFrame, NULL, 0, 0, 0);
}
i64 szDb = pWal->hdr.nPage*(i64)szPage;
testcase( IS_BIG_INT(szDb) );
rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
if( rc==SQLITE_OK ){
rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
}
}
if( rc==SQLITE_OK ){
AtomicStore(&pInfo->nBackfill, mxSafeFrame); SEH_INJECT_FAULT;
}
}
/* Release the reader lock held while backfilling */
walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
}
if( rc==SQLITE_BUSY ){
/* Reset the return code so as not to report a checkpoint failure
** just because there are active readers. */
rc = SQLITE_OK;
}
}
/* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
** entire wal file has been copied into the database file, then block
** until all readers have finished using the wal file. This ensures that
** the next process to write to the database restarts the wal file.
*/
if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
assert( pWal->writeLock );
SEH_INJECT_FAULT;
if( pInfo->nBackfill<pWal->hdr.mxFrame ){
rc = SQLITE_BUSY;
}else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
u32 salt1;
sqlite3_randomness(4, &salt1);
assert( pInfo->nBackfill==pWal->hdr.mxFrame );
rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
if( rc==SQLITE_OK ){
if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
/* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
** SQLITE_CHECKPOINT_RESTART with the addition that it also
** truncates the log file to zero bytes just prior to a
** successful return.
**
** In theory, it might be safe to do this without updating the
** wal-index header in shared memory, as all subsequent reader or
** writer clients should see that the entire log file has been
** checkpointed and behave accordingly. This seems unsafe though,
** as it would leave the system in a state where the contents of
** the wal-index header do not match the contents of the
** file-system. To avoid this, update the wal-index header to
** indicate that the log file contains zero valid frames. */
walRestartHdr(pWal, salt1);
rc = sqlite3OsTruncate(pWal->pWalFd, 0);
}
walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
}
}
}
walcheckpoint_out:
SEH_FREE_ON_ERROR(pIter, 0);
walIteratorRevFree(&pIter);
return rc;
}
/*
** If the WAL file is currently larger than nMax bytes in size, truncate
** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
*/
static void walLimitSize(Wal *pWal, i64 nMax){
i64 sz;
int rx;
sqlite3BeginBenignMalloc();
rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
if( rx==SQLITE_OK && (sz > nMax ) ){
rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
}
sqlite3EndBenignMalloc();
if( rx ){
sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
}
}
#ifdef SQLITE_USE_SEH
# error "SEH is not supported in libSQL due to virtual WAL backward compatibility!"
#else
# define walAssertLockmask(x) 1
#endif /* ifdef SQLITE_USE_SEH */
/*
** Close a connection to a log file.
*/
static int sqlite3WalClose(
wal_manager_impl *self,
Wal *pWal, /* Wal to close */
sqlite3 *db, /* For interrupt flag */
int sync_flags, /* Flags to pass to OsSync() (or 0) */
int nBuf,
u8 *zBuf /* Buffer of at least nBuf bytes */
){
int rc = SQLITE_OK;
if( pWal ){
int isDelete = 0; /* True to unlink wal and wal-index files */
assert( walAssertLockmask(pWal) );
/* If an EXCLUSIVE lock can be obtained on the database file (using the
** ordinary, rollback-mode locking methods, this guarantees that the
** connection associated with this log file is the only connection to
** the database. In this case checkpoint the database and unlink both
** the wal and wal-index files.
**
** The EXCLUSIVE lock is not released before returning.
*/
if( zBuf!=0
&& SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
){
if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
}
/* Don't checkpoint on close if automatic WAL checkpointing is disabled. */
if( !db->walCheckPointDisabled ){
rc = sqlite3WalCheckpoint(pWal, db,
SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0, NULL, NULL
);
} else {
rc = SQLITE_ERROR;
}
if( rc==SQLITE_OK ){
int bPersist = -1;
sqlite3OsFileControlHint(
pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
);
if( bPersist!=1 ){
/* Try to delete the WAL file if the checkpoint completed and
** fsynced (rc==SQLITE_OK) and if we are not in persistent-wal
** mode (!bPersist) */
isDelete = 1;
}else if( pWal->mxWalSize>=0 ){
/* Try to truncate the WAL file to zero bytes if the checkpoint
** completed and fsynced (rc==SQLITE_OK) and we are in persistent
** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
** non-negative value (pWal->mxWalSize>=0). Note that we truncate
** to zero bytes as truncating to the journal_size_limit might
** leave a corrupt WAL file on disk. */
walLimitSize(pWal, 0);
}
}
}
walIndexClose(pWal, isDelete);
sqlite3OsClose(pWal->pWalFd);
if( isDelete ){
sqlite3BeginBenignMalloc();
sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
sqlite3EndBenignMalloc();
}
WALTRACE(("WAL%p: closed\n", pWal));
sqlite3_free((void *)pWal->apWiData);
sqlite3_free(pWal);
}
return rc;
}
/*
** Try to read the wal-index header. Return 0 on success and 1 if
** there is a problem.
**
** The wal-index is in shared memory. Another thread or process might
** be writing the header at the same time this procedure is trying to
** read it, which might result in inconsistency. A dirty read is detected
** by verifying that both copies of the header are the same and also by
** a checksum on the header.
**
** If and only if the read is consistent and the header is different from
** pWal->hdr, then pWal->hdr is updated to the content of the new header
** and *pChanged is set to 1.
**
** If the checksum cannot be verified return non-zero. If the header
** is read successfully and the checksum verified, return zero.
*/
static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
u32 aCksum[2]; /* Checksum on the header content */
WalIndexHdr h1, h2; /* Two copies of the header content */
WalIndexHdr volatile *aHdr; /* Header in shared memory */
/* The first page of the wal-index must be mapped at this point. */
assert( pWal->nWiData>0 && pWal->apWiData[0] );
/* Read the header. This might happen concurrently with a write to the
** same area of shared memory on a different CPU in a SMP,
** meaning it is possible that an inconsistent snapshot is read
** from the file. If this happens, return non-zero.
**
** tag-20200519-1:
** There are two copies of the header at the beginning of the wal-index.
** When reading, read [0] first then [1]. Writes are in the reverse order.
** Memory barriers are used to prevent the compiler or the hardware from
** reordering the reads and writes. TSAN and similar tools can sometimes
** give false-positive warnings about these accesses because the tools do not
** account for the double-read and the memory barrier. The use of mutexes
** here would be problematic as the memory being accessed is potentially
** shared among multiple processes and not all mutex implementations work
** reliably in that environment.
*/
aHdr = walIndexHdr(pWal);
memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
walShmBarrier(pWal);
memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
return 1; /* Dirty read */
}
if( h1.isInit==0 ){
return 1; /* Malformed header - probably all zeros */
}
walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
return 1; /* Checksum does not match */
}
if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
*pChanged = 1;
memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
testcase( pWal->szPage<=32768 );
testcase( pWal->szPage>=65536 );
}
/* The header was successfully read. Return zero. */
return 0;
}
/*
** This is the value that walTryBeginRead returns when it needs to
** be retried.
*/
#define WAL_RETRY (-1)
/*
** Read the wal-index header from the wal-index and into pWal->hdr.
** If the wal-header appears to be corrupt, try to reconstruct the
** wal-index from the WAL before returning.
**
** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
** changed by this operation. If pWal->hdr is unchanged, set *pChanged
** to 0.
**
** If the wal-index header is successfully read, return SQLITE_OK.
** Otherwise an SQLite error code.
*/
static int walIndexReadHdr(Wal *pWal, int *pChanged){
int rc; /* Return code */
int badHdr; /* True if a header read failed */
volatile u32 *page0; /* Chunk of wal-index containing header */
/* Ensure that page 0 of the wal-index (the page that contains the
** wal-index header) is mapped. Return early if an error occurs here.
*/
assert( pChanged );
rc = walIndexPage(pWal, 0, &page0);
if( rc!=SQLITE_OK ){
assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
if( rc==SQLITE_READONLY_CANTINIT ){
/* The SQLITE_READONLY_CANTINIT return means that the shared-memory
** was openable but is not writable, and this thread is unable to
** confirm that another write-capable connection has the shared-memory
** open, and hence the content of the shared-memory is unreliable,
** since the shared-memory might be inconsistent with the WAL file
** and there is no writer on hand to fix it. */
assert( page0==0 );
assert( pWal->writeLock==0 );
assert( pWal->readOnly & WAL_SHM_RDONLY );
pWal->bShmUnreliable = 1;
pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
*pChanged = 1;
}else{
return rc; /* Any other non-OK return is just an error */
}
}else{
/* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
** is zero, which prevents the SHM from growing */
testcase( page0!=0 );
}
assert( page0!=0 || pWal->writeLock==0 );
/* If the first page of the wal-index has been mapped, try to read the
** wal-index header immediately, without holding any lock. This usually
** works, but may fail if the wal-index header is corrupt or currently
** being modified by another thread or process.
*/
badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
/* If the first attempt failed, it might have been due to a race
** with a writer. So get a WRITE lock and try again.
*/
if( badHdr ){
if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
walUnlockShared(pWal, WAL_WRITE_LOCK);
rc = SQLITE_READONLY_RECOVERY;
}
}else{
int bWriteLock = pWal->writeLock;
if( bWriteLock
|| SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1))
){
pWal->writeLock = 1;
if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
badHdr = walIndexTryHdr(pWal, pChanged);
if( badHdr ){
/* If the wal-index header is still malformed even while holding
** a WRITE lock, it can only mean that the header is corrupted and
** needs to be reconstructed. So run recovery to do exactly that.
** Disable blocking locks first. */
walDisableBlocking(pWal);
rc = walIndexRecover(pWal);
*pChanged = 1;
}
}
if( bWriteLock==0 ){
pWal->writeLock = 0;
walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
}
}
}
}
/* If the header is read successfully, check the version number to make
** sure the wal-index was not constructed with some future format that
** this version of SQLite cannot understand.
*/
if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
rc = SQLITE_CANTOPEN_BKPT;
}
if( pWal->bShmUnreliable ){
if( rc!=SQLITE_OK ){
walIndexClose(pWal, 0);
pWal->bShmUnreliable = 0;
assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
/* walIndexRecover() might have returned SHORT_READ if a concurrent
** writer truncated the WAL out from under it. If that happens, it
** indicates that a writer has fixed the SHM file for us, so retry */
if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
}
pWal->exclusiveMode = WAL_NORMAL_MODE;
}
return rc;
}
/*
** Open a transaction in a connection where the shared-memory is read-only
** and where we cannot verify that there is a separate write-capable connection
** on hand to keep the shared-memory up-to-date with the WAL file.
**
** This can happen, for example, when the shared-memory is implemented by
** memory-mapping a *-shm file, where a prior writer has shut down and
** left the *-shm file on disk, and now the present connection is trying
** to use that database but lacks write permission on the *-shm file.
** Other scenarios are also possible, depending on the VFS implementation.
**
** Precondition:
**
** The *-wal file has been read and an appropriate wal-index has been
** constructed in pWal->apWiData[] using heap memory instead of shared
** memory.
**
** If this function returns SQLITE_OK, then the read transaction has
** been successfully opened. In this case output variable (*pChanged)
** is set to true before returning if the caller should discard the
** contents of the page cache before proceeding. Or, if it returns
** WAL_RETRY, then the heap memory wal-index has been discarded and
** the caller should retry opening the read transaction from the
** beginning (including attempting to map the *-shm file).
**
** If an error occurs, an SQLite error code is returned.
*/
static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
i64 szWal; /* Size of wal file on disk in bytes */
i64 iOffset; /* Current offset when reading wal file */
u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
int szFrame; /* Number of bytes in buffer aFrame[] */
u8 *aData; /* Pointer to data part of aFrame buffer */
volatile void *pDummy; /* Dummy argument for xShmMap */
int rc; /* Return code */
u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
assert( pWal->bShmUnreliable );
assert( pWal->readOnly & WAL_SHM_RDONLY );
assert( pWal->nWiData>0 && pWal->apWiData[0] );
/* Take WAL_READ_LOCK(0). This has the effect of preventing any
** writers from running a checkpoint, but does not stop them
** from running recovery. */
rc = walLockShared(pWal, WAL_READ_LOCK(0));
if( rc!=SQLITE_OK ){
if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
goto begin_unreliable_shm_out;
}
pWal->readLock = 0;
/* Check to see if a separate writer has attached to the shared-memory area,
** thus making the shared-memory "reliable" again. Do this by invoking
** the xShmMap() routine of the VFS and looking to see if the return
** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
**
** If the shared-memory is now "reliable" return WAL_RETRY, which will
** cause the heap-memory WAL-index to be discarded and the actual
** shared memory to be used in its place.
**
** This step is important because, even though this connection is holding
** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
** have already checkpointed the WAL file and, while the current
** is active, wrap the WAL and start overwriting frames that this
** process wants to use.
**
** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
** even if some external agent does a "chmod" to make the shared-memory
** writable by us, until sqlite3OsShmUnmap() has been called.
** This is a requirement on the VFS implementation.
*/
rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
if( rc!=SQLITE_READONLY_CANTINIT ){
rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
goto begin_unreliable_shm_out;
}
/* We reach this point only if the real shared-memory is still unreliable.
** Assume the in-memory WAL-index substitute is correct and load it
** into pWal->hdr.
*/
memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
/* Make sure some writer hasn't come in and changed the WAL file out
** from under us, then disconnected, while we were not looking.
*/
rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
if( rc!=SQLITE_OK ){
goto begin_unreliable_shm_out;
}
if( szWal<WAL_HDRSIZE ){
/* If the wal file is too small to contain a wal-header and the
** wal-index header has mxFrame==0, then it must be safe to proceed
** reading the database file only. However, the page cache cannot
** be trusted, as a read/write connection may have connected, written
** the db, run a checkpoint, truncated the wal file and disconnected
** since this client's last read transaction. */
*pChanged = 1;
rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
goto begin_unreliable_shm_out;
}
/* Check the salt keys at the start of the wal file still match. */
rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
if( rc!=SQLITE_OK ){
goto begin_unreliable_shm_out;
}
if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
/* Some writer has wrapped the WAL file while we were not looking.
** Return WAL_RETRY which will cause the in-memory WAL-index to be
** rebuilt. */
rc = WAL_RETRY;
goto begin_unreliable_shm_out;
}
/* Allocate a buffer to read frames into */
assert( (pWal->szPage & (pWal->szPage-1))==0 );
assert( pWal->szPage>=512 && pWal->szPage<=65536 );
szFrame = pWal->szPage + WAL_FRAME_HDRSIZE;
aFrame = (u8 *)sqlite3_malloc64(szFrame);
if( aFrame==0 ){
rc = SQLITE_NOMEM_BKPT;
goto begin_unreliable_shm_out;
}
aData = &aFrame[WAL_FRAME_HDRSIZE];
/* Check to see if a complete transaction has been appended to the
** wal file since the heap-memory wal-index was created. If so, the
** heap-memory wal-index is discarded and WAL_RETRY returned to
** the caller. */
aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage);
iOffset+szFrame<=szWal;
iOffset+=szFrame
){
u32 pgno; /* Database page number for frame */
u32 nTruncate; /* dbsize field from frame header */
/* Read and decode the next log frame. */
rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
if( rc!=SQLITE_OK ) break;
if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
/* If nTruncate is non-zero, then a complete transaction has been
** appended to this wal file. Set rc to WAL_RETRY and break out of
** the loop. */
if( nTruncate ){
rc = WAL_RETRY;
break;
}
}
pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
begin_unreliable_shm_out:
sqlite3_free(aFrame);
if( rc!=SQLITE_OK ){
int i;
for(i=0; i<pWal->nWiData; i++){
sqlite3_free((void*)pWal->apWiData[i]);
pWal->apWiData[i] = 0;
}
pWal->bShmUnreliable = 0;
sqlite3WalEndReadTransaction(pWal);
*pChanged = 1;
}
return rc;
}
/*
** The final argument passed to walTryBeginRead() is of type (int*). The
** caller should invoke walTryBeginRead as follows:
**
** int cnt = 0;
** do {
** rc = walTryBeginRead(..., &cnt);
** }while( rc==WAL_RETRY );
**
** The final value of "cnt" is of no use to the caller. It is used by
** the implementation of walTryBeginRead() as follows:
**
** + Each time walTryBeginRead() is called, it is incremented. Once
** it reaches WAL_RETRY_PROTOCOL_LIMIT - indicating that walTryBeginRead()
** has many times been invoked and failed with WAL_RETRY - walTryBeginRead()
** returns SQLITE_PROTOCOL.
**
** + If SQLITE_ENABLE_SETLK_TIMEOUT is defined and walTryBeginRead() failed
** because a blocking lock timed out (SQLITE_BUSY_TIMEOUT from the OS
** layer), the WAL_RETRY_BLOCKED_MASK bit is set in "cnt". In this case
** the next invocation of walTryBeginRead() may omit an expected call to
** sqlite3OsSleep(). There has already been a delay when the previous call
** waited on a lock.
*/
#define WAL_RETRY_PROTOCOL_LIMIT 100
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
# define WAL_RETRY_BLOCKED_MASK 0x10000000
#else
# define WAL_RETRY_BLOCKED_MASK 0
#endif
/*
** Attempt to start a read transaction. This might fail due to a race or
** other transient condition. When that happens, it returns WAL_RETRY to
** indicate to the caller that it is safe to retry immediately.
**
** On success return SQLITE_OK. On a permanent failure (such an
** I/O error or an SQLITE_BUSY because another process is running
** recovery) return a positive error code.
**
** The useWal parameter is true to force the use of the WAL and disable
** the case where the WAL is bypassed because it has been completely
** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
** to make a copy of the wal-index header into pWal->hdr. If the
** wal-index header has changed, *pChanged is set to 1 (as an indication
** to the caller that the local page cache is obsolete and needs to be
** flushed.) When useWal==1, the wal-index header is assumed to already
** be loaded and the pChanged parameter is unused.
**
** The caller must set the cnt parameter to the number of prior calls to
** this routine during the current read attempt that returned WAL_RETRY.
** This routine will start taking more aggressive measures to clear the
** race conditions after multiple WAL_RETRY returns, and after an excessive
** number of errors will ultimately return SQLITE_PROTOCOL. The
** SQLITE_PROTOCOL return indicates that some other process has gone rogue
** and is not honoring the locking protocol. There is a vanishingly small
** chance that SQLITE_PROTOCOL could be returned because of a run of really
** bad luck when there is lots of contention for the wal-index, but that
** possibility is so small that it can be safely neglected, we believe.
**
** On success, this routine obtains a read lock on
** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
** that means the Wal does not hold any read lock. The reader must not
** access any database page that is modified by a WAL frame up to and
** including frame number aReadMark[pWal->readLock]. The reader will
** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
** Or if pWal->readLock==0, then the reader will ignore the WAL
** completely and get all content directly from the database file.
** If the useWal parameter is 1 then the WAL will never be ignored and
** this routine will always set pWal->readLock>0 on success.
** When the read transaction is completed, the caller must release the
** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
**
** This routine uses the nBackfill and aReadMark[] fields of the header
** to select a particular WAL_READ_LOCK() that strives to let the
** checkpoint process do as much work as possible. This routine might
** update values of the aReadMark[] array in the header, but if it does
** so it takes care to hold an exclusive lock on the corresponding
** WAL_READ_LOCK() while changing values.
*/
static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int *pCnt){
volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
u32 mxReadMark; /* Largest aReadMark[] value */
int mxI; /* Index of largest aReadMark[] value */
int i; /* Loop counter */
int rc = SQLITE_OK; /* Return code */
u32 mxFrame; /* Wal frame to lock to */
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
int nBlockTmout = 0;
#endif
assert( pWal->readLock<0 ); /* Not currently locked */
/* useWal may only be set for read/write connections */
assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
/* Take steps to avoid spinning forever if there is a protocol error.
**
** Circumstances that cause a RETRY should only last for the briefest
** instances of time. No I/O or other system calls are done while the
** locks are held, so the locks should not be held for very long. But
** if we are unlucky, another process that is holding a lock might get
** paged out or take a page-fault that is time-consuming to resolve,
** during the few nanoseconds that it is holding the lock. In that case,
** it might take longer than normal for the lock to free.
**
** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
** is more of a scheduler yield than an actual delay. But on the 10th
** an subsequent retries, the delays start becoming longer and longer,
** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
** The total delay time before giving up is less than 10 seconds.
*/
(*pCnt)++;
if( *pCnt>5 ){
int nDelay = 1; /* Pause time in microseconds */
int cnt = (*pCnt & ~WAL_RETRY_BLOCKED_MASK);
if( cnt>WAL_RETRY_PROTOCOL_LIMIT ){
VVA_ONLY( pWal->lockError = 1; )
return SQLITE_PROTOCOL;
}
if( *pCnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
/* In SQLITE_ENABLE_SETLK_TIMEOUT builds, configure the file-descriptor
** to block for locks for approximately nDelay us. This affects three
** locks: (a) the shared lock taken on the DMS slot in os_unix.c (if
** using os_unix.c), (b) the WRITER lock taken in walIndexReadHdr() if the
** first attempted read fails, and (c) the shared lock taken on the
** read-mark.
**
** If the previous call failed due to an SQLITE_BUSY_TIMEOUT error,
** then sleep for the minimum of 1us. The previous call already provided
** an extra delay while it was blocking on the lock.
*/
nBlockTmout = (nDelay+998) / 1000;
if( !useWal && walEnableBlockingMs(pWal, nBlockTmout) ){
if( *pCnt & WAL_RETRY_BLOCKED_MASK ) nDelay = 1;
}
#endif
sqlite3OsSleep(pWal->pVfs, nDelay);
*pCnt &= ~WAL_RETRY_BLOCKED_MASK;
}
if( !useWal ){
assert( rc==SQLITE_OK );
if( pWal->bShmUnreliable==0 ){
rc = walIndexReadHdr(pWal, pChanged);
}
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
walDisableBlocking(pWal);
if( rc==SQLITE_BUSY_TIMEOUT ){
rc = SQLITE_BUSY;
*pCnt |= WAL_RETRY_BLOCKED_MASK;
}
#endif
if( rc==SQLITE_BUSY ){
/* If there is not a recovery running in another thread or process
** then convert BUSY errors to WAL_RETRY. If recovery is known to
** be running, convert BUSY to BUSY_RECOVERY. There is a race here
** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
** would be technically correct. But the race is benign since with
** WAL_RETRY this routine will be called again and will probably be
** right on the second iteration.
*/
if( pWal->apWiData[0]==0 ){
/* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
** We assume this is a transient condition, so return WAL_RETRY. The
** xShmMap() implementation used by the default unix and win32 VFS
** modules may return SQLITE_BUSY due to a race condition in the
** code that determines whether or not the shared-memory region
** must be zeroed before the requested page is returned.
*/
rc = WAL_RETRY;
}else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
walUnlockShared(pWal, WAL_RECOVER_LOCK);
rc = WAL_RETRY;
}else if( rc==SQLITE_BUSY ){
rc = SQLITE_BUSY_RECOVERY;
}
}
if( rc!=SQLITE_OK ){
return rc;
}
else if( pWal->bShmUnreliable ){
return walBeginShmUnreliable(pWal, pChanged);
}
}
assert( pWal->nWiData>0 );
assert( pWal->apWiData[0]!=0 );
pInfo = walCkptInfo(pWal);
SEH_INJECT_FAULT;
if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
#ifdef SQLITE_ENABLE_SNAPSHOT
&& (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
#endif
){
/* The WAL has been completely backfilled (or it is empty).
** and can be safely ignored.
*/
rc = walLockShared(pWal, WAL_READ_LOCK(0));
walShmBarrier(pWal);
if( rc==SQLITE_OK ){
if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
/* It is not safe to allow the reader to continue here if frames
** may have been appended to the log before READ_LOCK(0) was obtained.
** When holding READ_LOCK(0), the reader ignores the entire log file,
** which implies that the database file contains a trustworthy
** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
** happening, this is usually correct.
**
** However, if frames have been appended to the log (or if the log
** is wrapped and written for that matter) before the READ_LOCK(0)
** is obtained, that is not necessarily true. A checkpointer may
** have started to backfill the appended frames but crashed before
** it finished. Leaving a corrupt image in the database file.
*/
walUnlockShared(pWal, WAL_READ_LOCK(0));
return WAL_RETRY;
}
pWal->readLock = 0;
return SQLITE_OK;
}else if( rc!=SQLITE_BUSY ){
return rc;
}
}
/* If we get this far, it means that the reader will want to use
** the WAL to get at content from recent commits. The job now is
** to select one of the aReadMark[] entries that is closest to
** but not exceeding pWal->hdr.mxFrame and lock that entry.
*/
mxReadMark = 0;
mxI = 0;
mxFrame = pWal->hdr.mxFrame;
#ifdef SQLITE_ENABLE_SNAPSHOT
if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
mxFrame = pWal->pSnapshot->mxFrame;
}
#endif
for(i=1; i<WAL_NREADER; i++){
u32 thisMark = AtomicLoad(pInfo->aReadMark+i); SEH_INJECT_FAULT;
if( mxReadMark<=thisMark && thisMark<=mxFrame ){
assert( thisMark!=READMARK_NOT_USED );
mxReadMark = thisMark;
mxI = i;
}
}
if( (pWal->readOnly & WAL_SHM_RDONLY)==0
&& (mxReadMark<mxFrame || mxI==0)
){
for(i=1; i<WAL_NREADER; i++){
rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
if( rc==SQLITE_OK ){
AtomicStore(pInfo->aReadMark+i,mxFrame);
mxReadMark = mxFrame;
mxI = i;
walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
break;
}else if( rc!=SQLITE_BUSY ){
return rc;
}
}
}
if( mxI==0 ){
assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
}
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
(void)walEnableBlockingMs(pWal, nBlockTmout);
#endif
rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
walDisableBlocking(pWal);
#endif
if( rc ){
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
if( rc==SQLITE_BUSY_TIMEOUT ){
*pCnt |= WAL_RETRY_BLOCKED_MASK;
}
#else
assert( rc!=SQLITE_BUSY_TIMEOUT );
#endif
assert( (rc&0xFF)!=SQLITE_BUSY||rc==SQLITE_BUSY||rc==SQLITE_BUSY_TIMEOUT );
return (rc&0xFF)==SQLITE_BUSY ? WAL_RETRY : rc;
}
/* Now that the read-lock has been obtained, check that neither the
** value in the aReadMark[] array or the contents of the wal-index
** header have changed.
**
** It is necessary to check that the wal-index header did not change
** between the time it was read and when the shared-lock was obtained
** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
** that the log file may have been wrapped by a writer, or that frames
** that occur later in the log than pWal->hdr.mxFrame may have been
** copied into the database by a checkpointer. If either of these things
** happened, then reading the database with the current value of
** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
** instead.
**
** Before checking that the live wal-index header has not changed
** since it was read, set Wal.minFrame to the first frame in the wal
** file that has not yet been checkpointed. This client will not need
** to read any frames earlier than minFrame from the wal file - they
** can be safely read directly from the database file.
**
** Because a ShmBarrier() call is made between taking the copy of
** nBackfill and checking that the wal-header in shared-memory still
** matches the one cached in pWal->hdr, it is guaranteed that the
** checkpointer that set nBackfill was not working with a wal-index
** header newer than that cached in pWal->hdr. If it were, that could
** cause a problem. The checkpointer could omit to checkpoint
** a version of page X that lies before pWal->minFrame (call that version
** A) on the basis that there is a newer version (version B) of the same
** page later in the wal file. But if version B happens to like past
** frame pWal->hdr.mxFrame - then the client would incorrectly assume
** that it can read version A from the database file. However, since
** we can guarantee that the checkpointer that set nBackfill could not
** see any pages past pWal->hdr.mxFrame, this problem does not come up.
*/
pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1; SEH_INJECT_FAULT;
walShmBarrier(pWal);
if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
|| memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
){
walUnlockShared(pWal, WAL_READ_LOCK(mxI));
return WAL_RETRY;
}else{
assert( mxReadMark<=pWal->hdr.mxFrame );
pWal->readLock = (i16)mxI;
}
return rc;
}
#ifdef SQLITE_ENABLE_SNAPSHOT
/*
** This function does the work of sqlite3WalSnapshotRecover().
*/
static int walSnapshotRecover(
Wal *pWal, /* WAL handle */
void *pBuf1, /* Temp buffer pWal->szPage bytes in size */
void *pBuf2 /* Temp buffer pWal->szPage bytes in size */
){
int szPage = (int)pWal->szPage;
int rc;
i64 szDb; /* Size of db file in bytes */
rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
if( rc==SQLITE_OK ){
volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
u32 i = pInfo->nBackfillAttempted;
for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
WalHashLoc sLoc; /* Hash table location */
u32 pgno; /* Page number in db file */
i64 iDbOff; /* Offset of db file entry */
i64 iWalOff; /* Offset of wal file entry */
rc = walHashGet(pWal, walFramePage(i), &sLoc);
if( rc!=SQLITE_OK ) break;
assert( i - sLoc.iZero - 1 >=0 );
pgno = sLoc.aPgno[i-sLoc.iZero-1];
iDbOff = (i64)(pgno-1) * szPage;
if( iDbOff+szPage<=szDb ){
iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
if( rc==SQLITE_OK ){
rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
}
if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
break;
}
}
pInfo->nBackfillAttempted = i-1;
}
}
return rc;
}
/*
** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
** variable so that older snapshots can be accessed. To do this, loop
** through all wal frames from nBackfillAttempted to (nBackfill+1),
** comparing their content to the corresponding page with the database
** file, if any. Set nBackfillAttempted to the frame number of the
** first frame for which the wal file content matches the db file.
**
** This is only really safe if the file-system is such that any page
** writes made by earlier checkpointers were atomic operations, which
** is not always true. It is also possible that nBackfillAttempted
** may be left set to a value larger than expected, if a wal frame
** contains content that duplicate of an earlier version of the same
** page.
**
** SQLITE_OK is returned if successful, or an SQLite error code if an
** error occurs. It is not an error if nBackfillAttempted cannot be
** decreased at all.
*/
static int sqlite3WalSnapshotRecover(Wal *pWal){
int rc;
assert( pWal->readLock>=0 );
rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
if( rc==SQLITE_OK ){
void *pBuf1 = sqlite3_malloc(pWal->szPage);
void *pBuf2 = sqlite3_malloc(pWal->szPage);
if( pBuf1==0 || pBuf2==0 ){
rc = SQLITE_NOMEM;
}else{
pWal->ckptLock = 1;
SEH_TRY {
rc = walSnapshotRecover(pWal, pBuf1, pBuf2);
}
SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
pWal->ckptLock = 0;
}
sqlite3_free(pBuf1);
sqlite3_free(pBuf2);
walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
}
return rc;
}
#endif /* SQLITE_ENABLE_SNAPSHOT */
/*
** This function does the work of sqlite3WalBeginReadTransaction() (see
** below). That function simply calls this one inside an SEH_TRY{...} block.
*/
static int walBeginReadTransaction(Wal *pWal, int *pChanged){
int rc; /* Return code */
int cnt = 0; /* Number of TryBeginRead attempts */
#ifdef SQLITE_ENABLE_SNAPSHOT
int ckptLock = 0;
int bChanged = 0;
WalIndexHdr *pSnapshot = pWal->pSnapshot;
#endif
assert( pWal->ckptLock==0 );
#ifdef SQLITE_ENABLE_SNAPSHOT
if( pSnapshot ){
if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
bChanged = 1;
}
/* It is possible that there is a checkpointer thread running
** concurrent with this code. If this is the case, it may be that the
** checkpointer has already determined that it will checkpoint
** snapshot X, where X is later in the wal file than pSnapshot, but
** has not yet set the pInfo->nBackfillAttempted variable to indicate
** its intent. To avoid the race condition this leads to, ensure that
** there is no checkpointer process by taking a shared CKPT lock
** before checking pInfo->nBackfillAttempted. */
(void)walEnableBlocking(pWal);
rc = walLockShared(pWal, WAL_CKPT_LOCK);
walDisableBlocking(pWal);
if( rc!=SQLITE_OK ){
return rc;
}
ckptLock = 1;
}
#endif
do{
rc = walTryBeginRead(pWal, pChanged, 0, &cnt);
}while( rc==WAL_RETRY );
testcase( (rc&0xff)==SQLITE_BUSY );
testcase( (rc&0xff)==SQLITE_IOERR );
testcase( rc==SQLITE_PROTOCOL );
testcase( rc==SQLITE_OK );
#ifdef SQLITE_ENABLE_SNAPSHOT
if( rc==SQLITE_OK ){
if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
/* At this point the client has a lock on an aReadMark[] slot holding
** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
** is populated with the wal-index header corresponding to the head
** of the wal file. Verify that pSnapshot is still valid before
** continuing. Reasons why pSnapshot might no longer be valid:
**
** (1) The WAL file has been reset since the snapshot was taken.
** In this case, the salt will have changed.
**
** (2) A checkpoint as been attempted that wrote frames past
** pSnapshot->mxFrame into the database file. Note that the
** checkpoint need not have completed for this to cause problems.
*/
volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
/* Check that the wal file has not been wrapped. Assuming that it has
** not, also check that no checkpointer has attempted to checkpoint any
** frames beyond pSnapshot->mxFrame. If either of these conditions are
** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
** with *pSnapshot and set *pChanged as appropriate for opening the
** snapshot. */
if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
&& pSnapshot->mxFrame>=pInfo->nBackfillAttempted
){
assert( pWal->readLock>0 );
memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
*pChanged = bChanged;
}else{
rc = SQLITE_ERROR_SNAPSHOT;
}
/* A client using a non-current snapshot may not ignore any frames
** from the start of the wal file. This is because, for a system
** where (minFrame < iSnapshot < maxFrame), a checkpointer may
** have omitted to checkpoint a frame earlier than minFrame in
** the file because there exists a frame after iSnapshot that
** is the same database page. */
pWal->minFrame = 1;
if( rc!=SQLITE_OK ){
pWal->pMethods->xEndReadTransaction(pWal);
}
}
}
/* Release the shared CKPT lock obtained above. */
if( ckptLock ){
assert( pSnapshot );
walUnlockShared(pWal, WAL_CKPT_LOCK);
}
#endif
return rc;
}
/*
** Begin a read transaction on the database.
**
** This routine used to be called sqlite3OpenSnapshot() and with good reason:
** it takes a snapshot of the state of the WAL and wal-index for the current
** instant in time. The current thread will continue to use this snapshot.
** Other threads might append new content to the WAL and wal-index but
** that extra content is ignored by the current thread.
**
** If the database contents have changes since the previous read
** transaction, then *pChanged is set to 1 before returning. The
** Pager layer will use this to know that its cache is stale and
** needs to be flushed.
*/
static int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
int rc;
SEH_TRY {
rc = walBeginReadTransaction(pWal, pChanged);
}
SEH_EXCEPT( rc = walHandleException(pWal); )
return rc;
}
/*
** Finish with a read transaction. All this does is release the
** read-lock.
*/
static void sqlite3WalEndReadTransaction(Wal *pWal){
sqlite3WalEndWriteTransaction(pWal);
if( pWal->readLock>=0 ){
walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
pWal->readLock = -1;
}
}
/*
** Search the wal file for page pgno. If found, set *piRead to the frame that
** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
** to zero.
**
** Return SQLITE_OK if successful, or an error code if an error occurs. If an
** error does occur, the final value of *piRead is undefined.
*/
static int walFindFrame(
Wal *pWal, /* WAL handle */
Pgno pgno, /* Database page number to read data for */
u32 iLast, /* Last page in WAL for this reader */
u32 *piRead /* OUT: Frame number (or zero) */
){
u32 iRead = 0; /* If !=0, WAL frame to return data from */
int iHash; /* Used to loop through N hash tables */
int iMinHash;
/* This routine is only be called from within a read transaction. */
assert( pWal->readLock>=0 || pWal->lockError );
/* If the "last page" field of the wal-index header snapshot is 0, then
** no data will be read from the wal under any circumstances. Return early
** in this case as an optimization. Likewise, if pWal->readLock==0,
** then the WAL is ignored by the reader so return early, as if the
** WAL were empty.
*/
if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
*piRead = 0;
return SQLITE_OK;
}
/* Search the hash table or tables for an entry matching page number
** pgno. Each iteration of the following for() loop searches one
** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
**
** This code might run concurrently to the code in walIndexAppend()
** that adds entries to the wal-index (and possibly to this hash
** table). This means the value just read from the hash
** slot (aHash[iKey]) may have been added before or after the
** current read transaction was opened. Values added after the
** read transaction was opened may have been written incorrectly -
** i.e. these slots may contain garbage data. However, we assume
** that any slots written before the current read transaction was
** opened remain unmodified.
**
** For the reasons above, the if(...) condition featured in the inner
** loop of the following block is more stringent that would be required
** if we had exclusive access to the hash-table:
**
** (aPgno[iFrame]==pgno):
** This condition filters out normal hash-table collisions.
**
** (iFrame<=iLast):
** This condition filters out entries that were added to the hash
** table after the current read-transaction had started.
*/
iMinHash = walFramePage(pWal->minFrame);
for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
WalHashLoc sLoc; /* Hash table location */
int iKey; /* Hash slot index */
int nCollide; /* Number of hash collisions remaining */
int rc; /* Error code */
u32 iH;
rc = walHashGet(pWal, iHash, &sLoc);
if( rc!=SQLITE_OK ){
return rc;
}
nCollide = HASHTABLE_NSLOT;
iKey = walHash(pgno);
SEH_INJECT_FAULT;
while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
u32 iFrame = iH + sLoc.iZero;
if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){
assert( iFrame>iRead || CORRUPT_DB );
iRead = iFrame;
}
if( (nCollide--)==0 ){
*piRead = 0;
return SQLITE_CORRUPT_BKPT;
}
iKey = walNextHash(iKey);
}
if( iRead ) break;
}
#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
/* If expensive assert() statements are available, do a linear search
** of the wal-index file content. Make sure the results agree with the
** result obtained using the hash indexes above. */
{
u32 iRead2 = 0;
u32 iTest;
assert( pWal->bShmUnreliable || pWal->minFrame>0 );
for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
if( walFramePgno(pWal, iTest)==pgno ){
iRead2 = iTest;
break;
}
}
assert( iRead==iRead2 );
}
#endif
*piRead = iRead;
return SQLITE_OK;
}
/*
** Search the wal file for page pgno. If found, set *piRead to the frame that
** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
** to zero.
**
** Return SQLITE_OK if successful, or an error code if an error occurs. If an
** error does occur, the final value of *piRead is undefined.
**
** The difference between this function and walFindFrame() is that this
** function wraps walFindFrame() in an SEH_TRY{...} block.
*/
int sqlite3WalFindFrame(
Wal *pWal, /* WAL handle */
Pgno pgno, /* Database page number to read data for */
u32 *piRead /* OUT: Frame number (or zero) */
){
int rc;
SEH_TRY {
rc = walFindFrame(pWal, pgno, pWal->hdr.mxFrame, piRead);
}
SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
return rc;
}
/*
** Read the contents of frame iRead from the wal file into buffer pOut
** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
** error code otherwise.
*/
static int sqlite3WalReadFrame(
Wal *pWal, /* WAL handle */
u32 iRead, /* Frame to read */
int nOut, /* Size of buffer pOut in bytes */
u8 *pOut /* Buffer to write page data to */
){
int sz;
i64 iOffset;
sz = pWal->hdr.szPage;
sz = (sz&0xfe00) + ((sz&0x0001)<<16);
testcase( sz<=32768 );
testcase( sz>=65536 );
iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
/* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
}
/*
** Read the contents of frame iRead from the wal file into buffer pOut
** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
** error code otherwise.
*/
static int sqlite3WalReadFrameRaw(
Wal *pWal, /* WAL handle */
u32 iRead, /* Frame to read */
int nOut, /* Size of buffer pOut in bytes */
u8 *pOut /* Buffer to write page data to */
){
int sz;
i64 iOffset;
sz = pWal->hdr.szPage;
sz = (sz&0xfe00) + ((sz&0x0001)<<16);
testcase( sz<=32768 );
testcase( sz>=65536 );
iOffset = walFrameOffset(iRead, sz);
/* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
sz += WAL_FRAME_HDRSIZE;
return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
}
/*
** Return the size of the database in pages (or zero, if unknown).
*/
static Pgno sqlite3WalDbsize(Wal *pWal){
if( pWal && ALWAYS(pWal->readLock>=0) ){
return pWal->hdr.nPage;
}
return 0;
}
/*
** This function starts a write transaction on the WAL.
**
** A read transaction must have already been started by a prior call
** to sqlite3WalBeginReadTransaction().
**
** If another thread or process has written into the database since
** the read transaction was started, then it is not possible for this
** thread to write as doing so would cause a fork. So this routine
** returns SQLITE_BUSY in that case and no write transaction is started.
**
** There can only be a single writer active at a time.
*/
static int sqlite3WalBeginWriteTransaction(Wal *pWal){
int rc;
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
/* If the write-lock is already held, then it was obtained before the
** read-transaction was even opened, making this call a no-op.
** Return early. */
if( pWal->writeLock ){
assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
return SQLITE_OK;
}
#endif
/* Cannot start a write transaction without first holding a read
** transaction. */
assert( pWal->readLock>=0 );
assert( pWal->writeLock==0 && pWal->iReCksum==0 );
if( pWal->readOnly ){
return SQLITE_READONLY;
}
/* Only one writer allowed at a time. Get the write lock. Return
** SQLITE_BUSY if unable.
*/
rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
if( rc ){
return rc;
}
pWal->writeLock = 1;
/* If another connection has written to the database file since the
** time the read transaction on this connection was started, then
** the write is disallowed.
*/
SEH_TRY {
if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
rc = SQLITE_BUSY_SNAPSHOT;
}
}
SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
if( rc!=SQLITE_OK ){
walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
pWal->writeLock = 0;
}
return rc;
}
/*
** End a write transaction. The commit has already been done. This
** routine merely releases the lock.
*/
static int sqlite3WalEndWriteTransaction(Wal *pWal){
if( pWal->writeLock ){
walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
pWal->writeLock = 0;
pWal->iReCksum = 0;
pWal->truncateOnCommit = 0;
}
return SQLITE_OK;
}
/*
** If any data has been written (but not committed) to the log file, this
** function moves the write-pointer back to the start of the transaction.
**
** Additionally, the callback function is invoked for each frame written
** to the WAL since the start of the transaction. If the callback returns
** other than SQLITE_OK, it is not invoked again and the error code is
** returned to the caller.
**
** Otherwise, if the callback function does not return an error, this
** function returns SQLITE_OK.
*/
static int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
int rc = SQLITE_OK;
if( ALWAYS(pWal->writeLock) ){
Pgno iMax = pWal->hdr.mxFrame;
Pgno iFrame;
SEH_TRY {
/* Restore the clients cache of the wal-index header to the state it
** was in before the client began writing to the database.
*/
memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
for(iFrame=pWal->hdr.mxFrame+1;
ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
iFrame++
){
/* This call cannot fail. Unless the page for which the page number
** is passed as the second argument is (a) in the cache and
** (b) has an outstanding reference, then xUndo is either a no-op
** (if (a) is false) or simply expels the page from the cache (if (b)
** is false).
**
** If the upper layer is doing a rollback, it is guaranteed that there
** are no outstanding references to any page other than page 1. And
** page 1 is never written to the log until the transaction is
** committed. As a result, the call to xUndo may not fail.
*/
assert( walFramePgno(pWal, iFrame)!=1 );
rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
}
if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
}
SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
}
return rc;
}
/*
** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
** values. This function populates the array with values required to
** "rollback" the write position of the WAL handle back to the current
** point in the event of a savepoint rollback (via WalSavepointUndo()).
*/
static void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
assert( pWal->writeLock );
aWalData[0] = pWal->hdr.mxFrame;
aWalData[1] = pWal->hdr.aFrameCksum[0];
aWalData[2] = pWal->hdr.aFrameCksum[1];
aWalData[3] = pWal->nCkpt;
}
/*
** Move the write position of the WAL back to the point identified by
** the values in the aWalData[] array. aWalData must point to an array
** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
** by a call to WalSavepoint().
*/
static int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
int rc = SQLITE_OK;
assert( pWal->writeLock );
assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
if( aWalData[3]!=pWal->nCkpt ){
/* This savepoint was opened immediately after the write-transaction
** was started. Right after that, the writer decided to wrap around
** to the start of the log. Update the savepoint values to match.
*/
aWalData[0] = 0;
aWalData[3] = pWal->nCkpt;
}
if( aWalData[0]<pWal->hdr.mxFrame ){
pWal->hdr.mxFrame = aWalData[0];
pWal->hdr.aFrameCksum[0] = aWalData[1];
pWal->hdr.aFrameCksum[1] = aWalData[2];
SEH_TRY {
walCleanupHash(pWal);
}
SEH_EXCEPT( rc = SQLITE_IOERR_IN_PAGE; )
}
return rc;
}
/*
** This function is called just before writing a set of frames to the log
** file (see sqlite3WalFrames()). It checks to see if, instead of appending
** to the current log file, it is possible to overwrite the start of the
** existing log file with the new frames (i.e. "reset" the log). If so,
** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
** unchanged.
**
** SQLITE_OK is returned if no error is encountered (regardless of whether
** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
** if an error occurs.
*/
static int walRestartLog(Wal *pWal, int *pRestarted){
int rc = SQLITE_OK;
int cnt;
*pRestarted = 0;
if( pWal->readLock==0 ){
volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
assert( pInfo->nBackfill==pWal->hdr.mxFrame );
if( pInfo->nBackfill>0 ){
u32 salt1;
sqlite3_randomness(4, &salt1);
rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
if( rc==SQLITE_OK ){
/* If all readers are using WAL_READ_LOCK(0) (in other words if no
** readers are currently using the WAL), then the transactions
** frames will overwrite the start of the existing log. Update the
** wal-index header to reflect this.
**
** In theory it would be Ok to update the cache of the header only
** at this point. But updating the actual wal-index header is also
** safe and means there is no special case for sqlite3WalUndo()
** to handle if this transaction is rolled back. */
walRestartHdr(pWal, salt1);
walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
*pRestarted = 1;
}else if( rc!=SQLITE_BUSY ){
return rc;
}
}
walUnlockShared(pWal, WAL_READ_LOCK(0));
pWal->readLock = -1;
cnt = 0;
do{
int notUsed;
rc = walTryBeginRead(pWal, &notUsed, 1, &cnt);
}while( rc==WAL_RETRY );
assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
testcase( (rc&0xff)==SQLITE_IOERR );
testcase( rc==SQLITE_PROTOCOL );
testcase( rc==SQLITE_OK );
}
return rc;
}
/*
** Information about the current state of the WAL file and where
** the next fsync should occur - passed from sqlite3WalFrames() into
** walWriteToLog().
*/
typedef struct WalWriter {
Wal *pWal; /* The complete WAL information */
sqlite3_file *pFd; /* The WAL file to which we write */
sqlite3_int64 iSyncPoint; /* Fsync at this offset */
int syncFlags; /* Flags for the fsync */
int szPage; /* Size of one page */
} WalWriter;
/*
** Write iAmt bytes of content into the WAL file beginning at iOffset.
** Do a sync when crossing the p->iSyncPoint boundary.
**
** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
** first write the part before iSyncPoint, then sync, then write the
** rest.
*/
static int walWriteToLog(
WalWriter *p, /* WAL to write to */
void *pContent, /* Content to be written */
int iAmt, /* Number of bytes to write */
sqlite3_int64 iOffset /* Start writing at this offset */
){
int rc;
if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
int iFirstAmt = (int)(p->iSyncPoint - iOffset);
rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
if( rc ) return rc;
iOffset += iFirstAmt;
iAmt -= iFirstAmt;
pContent = (void*)(iFirstAmt + (char*)pContent);
assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
if( iAmt==0 || rc ) return rc;
}
rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
return rc;
}
/*
** Write out a single frame of the WAL
*/
static int walWriteOneFrame(
WalWriter *p, /* Where to write the frame */
PgHdr *pPage, /* The page of the frame to be written */
int nTruncate, /* The commit flag. Usually 0. >0 for commit */
sqlite3_int64 iOffset /* Byte offset at which to write */
){
int rc; /* Result code from subfunctions */
void *pData; /* Data actually written */
u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
pData = pPage->pData;
rc = libsql_pager_codec(pPage, &pData);
if( rc ) return rc;
walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
if( rc ) return rc;
/* Write the page data */
rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
return rc;
}
/*
** This function is called as part of committing a transaction within which
** one or more frames have been overwritten. It updates the checksums for
** all frames written to the wal file by the current transaction starting
** with the earliest to have been overwritten.
**
** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
*/
static int walRewriteChecksums(Wal *pWal, u32 iLast){
const int szPage = pWal->szPage;/* Database page size */
int rc = SQLITE_OK; /* Return code */
u8 *aBuf; /* Buffer to load data from wal file into */
u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
u32 iRead; /* Next frame to read from wal file */
i64 iCksumOff;
aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
/* Find the checksum values to use as input for the recalculating the
** first checksum. If the first frame is frame 1 (implying that the current
** transaction restarted the wal file), these values must be read from the
** wal-file header. Otherwise, read them from the frame header of the
** previous frame. */
assert( pWal->iReCksum>0 );
if( pWal->iReCksum==1 ){
iCksumOff = 24;
}else{
iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
}
rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
iRead = pWal->iReCksum;
pWal->iReCksum = 0;
for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
i64 iOff = walFrameOffset(iRead, szPage);
rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
if( rc==SQLITE_OK ){
u32 iPgno, nDbSize;
iPgno = sqlite3Get4byte(aBuf);
nDbSize = sqlite3Get4byte(&aBuf[4]);
walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
}
}
sqlite3_free(aBuf);
return rc;
}
/*
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
*/
static int walFrames(
Wal *pWal, /* Wal handle to write to */
int szPage, /* Database page-size in bytes */
PgHdr *pList, /* List of dirty pages to write */
Pgno nTruncate, /* Database size after this commit */
int isCommit, /* True if this is a commit */
int sync_flags, /* Flags to pass to OsSync() (or 0) */
int *pnFrames /* Number of frames written to the wal in the transaction. 0 for non-commit call*/
){
int rc; /* Used to catch return codes */
u32 iFrame; /* Next frame address */
PgHdr *p; /* Iterator to run through pList with. */
PgHdr *pLast = 0; /* Last frame in list */
int nExtra = 0; /* Number of extra copies of last page */
int szFrame; /* The size of a single frame */
i64 iOffset; /* Next byte to write in WAL file */
WalWriter w; /* The writer */
u32 iFirst = 0; /* First frame that may be overwritten */
WalIndexHdr *pLive; /* Pointer to shared header */
int walRestarted; /* Whether the wal was restarted */
assert( pList );
assert( pWal->writeLock );
/* If this frame set completes a transaction, then nTruncate>0. If
** nTruncate==0 then this frame set does not complete the transaction. */
assert( (isCommit!=0)==(nTruncate!=0) );
#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
{ int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
}
#endif
pLive = (WalIndexHdr*)walIndexHdr(pWal);
if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
iFirst = pLive->mxFrame+1;
}
/* See if it is possible to write these frames into the start of the
** log file, instead of appending to it at pWal->hdr.mxFrame.
*/
if( SQLITE_OK!=(rc = walRestartLog(pWal, &walRestarted)) ){
return rc;
}
/* If this is the first frame written into the log, write the WAL
** header to the start of the WAL file. See comments at the top of
** this source file for a description of the WAL header format.
*/
iFrame = pWal->hdr.mxFrame;
if( iFrame==0 ){
u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
u32 aCksum[2]; /* Checksum for wal-header */
sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
sqlite3Put4byte(&aWalHdr[8], szPage);
sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
pWal->szPage = szPage;
pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
pWal->hdr.aFrameCksum[0] = aCksum[0];
pWal->hdr.aFrameCksum[1] = aCksum[1];
pWal->truncateOnCommit = 1;
rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
if( rc!=SQLITE_OK ){
return rc;
}
/* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
** an out-of-order write following a WAL restart could result in
** database corruption. See the ticket:
**
** https://sqlite.org/src/info/ff5be73dee
*/
if( pWal->syncHeader ){
rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
if( rc ) return rc;
}
}
if( (int)pWal->szPage!=szPage ){
return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */
}
/* Setup information needed to write frames into the WAL */
w.pWal = pWal;
w.pFd = pWal->pWalFd;
w.iSyncPoint = 0;
w.syncFlags = sync_flags;
w.szPage = szPage;
iOffset = walFrameOffset(iFrame+1, szPage);
szFrame = szPage + WAL_FRAME_HDRSIZE;
/* Write all frames into the log file exactly once */
for(p=pList; p; p=p->pDirty){
int nDbSize; /* 0 normally. Positive == commit flag */
/* Check if this page has already been written into the wal file by
** the current transaction. If so, overwrite the existing frame and
** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
** checksums must be recomputed when the transaction is committed. */
if( iFirst && (p->pDirty || isCommit==0) ){
u32 iWrite = 0;
VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
assert( rc==SQLITE_OK || iWrite==0 );
if( iWrite>=iFirst ){
i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
void *pData;
if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
pWal->iReCksum = iWrite;
}
rc = libsql_pager_codec(p, &pData);
if( rc ) return rc;
rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
if( rc ) return rc;
p->flags &= ~PGHDR_WAL_APPEND;
continue;
}
}
iFrame++;
assert( iOffset==walFrameOffset(iFrame, szPage) );
nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
if( rc ) return rc;
pLast = p;
iOffset += szFrame;
p->flags |= PGHDR_WAL_APPEND;
}
/* Recalculate checksums within the wal file if required. */
if( isCommit && pWal->iReCksum ){
rc = walRewriteChecksums(pWal, iFrame);
if( rc ) return rc;
}
/* If this is the end of a transaction, then we might need to pad
** the transaction and/or sync the WAL file.
**
** Padding and syncing only occur if this set of frames complete a
** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
** or synchronous==OFF, then no padding or syncing are needed.
**
** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
** needed and only the sync is done. If padding is needed, then the
** final frame is repeated (with its commit mark) until the next sector
** boundary is crossed. Only the part of the WAL prior to the last
** sector boundary is synced; the part of the last frame that extends
** past the sector boundary is written after the sync.
*/
if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
int bSync = 1;
if( pWal->padToSectorBoundary ){
int sectorSize = sqlite3SectorSize(pWal->pWalFd);
w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
bSync = (w.iSyncPoint==iOffset);
testcase( bSync );
while( iOffset<w.iSyncPoint ){
rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
if( rc ) return rc;
iOffset += szFrame;
nExtra++;
assert( pLast!=0 );
}
}
if( bSync ){
assert( rc==SQLITE_OK );
rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
}
}
/* If this frame set completes the first transaction in the WAL and
** if PRAGMA journal_size_limit is set, then truncate the WAL to the
** journal size limit, if possible.
*/
if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
i64 sz = pWal->mxWalSize;
if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
sz = walFrameOffset(iFrame+nExtra+1, szPage);
}
walLimitSize(pWal, sz);
pWal->truncateOnCommit = 0;
}
/* Append data to the wal-index. It is not necessary to lock the
** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
** guarantees that there are no other writers, and no data that may
** be in use by existing readers is being overwritten.
*/
iFrame = pWal->hdr.mxFrame;
for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
iFrame++;
rc = walIndexAppend(pWal, iFrame, p->pgno);
}
assert( pLast!=0 || nExtra==0 );
while( rc==SQLITE_OK && nExtra>0 ){
iFrame++;
nExtra--;
rc = walIndexAppend(pWal, iFrame, pLast->pgno);
}
if( rc==SQLITE_OK ){
/* Update the private copy of the header. */
pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
testcase( szPage<=32768 );
testcase( szPage>=65536 );
if (pnFrames) {
if (isCommit) {
if (walRestarted) {
*pnFrames = iFrame;
} else {
*pnFrames = iFrame - pWal->hdr.mxFrame;
}
} else {
*pnFrames = 0;
}
}
pWal->hdr.mxFrame = iFrame;
if( isCommit ){
pWal->hdr.iChange++;
pWal->hdr.nPage = nTruncate;
}
/* If this is a commit, update the wal-index header too. */
if( isCommit ){
walIndexWriteHdr(pWal);
pWal->iCallback = iFrame;
}
}
WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
return rc;
}
int sqlite3WalFrameCount(Wal *pWal, int locked, unsigned int *pnFrames){
int rc = SQLITE_OK;
if( locked==0 ) {
rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
if (rc != SQLITE_OK) return rc;
}
*pnFrames = pWal->hdr.mxFrame;
if( locked==0 ) {
walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
}
return SQLITE_OK;
}
/*
** Write a set of frames to the log. The caller must hold the write-lock
** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
**
** The difference between this function and walFrames() is that this
** function wraps walFrames() in an SEH_TRY{...} block.
*/
int sqlite3WalFrames(
Wal *pWal, /* Wal handle to write to */
int szPage, /* Database page-size in bytes */
PgHdr *pList, /* List of dirty pages to write */
Pgno nTruncate, /* Database size after this commit */
int isCommit, /* True if this is a commit */
int sync_flags, /* Flags to pass to OsSync() (or 0) */
int *pnFrames /* OUT: Number of frames appended to the wal on commit */
){
int rc;
SEH_TRY {
rc = walFrames(pWal, szPage, pList, nTruncate, isCommit, sync_flags, pnFrames);
}
SEH_EXCEPT( rc = walHandleException(pWal); )
return rc;
}
/*
** This routine is called to implement sqlite3_wal_checkpoint() and
** related interfaces.
**
** Obtain a CHECKPOINT lock and then backfill as much information as
** we can from WAL into the database.
**
** If parameter xBusy is not NULL, it is a pointer to a busy-handler
** callback. In this case this function runs a blocking checkpoint.
*/
static int sqlite3WalCheckpoint(
Wal *pWal, /* Wal connection */
sqlite3 *db, /* Check this handle's interrupt flag */
int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
int (*xBusy)(void*), /* Function to call when busy */
void *pBusyArg, /* Context argument for xBusyHandler */
int sync_flags, /* Flags to sync db file with (or 0) */
int nBuf, /* Size of temporary buffer */
u8 *zBuf, /* Temporary buffer to use */
int *pnLog, /* OUT: Number of frames in WAL */
int *pnCkpt, /* OUT: Number of backfilled frames in WAL */
int (*xCb)(void*, int, const unsigned char*, int, int, int), /* page, page_no, frame_no */
void *pCbData
){
int rc; /* Return code */
int isChanged = 0; /* True if a new wal-index header is loaded */
int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
assert( pWal->ckptLock==0 );
assert( pWal->writeLock==0 );
/* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
** in the SQLITE_CHECKPOINT_PASSIVE mode. */
assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
if( pWal->readOnly ) return SQLITE_READONLY;
WALTRACE(("WAL%p: checkpoint begins\n", pWal));
/* Enable blocking locks, if possible. */
sqlite3WalDb(pWal, db);
if( xBusy2 ) (void)walEnableBlocking(pWal);
/* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
** "checkpoint" lock on the database file.
** EVIDENCE-OF: R-10421-19736 If any other process is running a
** checkpoint operation at the same time, the lock cannot be obtained and
** SQLITE_BUSY is returned.
** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
** it will not be invoked in this case.
*/
rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
testcase( rc==SQLITE_BUSY );
testcase( rc!=SQLITE_OK && xBusy2!=0 );
if( rc==SQLITE_OK ){
pWal->ckptLock = 1;
/* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
** TRUNCATE modes also obtain the exclusive "writer" lock on the database
** file.
**
** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
** immediately, and a busy-handler is configured, it is invoked and the
** writer lock retried until either the busy-handler returns 0 or the
** lock is successfully obtained.
*/
if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
if( rc==SQLITE_OK ){
pWal->writeLock = 1;
}else if( rc==SQLITE_BUSY ){
eMode2 = SQLITE_CHECKPOINT_PASSIVE;
xBusy2 = 0;
rc = SQLITE_OK;
}
}
}
/* Read the wal-index header. */
SEH_TRY {
if( rc==SQLITE_OK ){
/* For a passive checkpoint, do not re-enable blocking locks after
** reading the wal-index header. A passive checkpoint should not block
** or invoke the busy handler. The only lock such a checkpoint may
** attempt to obtain is a lock on a read-slot, and it should give up
** immediately and do a partial checkpoint if it cannot obtain it. */
walDisableBlocking(pWal);
rc = walIndexReadHdr(pWal, &isChanged);
if( eMode2!=SQLITE_CHECKPOINT_PASSIVE ) (void)walEnableBlocking(pWal);
if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
}
}
/* Copy data from the log to the database file. */
if( rc==SQLITE_OK ){
if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
rc = SQLITE_CORRUPT_BKPT;
}else{
rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags,zBuf, pCbData, xCb);
}
/* If no error occurred, set the output variables. */
if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
SEH_INJECT_FAULT;
if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
}
}
}
SEH_EXCEPT( rc = walHandleException(pWal); )
if( isChanged ){
/* If a new wal-index header was loaded before the checkpoint was
** performed, then the pager-cache associated with pWal is now
** out of date. So zero the cached wal-index header to ensure that
** next time the pager opens a snapshot on this database it knows that
** the cache needs to be reset.
*/
memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
}
walDisableBlocking(pWal);
sqlite3WalDb(pWal, 0);
/* Release the locks. */
sqlite3WalEndWriteTransaction(pWal);
if( pWal->ckptLock ){
walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
pWal->ckptLock = 0;
}
WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
#endif
return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
}
/* Return the value to pass to a sqlite3_wal_hook callback, the
** number of frames in the WAL at the point of the last commit since
** sqlite3WalCallback() was called. If no commits have occurred since
** the last call, then return 0.
*/
static int sqlite3WalCallback(Wal *pWal){
u32 ret = 0;
if( pWal ){
ret = pWal->iCallback;
pWal->iCallback = 0;
}
return (int)ret;
}
/*
** This function is called to change the WAL subsystem into or out
** of locking_mode=EXCLUSIVE.
**
** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
** into locking_mode=NORMAL. This means that we must acquire a lock
** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
** or if the acquisition of the lock fails, then return 0. If the
** transition out of exclusive-mode is successful, return 1. This
** operation must occur while the pager is still holding the exclusive
** lock on the main database file.
**
** If op is one, then change from locking_mode=NORMAL into
** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
** be released. Return 1 if the transition is made and 0 if the
** WAL is already in exclusive-locking mode - meaning that this
** routine is a no-op. The pager must already hold the exclusive lock
** on the main database file before invoking this operation.
**
** If op is negative, then do a dry-run of the op==1 case but do
** not actually change anything. The pager uses this to see if it
** should acquire the database exclusive lock prior to invoking
** the op==1 case.
*/
static int sqlite3WalExclusiveMode(Wal *pWal, int op){
int rc;
assert( pWal->writeLock==0 );
assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
/* pWal->readLock is usually set, but might be -1 if there was a
** prior error while attempting to acquire are read-lock. This cannot
** happen if the connection is actually in exclusive mode (as no xShmLock
** locks are taken in this case). Nor should the pager attempt to
** upgrade to exclusive-mode following such an error.
*/
assert( pWal->readLock>=0 || pWal->lockError );
assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
if( op==0 ){
if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
pWal->exclusiveMode = WAL_NORMAL_MODE;
if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
}
rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
}else{
/* Already in locking_mode=NORMAL */
rc = 0;
}
}else if( op>0 ){
assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
assert( pWal->readLock>=0 );
walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
rc = 1;
}else{
rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
}
return rc;
}
/*
** Return true if the argument is non-NULL and the WAL module is using
** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
** WAL module is using shared-memory, return false.
*/
static int sqlite3WalHeapMemory(Wal *pWal){
return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
}
#ifdef SQLITE_ENABLE_SNAPSHOT
/* Create a snapshot object. The content of a snapshot is opaque to
** every other subsystem, so the WAL module can put whatever it needs
** in the object.
*/
static int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
int rc = SQLITE_OK;
WalIndexHdr *pRet;
static const u32 aZero[4] = { 0, 0, 0, 0 };
assert( pWal->readLock>=0 && pWal->writeLock==0 );
if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
*ppSnapshot = 0;
return SQLITE_ERROR;
}
pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
if( pRet==0 ){
rc = SQLITE_NOMEM_BKPT;
}else{
memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
*ppSnapshot = (sqlite3_snapshot*)pRet;
}
return rc;
}
/* Try to open on pSnapshot when the next read-transaction starts
*/
static void sqlite3WalSnapshotOpen(
Wal *pWal,
sqlite3_snapshot *pSnapshot
){
pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
}
/*
** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
*/
int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
/* aSalt[0] is a copy of the value stored in the wal file header. It
** is incremented each time the wal file is restarted. */
if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
return 0;
}
/*
** The caller currently has a read transaction open on the database.
** This function takes a SHARED lock on the CHECKPOINTER slot and then
** checks if the snapshot passed as the second argument is still
** available. If so, SQLITE_OK is returned.
**
** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
** lock is released before returning.
*/
static int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
int rc;
SEH_TRY {
rc = walLockShared(pWal, WAL_CKPT_LOCK);
if( rc==SQLITE_OK ){
WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
|| pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
){
rc = SQLITE_ERROR_SNAPSHOT;
walUnlockShared(pWal, WAL_CKPT_LOCK);
}
}
}
SEH_EXCEPT( rc = walHandleException(pWal); )
return rc;
}
/*
** Release a lock obtained by an earlier successful call to
** sqlite3WalSnapshotCheck().
*/
static void sqlite3WalSnapshotUnlock(Wal *pWal){
assert( pWal );
walUnlockShared(pWal, WAL_CKPT_LOCK);
}
#endif /* SQLITE_ENABLE_SNAPSHOT */
#ifdef SQLITE_ENABLE_ZIPVFS
/*
** If the argument is not NULL, it points to a Wal object that holds a
** read-lock. This function returns the database page-size if it is known,
** or zero if it is not (or if pWal is NULL).
*/
static int sqlite3WalFramesize(Wal *pWal){
assert( pWal==0 || pWal->readLock>=0 );
return (pWal ? pWal->szPage : 0);
}
#endif
/* Return the sqlite3_file object for the WAL file
*/
static sqlite3_file *sqlite3WalFile(Wal *pWal){
return pWal->pWalFd;
}
static int libsqlWalPathnameLen(int n) {
return n ? n + 4 : 0;
}
static void libsqlGetWalPathname(char *buf, const char *orig, int orig_len) {
memcpy(buf, orig, orig_len);
memcpy(buf + orig_len, "-wal", 4);
}
int sqlite3LogExists(wal_manager_impl* self, sqlite3_vfs *vfs, const char *main_db_path_name, int *exists) {
const char *zWal = sqlite3_filename_wal(main_db_path_name);
int rc = sqlite3OsAccess(vfs, zWal, SQLITE_ACCESS_EXISTS, exists);
return rc;
}
int sqlite3LogDestroy(wal_manager_impl* self, sqlite3_vfs *vfs, const char *main_db_path_name) {
const char *zWal = sqlite3_filename_wal(main_db_path_name);
int rc = sqlite3OsDelete(vfs, zWal, 0);
return rc;
}
/*
** Open a connection to the WAL file zWalName. The database file must
** already be opened on connection pDbFd. The buffer that zWalName points
** to must remain valid for the lifetime of the returned Wal* handle.
**
** Custom virtual methods may be provided via the pMethods parameter.
**
** A SHARED lock should be held on the database file when this function
** is called. The purpose of this SHARED lock is to prevent any other
** client from unlinking the WAL or wal-index file. If another process
** were to do this just after this client opened one of these files, the
** system would be badly broken.
**
** If the log file is successfully opened, SQLITE_OK is returned and
** *ppWal is set to point to a new WAL handle. If an error occurs,
** an SQLite error code is returned and *ppWal is left unmodified.
*/
static int sqlite3WalOpen(
wal_manager_impl *self,
sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
sqlite3_file *pDbFd, /* The open database file */
int bNoShm, /* True to run in heap-memory mode */
i64 mxWalSize, /* Truncate WAL to this size on reset */
const char* main_db_file_name,
libsql_wal *out /* OUT: Allocated Wal handle */
){
int rc; /* Return Code */
Wal *pRet; /* Object to allocate and return */
int flags; /* Flags passed to OsOpen() */
assert( pDbFd );
/* Verify the values of various constants. Any changes to the values
** of these constants would result in an incompatible on-disk format
** for the -shm file. Any change that causes one of these asserts to
** fail is a backward compatibility problem, even if the change otherwise
** works.
**
** This table also serves as a helpful cross-reference when trying to
** interpret hex dumps of the -shm file.
*/
assert( 48 == sizeof(WalIndexHdr) );
assert( 40 == sizeof(WalCkptInfo) );
assert( 120 == WALINDEX_LOCK_OFFSET );
assert( 136 == WALINDEX_HDR_SIZE );
assert( 4096 == HASHTABLE_NPAGE );
assert( 4062 == HASHTABLE_NPAGE_ONE );
assert( 8192 == HASHTABLE_NSLOT );
assert( 383 == HASHTABLE_HASH_1 );
assert( 32768 == WALINDEX_PGSZ );
assert( 8 == SQLITE_SHM_NLOCK );
assert( 5 == WAL_NREADER );
assert( 24 == WAL_FRAME_HDRSIZE );
assert( 32 == WAL_HDRSIZE );
assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK );
assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK );
assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );
/* In the amalgamation, the os_unix.c and os_win.c source files come before
** this source file. Verify that the #defines of the locking byte offsets
** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
** For that matter, if the lock offset ever changes from its initial design
** value of 120, we need to know that so there is an assert() to check it.
*/
#ifdef WIN_SHM_BASE
assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif
#ifdef UNIX_SHM_BASE
assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
#endif
const char *zWalName = sqlite3_filename_wal(main_db_file_name);
/* Allocate an instance of struct Wal to return. */
pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
if( !pRet ){
return SQLITE_NOMEM_BKPT;
}
pRet->pVfs = pVfs;
pRet->pWalFd = (sqlite3_file *)&pRet[1];
pRet->pDbFd = pDbFd;
pRet->readLock = -1;
pRet->mxWalSize = mxWalSize;
pRet->zWalName = zWalName;
pRet->syncHeader = 1;
pRet->padToSectorBoundary = 1;
pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
/* Open file handle on the write-ahead log file. */
flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
pRet->readOnly = WAL_RDONLY;
}
if( rc!=SQLITE_OK ){
walIndexClose(pRet, 0);
sqlite3OsClose(pRet->pWalFd);
sqlite3_free(pRet);
}else{
int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
pRet->padToSectorBoundary = 0;
}
out->pData = (wal_impl*) pRet;
out->methods.iVersion = 1;
out->methods.xLimit = (void (*)(wal_impl *, long long))sqlite3WalLimit;
out->methods.xBeginReadTransaction = (int (*)(wal_impl *, int *))sqlite3WalBeginReadTransaction;
out->methods.xEndReadTransaction = (void (*)(wal_impl *))sqlite3WalEndReadTransaction;
out->methods.xFindFrame = (int (*)(wal_impl *, unsigned int, unsigned int *))sqlite3WalFindFrame;
out->methods.xReadFrame = (int (*)(wal_impl *, unsigned int, int, unsigned char *))sqlite3WalReadFrame;
out->methods.xReadFrameRaw = (int (*)(wal_impl *, unsigned int, int, unsigned char *))sqlite3WalReadFrameRaw;
out->methods.xDbsize = (unsigned int (*)(wal_impl *))sqlite3WalDbsize;
out->methods.xBeginWriteTransaction = (int (*)(wal_impl *))sqlite3WalBeginWriteTransaction;
out->methods.xEndWriteTransaction = (int (*)(wal_impl *))sqlite3WalEndWriteTransaction;
out->methods.xUndo = (int (*)(wal_impl *, int (*)(void *, unsigned int), void *))sqlite3WalUndo;
out->methods.xSavepoint = (void (*)(wal_impl *, unsigned int *))sqlite3WalSavepoint;
out->methods.xSavepointUndo = (int (*)(wal_impl *, unsigned int *))sqlite3WalSavepointUndo;
out->methods.xFrameCount = (int (*)(wal_impl *, int, unsigned int *))sqlite3WalFrameCount;
out->methods.xFrames = (int (*)(wal_impl *, int, libsql_pghdr *, unsigned int, int, int, int *))sqlite3WalFrames;
out->methods.xCheckpoint = (int (*)(wal_impl *, sqlite3 *, int, int (*)(void *), void *, int, int, unsigned char *, int *, int *, int (*)(void*, int, const unsigned char*, int, int, int), void*))sqlite3WalCheckpoint;
out->methods.xCallback = (int (*)(wal_impl *))sqlite3WalCallback;
out->methods.xExclusiveMode = (int (*)(wal_impl *, int))sqlite3WalExclusiveMode;
out->methods.xHeapMemory = (int (*)(wal_impl *))sqlite3WalHeapMemory;
#ifdef SQLITE_ENABLE_SNAPSHOT
out->methods.xSnapshotGet = sqlite3WalSnapshotGet;
out->methods.xSnapshotOpen = sqlite3WalSnapshotOpen;
out->methods.xSnapshotRecover = sqlite3WalSnapshotRecover;
out->methods.xSnapshotCheck = sqlite3WalSnapshotCheck;
out->methods.xSnapshotUnlock = sqlite3WalSnapshotUnlock;
#endif
#ifdef SQLITE_ENABLE_ZIPVFS
outWal->methods.xFramesize = sqlite3WalFramesize;
#endif
out->methods.xFile = (sqlite3_file *(*)(wal_impl *))sqlite3WalFile;
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
outWal->methods.xWriteLock = sqlite3WalWriteLock;
#endif
out->methods.xDb = (void (*)(wal_impl *, sqlite3 *))sqlite3WalDb;
WALTRACE(("WAL%d: opened\n", pRet));
}
return rc;
}
void sqlite3DestroyWalManager(wal_manager_impl *self) { }
int make_ref_counted_wal_manager(libsql_wal_manager wal_manager, RefCountedWalManager **out) {
RefCountedWalManager *p = (RefCountedWalManager*)sqlite3MallocZero(sizeof(RefCountedWalManager));
if (!p) return SQLITE_NOMEM;
p->n = 1;
p->ref = wal_manager;
p->is_static = 0;
*out = p;
return SQLITE_OK;
}
/*
* Decrease the ref count and call the wal_manager destructor when the count reaches 0.
* Must be called from withing a critical section.
*/
void destroy_wal_manager(RefCountedWalManager *p) {
if (p->is_static) return;
assert(p->n != 0);
p->n -= 1;
if (p->n == 0) {
(p->ref.xDestroy)(p->ref.pData);
sqlite3_free(p);
}
}
/*
* Increase the ref count and return a pointer to the wal.
* Must be called from withing a critical section.
* Return NULL if the passed pointer ref count is already 0.
*/
RefCountedWalManager* clone_wal_manager(RefCountedWalManager *p) {
assert(p->n != 0);
p->n += 1;
return p;
}
const libsql_wal_manager sqlite3_wal_manager = {
.pData = NULL,
.xOpen = (int (*)(wal_manager_impl *, sqlite3_vfs *, sqlite3_file *, int, long long, const char*, libsql_wal *))sqlite3WalOpen,
.xClose = (int (*)(wal_manager_impl *, wal_impl *, sqlite3 *, int, int, unsigned char *))sqlite3WalClose,
.bUsesShm = 1,
.xLogDestroy = (int (*)(wal_manager_impl *, sqlite3_vfs*, const char*))sqlite3LogDestroy,
.xLogExists = (int (*)(wal_manager_impl *, sqlite3_vfs*, const char*, int *))sqlite3LogExists,
.xDestroy =(void (*)(wal_manager_impl*))sqlite3DestroyWalManager,
};
RefCountedWalManager *make_sqlite3_wal_manager_rc() {
static int initialized = 0;
static RefCountedWalManager manager = { 0 };
/*
* re-initializing is idempotent
*/
if (!initialized) {
manager.is_static = 1;
manager.ref = sqlite3_wal_manager;
manager.n = 1;
initialized = 1;
}
return &manager;
}
typedef struct wal_impl wal_impl;
int sqlite3_wal_backfilled(sqlite3_wal *pWal) {
return walCkptInfo(pWal)->nBackfill;
}
u32 sqlite3_wal_frame_page_no(sqlite3_wal *pWal, u32 iFrame) {
return walFramePgno(pWal, iFrame);
}
#endif /* #ifndef SQLITE_OMIT_WAL */