0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2025-01-09 07:39:01 +00:00
2023-10-16 13:58:16 +02:00

1281 lines
43 KiB
C

/*
** 2008 November 05
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This file implements the default page cache implementation (the
** sqlite3_pcache interface). It also contains part of the implementation
** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
** If the default page cache implementation is overridden, then neither of
** these two features are available.
**
** A Page cache line looks like this:
**
** -------------------------------------------------------------
** | database page content | PgHdr1 | MemPage | PgHdr |
** -------------------------------------------------------------
**
** The database page content is up front (so that buffer overreads tend to
** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
** is the extension added by the btree.c module containing information such
** as the database page number and how that database page is used. PgHdr
** is added by the pcache.c layer and contains information used to keep track
** of which pages are "dirty". PgHdr1 is an extension added by this
** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
** PgHdr1 contains information needed to look up a page by its page number.
** The superclass sqlite3_pcache_page.pBuf points to the start of the
** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
**
** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
** size can vary according to architecture, compile-time options, and
** SQLite library version number.
**
** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER
** was defined, then the page content would be held in a separate memory
** allocation from the PgHdr1. This was intended to avoid clownshoe memory
** allocations. However, the btree layer needs a small (16-byte) overrun
** area after the page content buffer. The header serves as that overrun
** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid
** any possibility of a memory error.
**
** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
** with this module. Information is passed back and forth as PgHdr1 pointers.
**
** The pcache.c and pager.c modules deal pointers to PgHdr objects.
** The btree.c module deals with pointers to MemPage objects.
**
** SOURCE OF PAGE CACHE MEMORY:
**
** Memory for a page might come from any of three sources:
**
** (1) The general-purpose memory allocator - sqlite3Malloc()
** (2) Global page-cache memory provided using sqlite3_config() with
** SQLITE_CONFIG_PAGECACHE.
** (3) PCache-local bulk allocation.
**
** The third case is a chunk of heap memory (defaulting to 100 pages worth)
** that is allocated when the page cache is created. The size of the local
** bulk allocation can be adjusted using
**
** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
**
** If N is positive, then N pages worth of memory are allocated using a single
** sqlite3Malloc() call and that memory is used for the first N pages allocated.
** Or if N is negative, then -1024*N bytes of memory are allocated and used
** for as many pages as can be accommodated.
**
** Only one of (2) or (3) can be used. Once the memory available to (2) or
** (3) is exhausted, subsequent allocations fail over to the general-purpose
** memory allocator (1).
**
** Earlier versions of SQLite used only methods (1) and (2). But experiments
** show that method (3) with N==100 provides about a 5% performance boost for
** common workloads.
*/
#include "sqliteInt.h"
typedef struct PCache1 PCache1;
typedef struct PgHdr1 PgHdr1;
typedef struct PgFreeslot PgFreeslot;
typedef struct PGroup PGroup;
/*
** Each cache entry is represented by an instance of the following
** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
** directly before this structure and is used to cache the page content.
**
** When reading a corrupt database file, it is possible that SQLite might
** read a few bytes (no more than 16 bytes) past the end of the page buffer.
** It will only read past the end of the page buffer, never write. This
** object is positioned immediately after the page buffer to serve as an
** overrun area, so that overreads are harmless.
**
** Variables isBulkLocal and isAnchor were once type "u8". That works,
** but causes a 2-byte gap in the structure for most architectures (since
** pointers must be either 4 or 8-byte aligned). As this structure is located
** in memory directly after the associated page data, if the database is
** corrupt, code at the b-tree layer may overread the page buffer and
** read part of this structure before the corruption is detected. This
** can cause a valgrind error if the uninitialized gap is accessed. Using u16
** ensures there is no such gap, and therefore no bytes of uninitialized
** memory in the structure.
**
** The pLruNext and pLruPrev pointers form a double-linked circular list
** of all pages that are unpinned. The PGroup.lru element (which should be
** the only element on the list with PgHdr1.isAnchor set to 1) forms the
** beginning and the end of the list.
*/
struct PgHdr1 {
sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
unsigned int iKey; /* Key value (page number) */
u16 isBulkLocal; /* This page from bulk local storage */
u16 isAnchor; /* This is the PGroup.lru element */
PgHdr1 *pNext; /* Next in hash table chain */
PCache1 *pCache; /* Cache that currently owns this page */
PgHdr1 *pLruNext; /* Next in circular LRU list of unpinned pages */
PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
/* NB: pLruPrev is only valid if pLruNext!=0 */
};
/*
** A page is pinned if it is not on the LRU list. To be "pinned" means
** that the page is in active use and must not be deallocated.
*/
#define PAGE_IS_PINNED(p) ((p)->pLruNext==0)
#define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0)
/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
** of one or more PCaches that are able to recycle each other's unpinned
** pages when they are under memory pressure. A PGroup is an instance of
** the following object.
**
** This page cache implementation works in one of two modes:
**
** (1) Every PCache is the sole member of its own PGroup. There is
** one PGroup per PCache.
**
** (2) There is a single global PGroup that all PCaches are a member
** of.
**
** Mode 1 uses more memory (since PCache instances are not able to rob
** unused pages from other PCaches) but it also operates without a mutex,
** and is therefore often faster. Mode 2 requires a mutex in order to be
** threadsafe, but recycles pages more efficiently.
**
** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
** PGroup which is the pcache1.grp global variable and its mutex is
** SQLITE_MUTEX_STATIC_LRU.
*/
struct PGroup {
sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
unsigned int nMinPage; /* Sum of nMin for purgeable caches */
unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
unsigned int nPurgeable; /* Number of purgeable pages allocated */
PgHdr1 lru; /* The beginning and end of the LRU list */
};
/* Each page cache is an instance of the following object. Every
** open database file (including each in-memory database and each
** temporary or transient database) has a single page cache which
** is an instance of this object.
**
** Pointers to structures of this type are cast and returned as
** opaque sqlite3_pcache* handles.
*/
struct PCache1 {
/* Cache configuration parameters. Page size (szPage) and the purgeable
** flag (bPurgeable) and the pnPurgeable pointer are all set when the
** cache is created and are never changed thereafter. nMax may be
** modified at any time by a call to the pcache1Cachesize() method.
** The PGroup mutex must be held when accessing nMax.
*/
PGroup *pGroup; /* PGroup this cache belongs to */
unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */
int szPage; /* Size of database content section */
int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
int szAlloc; /* Total size of one pcache line */
int bPurgeable; /* True if cache is purgeable */
unsigned int nMin; /* Minimum number of pages reserved */
unsigned int nMax; /* Configured "cache_size" value */
unsigned int n90pct; /* nMax*9/10 */
unsigned int iMaxKey; /* Largest key seen since xTruncate() */
unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/
/* Hash table of all pages. The following variables may only be accessed
** when the accessor is holding the PGroup mutex.
*/
unsigned int nRecyclable; /* Number of pages in the LRU list */
unsigned int nPage; /* Total number of pages in apHash */
unsigned int nHash; /* Number of slots in apHash[] */
PgHdr1 **apHash; /* Hash table for fast lookup by key */
PgHdr1 *pFree; /* List of unused pcache-local pages */
void *pBulk; /* Bulk memory used by pcache-local */
};
/*
** Free slots in the allocator used to divide up the global page cache
** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
*/
struct PgFreeslot {
PgFreeslot *pNext; /* Next free slot */
};
/*
** Global data used by this cache.
*/
static SQLITE_WSD struct PCacheGlobal {
PGroup grp; /* The global PGroup for mode (2) */
/* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
** fixed at sqlite3_initialize() time and do not require mutex protection.
** The nFreeSlot and pFree values do require mutex protection.
*/
int isInit; /* True if initialized */
int separateCache; /* Use a new PGroup for each PCache */
int nInitPage; /* Initial bulk allocation size */
int szSlot; /* Size of each free slot */
int nSlot; /* The number of pcache slots */
int nReserve; /* Try to keep nFreeSlot above this */
void *pStart, *pEnd; /* Bounds of global page cache memory */
/* Above requires no mutex. Use mutex below for variable that follow. */
sqlite3_mutex *mutex; /* Mutex for accessing the following: */
PgFreeslot *pFree; /* Free page blocks */
int nFreeSlot; /* Number of unused pcache slots */
/* The following value requires a mutex to change. We skip the mutex on
** reading because (1) most platforms read a 32-bit integer atomically and
** (2) even if an incorrect value is read, no great harm is done since this
** is really just an optimization. */
int bUnderPressure; /* True if low on PAGECACHE memory */
} pcache1_g;
/*
** All code in this file should access the global structure above via the
** alias "pcache1". This ensures that the WSD emulation is used when
** compiling for systems that do not support real WSD.
*/
#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
/*
** Macros to enter and leave the PCache LRU mutex.
*/
#if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
# define pcache1EnterMutex(X) assert((X)->mutex==0)
# define pcache1LeaveMutex(X) assert((X)->mutex==0)
# define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
#else
# define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
# define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
# define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
#endif
/******************************************************************************/
/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
/*
** This function is called during initialization if a static buffer is
** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
** verb to sqlite3_config(). Parameter pBuf points to an allocation large
** enough to contain 'n' buffers of 'sz' bytes each.
**
** This routine is called from sqlite3_initialize() and so it is guaranteed
** to be serialized already. There is no need for further mutexing.
*/
void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
if( pcache1.isInit ){
PgFreeslot *p;
if( pBuf==0 ) sz = n = 0;
if( n==0 ) sz = 0;
sz = ROUNDDOWN8(sz);
pcache1.szSlot = sz;
pcache1.nSlot = pcache1.nFreeSlot = n;
pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
pcache1.pStart = pBuf;
pcache1.pFree = 0;
pcache1.bUnderPressure = 0;
while( n-- ){
p = (PgFreeslot*)pBuf;
p->pNext = pcache1.pFree;
pcache1.pFree = p;
pBuf = (void*)&((char*)pBuf)[sz];
}
pcache1.pEnd = pBuf;
}
}
/*
** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
** true if pCache->pFree ends up containing one or more free pages.
*/
static int pcache1InitBulk(PCache1 *pCache){
i64 szBulk;
char *zBulk;
if( pcache1.nInitPage==0 ) return 0;
/* Do not bother with a bulk allocation if the cache size very small */
if( pCache->nMax<3 ) return 0;
sqlite3BeginBenignMalloc();
if( pcache1.nInitPage>0 ){
szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
}else{
szBulk = -1024 * (i64)pcache1.nInitPage;
}
if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
szBulk = pCache->szAlloc*(i64)pCache->nMax;
}
zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
sqlite3EndBenignMalloc();
if( zBulk ){
int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
do{
PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
pX->page.pBuf = zBulk;
pX->page.pExtra = &pX[1];
pX->isBulkLocal = 1;
pX->isAnchor = 0;
pX->pNext = pCache->pFree;
pX->pLruPrev = 0; /* Initializing this saves a valgrind error */
pCache->pFree = pX;
zBulk += pCache->szAlloc;
}while( --nBulk );
}
return pCache->pFree!=0;
}
/*
** Malloc function used within this file to allocate space from the buffer
** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
** such buffer exists or there is no space left in it, this function falls
** back to sqlite3Malloc().
**
** Multiple threads can run this routine at the same time. Global variables
** in pcache1 need to be protected via mutex.
*/
static void *pcache1Alloc(int nByte){
void *p = 0;
assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
if( nByte<=pcache1.szSlot ){
sqlite3_mutex_enter(pcache1.mutex);
p = (PgHdr1 *)pcache1.pFree;
if( p ){
pcache1.pFree = pcache1.pFree->pNext;
pcache1.nFreeSlot--;
pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
assert( pcache1.nFreeSlot>=0 );
sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
}
sqlite3_mutex_leave(pcache1.mutex);
}
if( p==0 ){
/* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
** it from sqlite3Malloc instead.
*/
p = sqlite3Malloc(nByte);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
if( p ){
int sz = sqlite3MallocSize(p);
sqlite3_mutex_enter(pcache1.mutex);
sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
sqlite3_mutex_leave(pcache1.mutex);
}
#endif
sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
}
return p;
}
/*
** Free an allocated buffer obtained from pcache1Alloc().
*/
static void pcache1Free(void *p){
if( p==0 ) return;
if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
PgFreeslot *pSlot;
sqlite3_mutex_enter(pcache1.mutex);
sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
pSlot = (PgFreeslot*)p;
pSlot->pNext = pcache1.pFree;
pcache1.pFree = pSlot;
pcache1.nFreeSlot++;
pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
assert( pcache1.nFreeSlot<=pcache1.nSlot );
sqlite3_mutex_leave(pcache1.mutex);
}else{
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
{
int nFreed = 0;
nFreed = sqlite3MallocSize(p);
sqlite3_mutex_enter(pcache1.mutex);
sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
sqlite3_mutex_leave(pcache1.mutex);
}
#endif
sqlite3_free(p);
}
}
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** Return the size of a pcache allocation
*/
static int pcache1MemSize(void *p){
if( p>=pcache1.pStart && p<pcache1.pEnd ){
return pcache1.szSlot;
}else{
int iSize;
assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
iSize = sqlite3MallocSize(p);
sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
return iSize;
}
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
/*
** Allocate a new page object initially associated with cache pCache.
*/
static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
PgHdr1 *p = 0;
void *pPg;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
assert( pCache->pFree!=0 );
p = pCache->pFree;
pCache->pFree = p->pNext;
p->pNext = 0;
}else{
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/* The group mutex must be released before pcache1Alloc() is called. This
** is because it might call sqlite3_release_memory(), which assumes that
** this mutex is not held. */
assert( pcache1.separateCache==0 );
assert( pCache->pGroup==&pcache1.grp );
pcache1LeaveMutex(pCache->pGroup);
#endif
if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
pPg = pcache1Alloc(pCache->szAlloc);
if( benignMalloc ){ sqlite3EndBenignMalloc(); }
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
pcache1EnterMutex(pCache->pGroup);
#endif
if( pPg==0 ) return 0;
p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
p->page.pBuf = pPg;
p->page.pExtra = &p[1];
p->isBulkLocal = 0;
p->isAnchor = 0;
p->pLruPrev = 0; /* Initializing this saves a valgrind error */
}
(*pCache->pnPurgeable)++;
return p;
}
/*
** Free a page object allocated by pcache1AllocPage().
*/
static void pcache1FreePage(PgHdr1 *p){
PCache1 *pCache;
assert( p!=0 );
pCache = p->pCache;
assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
if( p->isBulkLocal ){
p->pNext = pCache->pFree;
pCache->pFree = p;
}else{
pcache1Free(p->page.pBuf);
}
(*pCache->pnPurgeable)--;
}
/*
** Malloc function used by SQLite to obtain space from the buffer configured
** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
** exists, this function falls back to sqlite3Malloc().
*/
void *sqlite3PageMalloc(int sz){
assert( sz<=65536+8 ); /* These allocations are never very large */
return pcache1Alloc(sz);
}
/*
** Free an allocated buffer obtained from sqlite3PageMalloc().
*/
void sqlite3PageFree(void *p){
pcache1Free(p);
}
/*
** Return true if it desirable to avoid allocating a new page cache
** entry.
**
** If memory was allocated specifically to the page cache using
** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
** it is desirable to avoid allocating a new page cache entry because
** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
** for all page cache needs and we should not need to spill the
** allocation onto the heap.
**
** Or, the heap is used for all page cache memory but the heap is
** under memory pressure, then again it is desirable to avoid
** allocating a new page cache entry in order to avoid stressing
** the heap even further.
*/
static int pcache1UnderMemoryPressure(PCache1 *pCache){
if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
return pcache1.bUnderPressure;
}else{
return sqlite3HeapNearlyFull();
}
}
/******************************************************************************/
/******** General Implementation Functions ************************************/
/*
** This function is used to resize the hash table used by the cache passed
** as the first argument.
**
** The PCache mutex must be held when this function is called.
*/
static void pcache1ResizeHash(PCache1 *p){
PgHdr1 **apNew;
unsigned int nNew;
unsigned int i;
assert( sqlite3_mutex_held(p->pGroup->mutex) );
nNew = p->nHash*2;
if( nNew<256 ){
nNew = 256;
}
pcache1LeaveMutex(p->pGroup);
if( p->nHash ){ sqlite3BeginBenignMalloc(); }
apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
if( p->nHash ){ sqlite3EndBenignMalloc(); }
pcache1EnterMutex(p->pGroup);
if( apNew ){
for(i=0; i<p->nHash; i++){
PgHdr1 *pPage;
PgHdr1 *pNext = p->apHash[i];
while( (pPage = pNext)!=0 ){
unsigned int h = pPage->iKey % nNew;
pNext = pPage->pNext;
pPage->pNext = apNew[h];
apNew[h] = pPage;
}
}
sqlite3_free(p->apHash);
p->apHash = apNew;
p->nHash = nNew;
}
}
/*
** This function is used internally to remove the page pPage from the
** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
** LRU list, then this function is a no-op.
**
** The PGroup mutex must be held when this function is called.
*/
static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
assert( pPage!=0 );
assert( PAGE_IS_UNPINNED(pPage) );
assert( pPage->pLruNext );
assert( pPage->pLruPrev );
assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
pPage->pLruPrev->pLruNext = pPage->pLruNext;
pPage->pLruNext->pLruPrev = pPage->pLruPrev;
pPage->pLruNext = 0;
/* pPage->pLruPrev = 0;
** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
assert( pPage->isAnchor==0 );
assert( pPage->pCache->pGroup->lru.isAnchor==1 );
pPage->pCache->nRecyclable--;
return pPage;
}
/*
** Remove the page supplied as an argument from the hash table
** (PCache1.apHash structure) that it is currently stored in.
** Also free the page if freePage is true.
**
** The PGroup mutex must be held when this function is called.
*/
static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
unsigned int h;
PCache1 *pCache = pPage->pCache;
PgHdr1 **pp;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
h = pPage->iKey % pCache->nHash;
for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
*pp = (*pp)->pNext;
pCache->nPage--;
if( freeFlag ) pcache1FreePage(pPage);
}
/*
** If there are currently more than nMaxPage pages allocated, try
** to recycle pages to reduce the number allocated to nMaxPage.
*/
static void pcache1EnforceMaxPage(PCache1 *pCache){
PGroup *pGroup = pCache->pGroup;
PgHdr1 *p;
assert( sqlite3_mutex_held(pGroup->mutex) );
while( pGroup->nPurgeable>pGroup->nMaxPage
&& (p=pGroup->lru.pLruPrev)->isAnchor==0
){
assert( p->pCache->pGroup==pGroup );
assert( PAGE_IS_UNPINNED(p) );
pcache1PinPage(p);
pcache1RemoveFromHash(p, 1);
}
if( pCache->nPage==0 && pCache->pBulk ){
sqlite3_free(pCache->pBulk);
pCache->pBulk = pCache->pFree = 0;
}
}
/*
** Discard all pages from cache pCache with a page number (key value)
** greater than or equal to iLimit. Any pinned pages that meet this
** criteria are unpinned before they are discarded.
**
** The PCache mutex must be held when this function is called.
*/
static void pcache1TruncateUnsafe(
PCache1 *pCache, /* The cache to truncate */
unsigned int iLimit /* Drop pages with this pgno or larger */
){
TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
unsigned int h, iStop;
assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
assert( pCache->iMaxKey >= iLimit );
assert( pCache->nHash > 0 );
if( pCache->iMaxKey - iLimit < pCache->nHash ){
/* If we are just shaving the last few pages off the end of the
** cache, then there is no point in scanning the entire hash table.
** Only scan those hash slots that might contain pages that need to
** be removed. */
h = iLimit % pCache->nHash;
iStop = pCache->iMaxKey % pCache->nHash;
TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
}else{
/* This is the general case where many pages are being removed.
** It is necessary to scan the entire hash table */
h = pCache->nHash/2;
iStop = h - 1;
}
for(;;){
PgHdr1 **pp;
PgHdr1 *pPage;
assert( h<pCache->nHash );
pp = &pCache->apHash[h];
while( (pPage = *pp)!=0 ){
if( pPage->iKey>=iLimit ){
pCache->nPage--;
*pp = pPage->pNext;
if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
pcache1FreePage(pPage);
}else{
pp = &pPage->pNext;
TESTONLY( if( nPage>=0 ) nPage++; )
}
}
if( h==iStop ) break;
h = (h+1) % pCache->nHash;
}
assert( nPage<0 || pCache->nPage==(unsigned)nPage );
}
/******************************************************************************/
/******** sqlite3_pcache Methods **********************************************/
/*
** Implementation of the sqlite3_pcache.xInit method.
*/
static int pcache1Init(void *NotUsed){
UNUSED_PARAMETER(NotUsed);
assert( pcache1.isInit==0 );
memset(&pcache1, 0, sizeof(pcache1));
/*
** The pcache1.separateCache variable is true if each PCache has its own
** private PGroup (mode-1). pcache1.separateCache is false if the single
** PGroup in pcache1.grp is used for all page caches (mode-2).
**
** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
**
** * Use a unified cache in single-threaded applications that have
** configured a start-time buffer for use as page-cache memory using
** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
** pBuf argument.
**
** * Otherwise use separate caches (mode-1)
*/
#if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
pcache1.separateCache = 0;
#elif SQLITE_THREADSAFE
pcache1.separateCache = sqlite3GlobalConfig.pPage==0
|| sqlite3GlobalConfig.bCoreMutex>0;
#else
pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
#endif
#if SQLITE_THREADSAFE
if( sqlite3GlobalConfig.bCoreMutex ){
pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
}
#endif
if( pcache1.separateCache
&& sqlite3GlobalConfig.nPage!=0
&& sqlite3GlobalConfig.pPage==0
){
pcache1.nInitPage = sqlite3GlobalConfig.nPage;
}else{
pcache1.nInitPage = 0;
}
pcache1.grp.mxPinned = 10;
pcache1.isInit = 1;
return SQLITE_OK;
}
/*
** Implementation of the sqlite3_pcache.xShutdown method.
** Note that the static mutex allocated in xInit does
** not need to be freed.
*/
static void pcache1Shutdown(void *NotUsed){
UNUSED_PARAMETER(NotUsed);
assert( pcache1.isInit!=0 );
memset(&pcache1, 0, sizeof(pcache1));
}
/* forward declaration */
static void pcache1Destroy(sqlite3_pcache *p);
/*
** Implementation of the sqlite3_pcache.xCreate method.
**
** Allocate a new cache.
*/
static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
PCache1 *pCache; /* The newly created page cache */
PGroup *pGroup; /* The group the new page cache will belong to */
int sz; /* Bytes of memory required to allocate the new cache */
assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
assert( szExtra < 300 );
sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
pCache = (PCache1 *)sqlite3MallocZero(sz);
if( pCache ){
if( pcache1.separateCache ){
pGroup = (PGroup*)&pCache[1];
pGroup->mxPinned = 10;
}else{
pGroup = &pcache1.grp;
}
pcache1EnterMutex(pGroup);
if( pGroup->lru.isAnchor==0 ){
pGroup->lru.isAnchor = 1;
pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
}
pCache->pGroup = pGroup;
pCache->szPage = szPage;
pCache->szExtra = szExtra;
pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
pCache->bPurgeable = (bPurgeable ? 1 : 0);
pcache1ResizeHash(pCache);
if( bPurgeable ){
pCache->nMin = 10;
pGroup->nMinPage += pCache->nMin;
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pCache->pnPurgeable = &pGroup->nPurgeable;
}else{
pCache->pnPurgeable = &pCache->nPurgeableDummy;
}
pcache1LeaveMutex(pGroup);
if( pCache->nHash==0 ){
pcache1Destroy((sqlite3_pcache*)pCache);
pCache = 0;
}
}
return (sqlite3_pcache *)pCache;
}
/*
** Implementation of the sqlite3_pcache.xCachesize method.
**
** Configure the cache_size limit for a cache.
*/
static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
PCache1 *pCache = (PCache1 *)p;
u32 n;
assert( nMax>=0 );
if( pCache->bPurgeable ){
PGroup *pGroup = pCache->pGroup;
pcache1EnterMutex(pGroup);
n = (u32)nMax;
if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){
n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax;
}
pGroup->nMaxPage += (n - pCache->nMax);
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pCache->nMax = n;
pCache->n90pct = pCache->nMax*9/10;
pcache1EnforceMaxPage(pCache);
pcache1LeaveMutex(pGroup);
}
}
/*
** Implementation of the sqlite3_pcache.xShrink method.
**
** Free up as much memory as possible.
*/
static void pcache1Shrink(sqlite3_pcache *p){
PCache1 *pCache = (PCache1*)p;
if( pCache->bPurgeable ){
PGroup *pGroup = pCache->pGroup;
unsigned int savedMaxPage;
pcache1EnterMutex(pGroup);
savedMaxPage = pGroup->nMaxPage;
pGroup->nMaxPage = 0;
pcache1EnforceMaxPage(pCache);
pGroup->nMaxPage = savedMaxPage;
pcache1LeaveMutex(pGroup);
}
}
/*
** Implementation of the sqlite3_pcache.xPagecount method.
*/
static int pcache1Pagecount(sqlite3_pcache *p){
int n;
PCache1 *pCache = (PCache1*)p;
pcache1EnterMutex(pCache->pGroup);
n = pCache->nPage;
pcache1LeaveMutex(pCache->pGroup);
return n;
}
/*
** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
** in the header of the pcache1Fetch() procedure.
**
** This steps are broken out into a separate procedure because they are
** usually not needed, and by avoiding the stack initialization required
** for these steps, the main pcache1Fetch() procedure can run faster.
*/
static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
PCache1 *pCache,
unsigned int iKey,
int createFlag
){
unsigned int nPinned;
PGroup *pGroup = pCache->pGroup;
PgHdr1 *pPage = 0;
/* Step 3: Abort if createFlag is 1 but the cache is nearly full */
assert( pCache->nPage >= pCache->nRecyclable );
nPinned = pCache->nPage - pCache->nRecyclable;
assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
assert( pCache->n90pct == pCache->nMax*9/10 );
if( createFlag==1 && (
nPinned>=pGroup->mxPinned
|| nPinned>=pCache->n90pct
|| (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
)){
return 0;
}
if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
assert( pCache->nHash>0 && pCache->apHash );
/* Step 4. Try to recycle a page. */
if( pCache->bPurgeable
&& !pGroup->lru.pLruPrev->isAnchor
&& ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
){
PCache1 *pOther;
pPage = pGroup->lru.pLruPrev;
assert( PAGE_IS_UNPINNED(pPage) );
pcache1RemoveFromHash(pPage, 0);
pcache1PinPage(pPage);
pOther = pPage->pCache;
if( pOther->szAlloc != pCache->szAlloc ){
pcache1FreePage(pPage);
pPage = 0;
}else{
pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
}
}
/* Step 5. If a usable page buffer has still not been found,
** attempt to allocate a new one.
*/
if( !pPage ){
pPage = pcache1AllocPage(pCache, createFlag==1);
}
if( pPage ){
unsigned int h = iKey % pCache->nHash;
pCache->nPage++;
pPage->iKey = iKey;
pPage->pNext = pCache->apHash[h];
pPage->pCache = pCache;
pPage->pLruNext = 0;
/* pPage->pLruPrev = 0;
** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
*(void **)pPage->page.pExtra = 0;
pCache->apHash[h] = pPage;
if( iKey>pCache->iMaxKey ){
pCache->iMaxKey = iKey;
}
}
return pPage;
}
/*
** Implementation of the sqlite3_pcache.xFetch method.
**
** Fetch a page by key value.
**
** Whether or not a new page may be allocated by this function depends on
** the value of the createFlag argument. 0 means do not allocate a new
** page. 1 means allocate a new page if space is easily available. 2
** means to try really hard to allocate a new page.
**
** For a non-purgeable cache (a cache used as the storage for an in-memory
** database) there is really no difference between createFlag 1 and 2. So
** the calling function (pcache.c) will never have a createFlag of 1 on
** a non-purgeable cache.
**
** There are three different approaches to obtaining space for a page,
** depending on the value of parameter createFlag (which may be 0, 1 or 2).
**
** 1. Regardless of the value of createFlag, the cache is searched for a
** copy of the requested page. If one is found, it is returned.
**
** 2. If createFlag==0 and the page is not already in the cache, NULL is
** returned.
**
** 3. If createFlag is 1, and the page is not already in the cache, then
** return NULL (do not allocate a new page) if any of the following
** conditions are true:
**
** (a) the number of pages pinned by the cache is greater than
** PCache1.nMax, or
**
** (b) the number of pages pinned by the cache is greater than
** the sum of nMax for all purgeable caches, less the sum of
** nMin for all other purgeable caches, or
**
** 4. If none of the first three conditions apply and the cache is marked
** as purgeable, and if one of the following is true:
**
** (a) The number of pages allocated for the cache is already
** PCache1.nMax, or
**
** (b) The number of pages allocated for all purgeable caches is
** already equal to or greater than the sum of nMax for all
** purgeable caches,
**
** (c) The system is under memory pressure and wants to avoid
** unnecessary pages cache entry allocations
**
** then attempt to recycle a page from the LRU list. If it is the right
** size, return the recycled buffer. Otherwise, free the buffer and
** proceed to step 5.
**
** 5. Otherwise, allocate and return a new page buffer.
**
** There are two versions of this routine. pcache1FetchWithMutex() is
** the general case. pcache1FetchNoMutex() is a faster implementation for
** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
** invokes the appropriate routine.
*/
static PgHdr1 *pcache1FetchNoMutex(
sqlite3_pcache *p,
unsigned int iKey,
int createFlag
){
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = 0;
/* Step 1: Search the hash table for an existing entry. */
pPage = pCache->apHash[iKey % pCache->nHash];
while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
/* Step 2: If the page was found in the hash table, then return it.
** If the page was not in the hash table and createFlag is 0, abort.
** Otherwise (page not in hash and createFlag!=0) continue with
** subsequent steps to try to create the page. */
if( pPage ){
if( PAGE_IS_UNPINNED(pPage) ){
return pcache1PinPage(pPage);
}else{
return pPage;
}
}else if( createFlag ){
/* Steps 3, 4, and 5 implemented by this subroutine */
return pcache1FetchStage2(pCache, iKey, createFlag);
}else{
return 0;
}
}
#if PCACHE1_MIGHT_USE_GROUP_MUTEX
static PgHdr1 *pcache1FetchWithMutex(
sqlite3_pcache *p,
unsigned int iKey,
int createFlag
){
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage;
pcache1EnterMutex(pCache->pGroup);
pPage = pcache1FetchNoMutex(p, iKey, createFlag);
assert( pPage==0 || pCache->iMaxKey>=iKey );
pcache1LeaveMutex(pCache->pGroup);
return pPage;
}
#endif
static sqlite3_pcache_page *pcache1Fetch(
sqlite3_pcache *p,
unsigned int iKey,
int createFlag
){
#if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
PCache1 *pCache = (PCache1 *)p;
#endif
assert( offsetof(PgHdr1,page)==0 );
assert( pCache->bPurgeable || createFlag!=1 );
assert( pCache->bPurgeable || pCache->nMin==0 );
assert( pCache->bPurgeable==0 || pCache->nMin==10 );
assert( pCache->nMin==0 || pCache->bPurgeable );
assert( pCache->nHash>0 );
#if PCACHE1_MIGHT_USE_GROUP_MUTEX
if( pCache->pGroup->mutex ){
return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
}else
#endif
{
return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
}
}
/*
** Implementation of the sqlite3_pcache.xUnpin method.
**
** Mark a page as unpinned (eligible for asynchronous recycling).
*/
static void pcache1Unpin(
sqlite3_pcache *p,
sqlite3_pcache_page *pPg,
int reuseUnlikely
){
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = (PgHdr1 *)pPg;
PGroup *pGroup = pCache->pGroup;
assert( pPage->pCache==pCache );
pcache1EnterMutex(pGroup);
/* It is an error to call this function if the page is already
** part of the PGroup LRU list.
*/
assert( pPage->pLruNext==0 );
assert( PAGE_IS_PINNED(pPage) );
if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
pcache1RemoveFromHash(pPage, 1);
}else{
/* Add the page to the PGroup LRU list. */
PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
pPage->pLruPrev = &pGroup->lru;
(pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
*ppFirst = pPage;
pCache->nRecyclable++;
}
pcache1LeaveMutex(pCache->pGroup);
}
/*
** Implementation of the sqlite3_pcache.xRekey method.
*/
static void pcache1Rekey(
sqlite3_pcache *p,
sqlite3_pcache_page *pPg,
unsigned int iOld,
unsigned int iNew
){
PCache1 *pCache = (PCache1 *)p;
PgHdr1 *pPage = (PgHdr1 *)pPg;
PgHdr1 **pp;
unsigned int hOld, hNew;
assert( pPage->iKey==iOld );
assert( pPage->pCache==pCache );
assert( iOld!=iNew ); /* The page number really is changing */
pcache1EnterMutex(pCache->pGroup);
assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */
hOld = iOld%pCache->nHash;
pp = &pCache->apHash[hOld];
while( (*pp)!=pPage ){
pp = &(*pp)->pNext;
}
*pp = pPage->pNext;
assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */
hNew = iNew%pCache->nHash;
pPage->iKey = iNew;
pPage->pNext = pCache->apHash[hNew];
pCache->apHash[hNew] = pPage;
if( iNew>pCache->iMaxKey ){
pCache->iMaxKey = iNew;
}
pcache1LeaveMutex(pCache->pGroup);
}
/*
** Implementation of the sqlite3_pcache.xTruncate method.
**
** Discard all unpinned pages in the cache with a page number equal to
** or greater than parameter iLimit. Any pinned pages with a page number
** equal to or greater than iLimit are implicitly unpinned.
*/
static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
PCache1 *pCache = (PCache1 *)p;
pcache1EnterMutex(pCache->pGroup);
if( iLimit<=pCache->iMaxKey ){
pcache1TruncateUnsafe(pCache, iLimit);
pCache->iMaxKey = iLimit-1;
}
pcache1LeaveMutex(pCache->pGroup);
}
/*
** Implementation of the sqlite3_pcache.xDestroy method.
**
** Destroy a cache allocated using pcache1Create().
*/
static void pcache1Destroy(sqlite3_pcache *p){
PCache1 *pCache = (PCache1 *)p;
PGroup *pGroup = pCache->pGroup;
assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
pcache1EnterMutex(pGroup);
if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
assert( pGroup->nMaxPage >= pCache->nMax );
pGroup->nMaxPage -= pCache->nMax;
assert( pGroup->nMinPage >= pCache->nMin );
pGroup->nMinPage -= pCache->nMin;
pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
pcache1EnforceMaxPage(pCache);
pcache1LeaveMutex(pGroup);
sqlite3_free(pCache->pBulk);
sqlite3_free(pCache->apHash);
sqlite3_free(pCache);
}
/*
** This function is called during initialization (sqlite3_initialize()) to
** install the default pluggable cache module, assuming the user has not
** already provided an alternative.
*/
void sqlite3PCacheSetDefault(void){
static const sqlite3_pcache_methods2 defaultMethods = {
1, /* iVersion */
0, /* pArg */
pcache1Init, /* xInit */
pcache1Shutdown, /* xShutdown */
pcache1Create, /* xCreate */
pcache1Cachesize, /* xCachesize */
pcache1Pagecount, /* xPagecount */
pcache1Fetch, /* xFetch */
pcache1Unpin, /* xUnpin */
pcache1Rekey, /* xRekey */
pcache1Truncate, /* xTruncate */
pcache1Destroy, /* xDestroy */
pcache1Shrink /* xShrink */
};
sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
}
/*
** Return the size of the header on each page of this PCACHE implementation.
*/
int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
/*
** Return the global mutex used by this PCACHE implementation. The
** sqlite3_status() routine needs access to this mutex.
*/
sqlite3_mutex *sqlite3Pcache1Mutex(void){
return pcache1.mutex;
}
#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
/*
** This function is called to free superfluous dynamically allocated memory
** held by the pager system. Memory in use by any SQLite pager allocated
** by the current thread may be sqlite3_free()ed.
**
** nReq is the number of bytes of memory required. Once this much has
** been released, the function returns. The return value is the total number
** of bytes of memory released.
*/
int sqlite3PcacheReleaseMemory(int nReq){
int nFree = 0;
assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
assert( sqlite3_mutex_notheld(pcache1.mutex) );
if( sqlite3GlobalConfig.pPage==0 ){
PgHdr1 *p;
pcache1EnterMutex(&pcache1.grp);
while( (nReq<0 || nFree<nReq)
&& (p=pcache1.grp.lru.pLruPrev)!=0
&& p->isAnchor==0
){
nFree += pcache1MemSize(p->page.pBuf);
assert( PAGE_IS_UNPINNED(p) );
pcache1PinPage(p);
pcache1RemoveFromHash(p, 1);
}
pcache1LeaveMutex(&pcache1.grp);
}
return nFree;
}
#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
#ifdef SQLITE_TEST
/*
** This function is used by test procedures to inspect the internal state
** of the global cache.
*/
void sqlite3PcacheStats(
int *pnCurrent, /* OUT: Total number of pages cached */
int *pnMax, /* OUT: Global maximum cache size */
int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
int *pnRecyclable /* OUT: Total number of pages available for recycling */
){
PgHdr1 *p;
int nRecyclable = 0;
for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
assert( PAGE_IS_UNPINNED(p) );
nRecyclable++;
}
*pnCurrent = pcache1.grp.nPurgeable;
*pnMax = (int)pcache1.grp.nMaxPage;
*pnMin = (int)pcache1.grp.nMinPage;
*pnRecyclable = nRecyclable;
}
#endif