0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2025-01-09 07:39:01 +00:00
Pekka Enberg 9ed72eb5ae Merge upstream SQLite 3.45.1
This merges the version-3.45.1 tag from upstream SQLite git repository
to libSQL with the following conflicts resolved:

Conflicts:
      README.md
      ext/jni/src/org/sqlite/jni/capi/ConfigSqllogCallback.java
      libsql-sqlite3/configure
      libsql-sqlite3/doc/jsonb.md
      libsql-sqlite3/ext/fts5/test/fts5faultH.test
      libsql-sqlite3/ext/fts5/test/fts5origintext.test
      libsql-sqlite3/ext/fts5/test/fts5origintext2.test
      libsql-sqlite3/ext/fts5/test/fts5origintext3.test
      libsql-sqlite3/ext/fts5/test/fts5origintext4.test
      libsql-sqlite3/ext/fts5/test/fts5origintext5.test
      libsql-sqlite3/ext/fts5/test/fts5secure8.test
      libsql-sqlite3/ext/fts5/test/fts5tokenizer2.test
      libsql-sqlite3/ext/fts5/test/fts5trigram2.test
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/annotation/Experimental.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/capi/ConfigSqlLogCallback.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/capi/ConfigSqllogCallback.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/wrapper1/WindowFunction.java
      libsql-sqlite3/ext/wasm/GNUmakefile
      libsql-sqlite3/ext/wasm/batch-runner-sahpool.html
      libsql-sqlite3/ext/wasm/batch-runner-sahpool.js
      libsql-sqlite3/src/pager.c
      libsql-sqlite3/src/shell.c.in
      libsql-sqlite3/src/sqliteInt.h
      libsql-sqlite3/src/wal.c
      libsql-sqlite3/test/fts3integrity.test
      libsql-sqlite3/test/json/jsonb-q1.txt
      libsql-sqlite3/test/json106.test
      libsql-sqlite3/test/json107.test
      libsql-sqlite3/test/jsonb01.test
      libsql-sqlite3/test/mmapcorrupt.test
      libsql-sqlite3/test/releasetest_data.tcl
      libsql-sqlite3/test/shell9.test
      libsql-sqlite3/test/wapp.tcl
      libsql-sqlite3/test/wapptest.tcl
2024-07-25 13:45:06 +03:00

8280 lines
277 KiB
C

/*
** 2004 May 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains the VFS implementation for unix-like operating systems
** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
**
** There are actually several different VFS implementations in this file.
** The differences are in the way that file locking is done. The default
** implementation uses Posix Advisory Locks. Alternative implementations
** use flock(), dot-files, various proprietary locking schemas, or simply
** skip locking all together.
**
** This source file is organized into divisions where the logic for various
** subfunctions is contained within the appropriate division. PLEASE
** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
** in the correct division and should be clearly labelled.
**
** The layout of divisions is as follows:
**
** * General-purpose declarations and utility functions.
** * Unique file ID logic used by VxWorks.
** * Various locking primitive implementations (all except proxy locking):
** + for Posix Advisory Locks
** + for no-op locks
** + for dot-file locks
** + for flock() locking
** + for named semaphore locks (VxWorks only)
** + for AFP filesystem locks (MacOSX only)
** * sqlite3_file methods not associated with locking.
** * Definitions of sqlite3_io_methods objects for all locking
** methods plus "finder" functions for each locking method.
** * sqlite3_vfs method implementations.
** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
** * Definitions of sqlite3_vfs objects for all locking methods
** plus implementations of sqlite3_os_init() and sqlite3_os_end().
*/
#include "sqliteInt.h"
#if SQLITE_OS_UNIX /* This file is used on unix only */
/*
** There are various methods for file locking used for concurrency
** control:
**
** 1. POSIX locking (the default),
** 2. No locking,
** 3. Dot-file locking,
** 4. flock() locking,
** 5. AFP locking (OSX only),
** 6. Named POSIX semaphores (VXWorks only),
** 7. proxy locking. (OSX only)
**
** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
** selection of the appropriate locking style based on the filesystem
** where the database is located.
*/
#if !defined(SQLITE_ENABLE_LOCKING_STYLE)
# if defined(__APPLE__)
# define SQLITE_ENABLE_LOCKING_STYLE 1
# else
# define SQLITE_ENABLE_LOCKING_STYLE 0
# endif
#endif
/* Use pread() and pwrite() if they are available */
#if defined(__APPLE__) || defined(__linux__)
# define HAVE_PREAD 1
# define HAVE_PWRITE 1
#endif
#if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64)
# undef USE_PREAD
# define USE_PREAD64 1
#elif defined(HAVE_PREAD) && defined(HAVE_PWRITE)
# undef USE_PREAD64
# define USE_PREAD 1
#endif
/*
** standard include files.
*/
#include <sys/types.h> /* amalgamator: keep */
#include <sys/stat.h> /* amalgamator: keep */
#include <fcntl.h>
#include <sys/ioctl.h>
#include <unistd.h> /* amalgamator: keep */
#include <time.h>
#include <sys/time.h> /* amalgamator: keep */
#include <errno.h>
#if (!defined(SQLITE_OMIT_SHARED_MEM) || SQLITE_MAX_MMAP_SIZE>0) \
&& !defined(SQLITE_WASI)
# include <sys/mman.h>
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
# include <sys/ioctl.h>
# include <sys/file.h>
# include <sys/param.h>
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** Try to determine if gethostuuid() is available based on standard
** macros. This might sometimes compute the wrong value for some
** obscure platforms. For those cases, simply compile with one of
** the following:
**
** -DHAVE_GETHOSTUUID=0
** -DHAVE_GETHOSTUUID=1
**
** None if this matters except when building on Apple products with
** -DSQLITE_ENABLE_LOCKING_STYLE.
*/
#ifndef HAVE_GETHOSTUUID
# define HAVE_GETHOSTUUID 0
# if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \
(__IPHONE_OS_VERSION_MIN_REQUIRED > 2000))
# if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \
&& (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))\
&& (!defined(TARGET_OS_MACCATALYST) || (TARGET_OS_MACCATALYST==0))
# undef HAVE_GETHOSTUUID
# define HAVE_GETHOSTUUID 1
# else
# warning "gethostuuid() is disabled."
# endif
# endif
#endif
#if OS_VXWORKS
# include <sys/ioctl.h>
# include <semaphore.h>
# include <limits.h>
#endif /* OS_VXWORKS */
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
# include <sys/mount.h>
#endif
#ifdef HAVE_UTIME
# include <utime.h>
#endif
/*
** Allowed values of unixFile.fsFlags
*/
#define SQLITE_FSFLAGS_IS_MSDOS 0x1
/*
** If we are to be thread-safe, include the pthreads header.
*/
#if SQLITE_THREADSAFE
# include <pthread.h>
#endif
/*
** Default permissions when creating a new file
*/
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
#endif
/*
** Default permissions when creating auto proxy dir
*/
#ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
# define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
#endif
/*
** Maximum supported path-length.
*/
#define MAX_PATHNAME 512
/*
** Maximum supported symbolic links
*/
#define SQLITE_MAX_SYMLINKS 100
/*
** Remove and stub certain info for WASI (WebAssembly System
** Interface) builds.
*/
#ifdef SQLITE_WASI
# undef HAVE_FCHMOD
# undef HAVE_FCHOWN
# undef HAVE_MREMAP
# define HAVE_MREMAP 0
# ifndef SQLITE_DEFAULT_UNIX_VFS
# define SQLITE_DEFAULT_UNIX_VFS "unix-dotfile"
/* ^^^ should SQLITE_DEFAULT_UNIX_VFS be "unix-none"? */
# endif
# ifndef F_RDLCK
# define F_RDLCK 0
# define F_WRLCK 1
# define F_UNLCK 2
# if __LONG_MAX == 0x7fffffffL
# define F_GETLK 12
# define F_SETLK 13
# define F_SETLKW 14
# else
# define F_GETLK 5
# define F_SETLK 6
# define F_SETLKW 7
# endif
# endif
#else /* !SQLITE_WASI */
# ifndef HAVE_FCHMOD
# define HAVE_FCHMOD
# endif
#endif /* SQLITE_WASI */
#ifdef SQLITE_WASI
# define osGetpid(X) (pid_t)1
#else
/* Always cast the getpid() return type for compatibility with
** kernel modules in VxWorks. */
# define osGetpid(X) (pid_t)getpid()
#endif
/*
** Only set the lastErrno if the error code is a real error and not
** a normal expected return code of SQLITE_BUSY or SQLITE_OK
*/
#define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
/* Forward references */
typedef struct unixShm unixShm; /* Connection shared memory */
typedef struct unixShmNode unixShmNode; /* Shared memory instance */
typedef struct unixInodeInfo unixInodeInfo; /* An i-node */
typedef struct UnixUnusedFd UnixUnusedFd; /* An unused file descriptor */
/*
** Sometimes, after a file handle is closed by SQLite, the file descriptor
** cannot be closed immediately. In these cases, instances of the following
** structure are used to store the file descriptor while waiting for an
** opportunity to either close or reuse it.
*/
struct UnixUnusedFd {
int fd; /* File descriptor to close */
int flags; /* Flags this file descriptor was opened with */
UnixUnusedFd *pNext; /* Next unused file descriptor on same file */
};
/*
** The unixFile structure is subclass of sqlite3_file specific to the unix
** VFS implementations.
*/
typedef struct unixFile unixFile;
struct unixFile {
sqlite3_io_methods const *pMethod; /* Always the first entry */
sqlite3_vfs *pVfs; /* The VFS that created this unixFile */
unixInodeInfo *pInode; /* Info about locks on this inode */
int h; /* The file descriptor */
unsigned char eFileLock; /* The type of lock held on this fd */
unsigned short int ctrlFlags; /* Behavioral bits. UNIXFILE_* flags */
int lastErrno; /* The unix errno from last I/O error */
void *lockingContext; /* Locking style specific state */
UnixUnusedFd *pPreallocatedUnused; /* Pre-allocated UnixUnusedFd */
const char *zPath; /* Name of the file */
unixShm *pShm; /* Shared memory segment information */
int szChunk; /* Configured by FCNTL_CHUNK_SIZE */
#if SQLITE_MAX_MMAP_SIZE>0
int nFetchOut; /* Number of outstanding xFetch refs */
sqlite3_int64 mmapSize; /* Usable size of mapping at pMapRegion */
sqlite3_int64 mmapSizeActual; /* Actual size of mapping at pMapRegion */
sqlite3_int64 mmapSizeMax; /* Configured FCNTL_MMAP_SIZE value */
void *pMapRegion; /* Memory mapped region */
#endif
int sectorSize; /* Device sector size */
int deviceCharacteristics; /* Precomputed device characteristics */
#if SQLITE_ENABLE_LOCKING_STYLE
int openFlags; /* The flags specified at open() */
#endif
#if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
unsigned fsFlags; /* cached details from statfs() */
#endif
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
unsigned iBusyTimeout; /* Wait this many millisec on locks */
#endif
#if OS_VXWORKS
struct vxworksFileId *pId; /* Unique file ID */
#endif
#ifdef SQLITE_DEBUG
/* The next group of variables are used to track whether or not the
** transaction counter in bytes 24-27 of database files are updated
** whenever any part of the database changes. An assertion fault will
** occur if a file is updated without also updating the transaction
** counter. This test is made to avoid new problems similar to the
** one described by ticket #3584.
*/
unsigned char transCntrChng; /* True if the transaction counter changed */
unsigned char dbUpdate; /* True if any part of database file changed */
unsigned char inNormalWrite; /* True if in a normal write operation */
#endif
#ifdef SQLITE_TEST
/* In test mode, increase the size of this structure a bit so that
** it is larger than the struct CrashFile defined in test6.c.
*/
char aPadding[32];
#endif
};
/* This variable holds the process id (pid) from when the xRandomness()
** method was called. If xOpen() is called from a different process id,
** indicating that a fork() has occurred, the PRNG will be reset.
*/
static pid_t randomnessPid = 0;
/*
** Allowed values for the unixFile.ctrlFlags bitmask:
*/
#define UNIXFILE_EXCL 0x01 /* Connections from one process only */
#define UNIXFILE_RDONLY 0x02 /* Connection is read only */
#define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
#ifndef SQLITE_DISABLE_DIRSYNC
# define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
#else
# define UNIXFILE_DIRSYNC 0x00
#endif
#define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
#define UNIXFILE_DELETE 0x20 /* Delete on close */
#define UNIXFILE_URI 0x40 /* Filename might have query parameters */
#define UNIXFILE_NOLOCK 0x80 /* Do no file locking */
/*
** Include code that is common to all os_*.c files
*/
#include "os_common.h"
/*
** Define various macros that are missing from some systems.
*/
#ifndef O_LARGEFILE
# define O_LARGEFILE 0
#endif
#ifdef SQLITE_DISABLE_LFS
# undef O_LARGEFILE
# define O_LARGEFILE 0
#endif
#ifndef O_NOFOLLOW
# define O_NOFOLLOW 0
#endif
#ifndef O_BINARY
# define O_BINARY 0
#endif
/*
** The threadid macro resolves to the thread-id or to 0. Used for
** testing and debugging only.
*/
#if SQLITE_THREADSAFE
#define threadid pthread_self()
#else
#define threadid 0
#endif
/*
** HAVE_MREMAP defaults to true on Linux and false everywhere else.
*/
#if !defined(HAVE_MREMAP)
# if defined(__linux__) && defined(_GNU_SOURCE)
# define HAVE_MREMAP 1
# else
# define HAVE_MREMAP 0
# endif
#endif
/*
** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek()
** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined.
*/
#ifdef __ANDROID__
# define lseek lseek64
#endif
#ifdef __linux__
/*
** Linux-specific IOCTL magic numbers used for controlling F2FS
*/
#define F2FS_IOCTL_MAGIC 0xf5
#define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
#define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
#define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
#define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
#define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, u32)
#define F2FS_FEATURE_ATOMIC_WRITE 0x0004
#endif /* __linux__ */
/*
** Different Unix systems declare open() in different ways. Same use
** open(const char*,int,mode_t). Others use open(const char*,int,...).
** The difference is important when using a pointer to the function.
**
** The safest way to deal with the problem is to always use this wrapper
** which always has the same well-defined interface.
*/
static int posixOpen(const char *zFile, int flags, int mode){
return open(zFile, flags, mode);
}
/* Forward reference */
static int openDirectory(const char*, int*);
static int unixGetpagesize(void);
/*
** Many system calls are accessed through pointer-to-functions so that
** they may be overridden at runtime to facilitate fault injection during
** testing and sandboxing. The following array holds the names and pointers
** to all overrideable system calls.
*/
static struct unix_syscall {
const char *zName; /* Name of the system call */
sqlite3_syscall_ptr pCurrent; /* Current value of the system call */
sqlite3_syscall_ptr pDefault; /* Default value */
} aSyscall[] = {
{ "open", (sqlite3_syscall_ptr)posixOpen, 0 },
#define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
{ "close", (sqlite3_syscall_ptr)close, 0 },
#define osClose ((int(*)(int))aSyscall[1].pCurrent)
{ "access", (sqlite3_syscall_ptr)access, 0 },
#define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
{ "getcwd", (sqlite3_syscall_ptr)getcwd, 0 },
#define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
{ "stat", (sqlite3_syscall_ptr)stat, 0 },
#define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
/*
** The DJGPP compiler environment looks mostly like Unix, but it
** lacks the fcntl() system call. So redefine fcntl() to be something
** that always succeeds. This means that locking does not occur under
** DJGPP. But it is DOS - what did you expect?
*/
#ifdef __DJGPP__
{ "fstat", 0, 0 },
#define osFstat(a,b,c) 0
#else
{ "fstat", (sqlite3_syscall_ptr)fstat, 0 },
#define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
#endif
{ "ftruncate", (sqlite3_syscall_ptr)ftruncate, 0 },
#define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
{ "fcntl", (sqlite3_syscall_ptr)fcntl, 0 },
#define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
{ "read", (sqlite3_syscall_ptr)read, 0 },
#define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
{ "pread", (sqlite3_syscall_ptr)pread, 0 },
#else
{ "pread", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
#if defined(USE_PREAD64)
{ "pread64", (sqlite3_syscall_ptr)pread64, 0 },
#else
{ "pread64", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent)
{ "write", (sqlite3_syscall_ptr)write, 0 },
#define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
#if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
{ "pwrite", (sqlite3_syscall_ptr)pwrite, 0 },
#else
{ "pwrite", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
aSyscall[12].pCurrent)
#if defined(USE_PREAD64)
{ "pwrite64", (sqlite3_syscall_ptr)pwrite64, 0 },
#else
{ "pwrite64", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\
aSyscall[13].pCurrent)
#if defined(HAVE_FCHMOD)
{ "fchmod", (sqlite3_syscall_ptr)fchmod, 0 },
#else
{ "fchmod", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
{ "fallocate", (sqlite3_syscall_ptr)posix_fallocate, 0 },
#else
{ "fallocate", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
{ "unlink", (sqlite3_syscall_ptr)unlink, 0 },
#define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
{ "openDirectory", (sqlite3_syscall_ptr)openDirectory, 0 },
#define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
{ "mkdir", (sqlite3_syscall_ptr)mkdir, 0 },
#define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
{ "rmdir", (sqlite3_syscall_ptr)rmdir, 0 },
#define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent)
#if defined(HAVE_FCHOWN)
{ "fchown", (sqlite3_syscall_ptr)fchown, 0 },
#else
{ "fchown", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
#if defined(HAVE_FCHOWN)
{ "geteuid", (sqlite3_syscall_ptr)geteuid, 0 },
#else
{ "geteuid", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent)
#if (!defined(SQLITE_OMIT_SHARED_MEM) || SQLITE_MAX_MMAP_SIZE>0) \
&& !defined(SQLITE_WASI)
{ "mmap", (sqlite3_syscall_ptr)mmap, 0 },
#else
{ "mmap", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)
#if (!defined(SQLITE_OMIT_SHARED_MEM) || SQLITE_MAX_MMAP_SIZE>0) \
&& !defined(SQLITE_WASI)
{ "munmap", (sqlite3_syscall_ptr)munmap, 0 },
#else
{ "munmap", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent)
#if HAVE_MREMAP && (!defined(SQLITE_OMIT_SHARED_MEM) || SQLITE_MAX_MMAP_SIZE>0)
{ "mremap", (sqlite3_syscall_ptr)mremap, 0 },
#else
{ "mremap", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)
#if !defined(SQLITE_OMIT_SHARED_MEM) || SQLITE_MAX_MMAP_SIZE>0
{ "getpagesize", (sqlite3_syscall_ptr)unixGetpagesize, 0 },
#else
{ "getpagesize", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)
#if defined(HAVE_READLINK)
{ "readlink", (sqlite3_syscall_ptr)readlink, 0 },
#else
{ "readlink", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)
#if defined(HAVE_LSTAT)
{ "lstat", (sqlite3_syscall_ptr)lstat, 0 },
#else
{ "lstat", (sqlite3_syscall_ptr)0, 0 },
#endif
#define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)
#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
# ifdef __ANDROID__
{ "ioctl", (sqlite3_syscall_ptr)(int(*)(int, int, ...))ioctl, 0 },
#define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent)
# else
{ "ioctl", (sqlite3_syscall_ptr)ioctl, 0 },
#define osIoctl ((int(*)(int,unsigned long,...))aSyscall[28].pCurrent)
# endif
#else
{ "ioctl", (sqlite3_syscall_ptr)0, 0 },
#endif
}; /* End of the overrideable system calls */
/*
** On some systems, calls to fchown() will trigger a message in a security
** log if they come from non-root processes. So avoid calling fchown() if
** we are not running as root.
*/
static int robustFchown(int fd, uid_t uid, gid_t gid){
#if defined(HAVE_FCHOWN)
return osGeteuid() ? 0 : osFchown(fd,uid,gid);
#else
return 0;
#endif
}
/*
** This is the xSetSystemCall() method of sqlite3_vfs for all of the
** "unix" VFSes. Return SQLITE_OK upon successfully updating the
** system call pointer, or SQLITE_NOTFOUND if there is no configurable
** system call named zName.
*/
static int unixSetSystemCall(
sqlite3_vfs *pNotUsed, /* The VFS pointer. Not used */
const char *zName, /* Name of system call to override */
sqlite3_syscall_ptr pNewFunc /* Pointer to new system call value */
){
unsigned int i;
int rc = SQLITE_NOTFOUND;
UNUSED_PARAMETER(pNotUsed);
if( zName==0 ){
/* If no zName is given, restore all system calls to their default
** settings and return NULL
*/
rc = SQLITE_OK;
for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
if( aSyscall[i].pDefault ){
aSyscall[i].pCurrent = aSyscall[i].pDefault;
}
}
}else{
/* If zName is specified, operate on only the one system call
** specified.
*/
for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
if( strcmp(zName, aSyscall[i].zName)==0 ){
if( aSyscall[i].pDefault==0 ){
aSyscall[i].pDefault = aSyscall[i].pCurrent;
}
rc = SQLITE_OK;
if( pNewFunc==0 ) pNewFunc = aSyscall[i].pDefault;
aSyscall[i].pCurrent = pNewFunc;
break;
}
}
}
return rc;
}
/*
** Return the value of a system call. Return NULL if zName is not a
** recognized system call name. NULL is also returned if the system call
** is currently undefined.
*/
static sqlite3_syscall_ptr unixGetSystemCall(
sqlite3_vfs *pNotUsed,
const char *zName
){
unsigned int i;
UNUSED_PARAMETER(pNotUsed);
for(i=0; i<sizeof(aSyscall)/sizeof(aSyscall[0]); i++){
if( strcmp(zName, aSyscall[i].zName)==0 ) return aSyscall[i].pCurrent;
}
return 0;
}
/*
** Return the name of the first system call after zName. If zName==NULL
** then return the name of the first system call. Return NULL if zName
** is the last system call or if zName is not the name of a valid
** system call.
*/
static const char *unixNextSystemCall(sqlite3_vfs *p, const char *zName){
int i = -1;
UNUSED_PARAMETER(p);
if( zName ){
for(i=0; i<ArraySize(aSyscall)-1; i++){
if( strcmp(zName, aSyscall[i].zName)==0 ) break;
}
}
for(i++; i<ArraySize(aSyscall); i++){
if( aSyscall[i].pCurrent!=0 ) return aSyscall[i].zName;
}
return 0;
}
/*
** Do not accept any file descriptor less than this value, in order to avoid
** opening database file using file descriptors that are commonly used for
** standard input, output, and error.
*/
#ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
# define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
#endif
/*
** Invoke open(). Do so multiple times, until it either succeeds or
** fails for some reason other than EINTR.
**
** If the file creation mode "m" is 0 then set it to the default for
** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
** 0644) as modified by the system umask. If m is not 0, then
** make the file creation mode be exactly m ignoring the umask.
**
** The m parameter will be non-zero only when creating -wal, -journal,
** and -shm files. We want those files to have *exactly* the same
** permissions as their original database, unadulterated by the umask.
** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
** transaction crashes and leaves behind hot journals, then any
** process that is able to write to the database will also be able to
** recover the hot journals.
*/
static int robust_open(const char *z, int f, mode_t m){
int fd;
mode_t m2 = m ? m : SQLITE_DEFAULT_FILE_PERMISSIONS;
while(1){
#if defined(O_CLOEXEC)
fd = osOpen(z,f|O_CLOEXEC,m2);
#else
fd = osOpen(z,f,m2);
#endif
if( fd<0 ){
if( errno==EINTR ) continue;
break;
}
if( fd>=SQLITE_MINIMUM_FILE_DESCRIPTOR ) break;
if( (f & (O_EXCL|O_CREAT))==(O_EXCL|O_CREAT) ){
(void)osUnlink(z);
}
osClose(fd);
sqlite3_log(SQLITE_WARNING,
"attempt to open \"%s\" as file descriptor %d", z, fd);
fd = -1;
if( osOpen("/dev/null", O_RDONLY, m)<0 ) break;
}
if( fd>=0 ){
if( m!=0 ){
struct stat statbuf;
if( osFstat(fd, &statbuf)==0
&& statbuf.st_size==0
&& (statbuf.st_mode&0777)!=m
){
osFchmod(fd, m);
}
}
#if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
osFcntl(fd, F_SETFD, osFcntl(fd, F_GETFD, 0) | FD_CLOEXEC);
#endif
}
return fd;
}
/*
** Helper functions to obtain and relinquish the global mutex. The
** global mutex is used to protect the unixInodeInfo and
** vxworksFileId objects used by this file, all of which may be
** shared by multiple threads.
**
** Function unixMutexHeld() is used to assert() that the global mutex
** is held when required. This function is only used as part of assert()
** statements. e.g.
**
** unixEnterMutex()
** assert( unixMutexHeld() );
** unixEnterLeave()
**
** To prevent deadlock, the global unixBigLock must must be acquired
** before the unixInodeInfo.pLockMutex mutex, if both are held. It is
** OK to get the pLockMutex without holding unixBigLock first, but if
** that happens, the unixBigLock mutex must not be acquired until after
** pLockMutex is released.
**
** OK: enter(unixBigLock), enter(pLockInfo)
** OK: enter(unixBigLock)
** OK: enter(pLockInfo)
** ERROR: enter(pLockInfo), enter(unixBigLock)
*/
static sqlite3_mutex *unixBigLock = 0;
static void unixEnterMutex(void){
assert( sqlite3_mutex_notheld(unixBigLock) ); /* Not a recursive mutex */
sqlite3_mutex_enter(unixBigLock);
}
static void unixLeaveMutex(void){
assert( sqlite3_mutex_held(unixBigLock) );
sqlite3_mutex_leave(unixBigLock);
}
#ifdef SQLITE_DEBUG
static int unixMutexHeld(void) {
return sqlite3_mutex_held(unixBigLock);
}
#endif
#ifdef SQLITE_HAVE_OS_TRACE
/*
** Helper function for printing out trace information from debugging
** binaries. This returns the string representation of the supplied
** integer lock-type.
*/
static const char *azFileLock(int eFileLock){
switch( eFileLock ){
case NO_LOCK: return "NONE";
case SHARED_LOCK: return "SHARED";
case RESERVED_LOCK: return "RESERVED";
case PENDING_LOCK: return "PENDING";
case EXCLUSIVE_LOCK: return "EXCLUSIVE";
}
return "ERROR";
}
#endif
#ifdef SQLITE_LOCK_TRACE
/*
** Print out information about all locking operations.
**
** This routine is used for troubleshooting locks on multithreaded
** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
** command-line option on the compiler. This code is normally
** turned off.
*/
static int lockTrace(int fd, int op, struct flock *p){
char *zOpName, *zType;
int s;
int savedErrno;
if( op==F_GETLK ){
zOpName = "GETLK";
}else if( op==F_SETLK ){
zOpName = "SETLK";
}else{
s = osFcntl(fd, op, p);
sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd, op, s);
return s;
}
if( p->l_type==F_RDLCK ){
zType = "RDLCK";
}else if( p->l_type==F_WRLCK ){
zType = "WRLCK";
}else if( p->l_type==F_UNLCK ){
zType = "UNLCK";
}else{
assert( 0 );
}
assert( p->l_whence==SEEK_SET );
s = osFcntl(fd, op, p);
savedErrno = errno;
sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
threadid, fd, zOpName, zType, (int)p->l_start, (int)p->l_len,
(int)p->l_pid, s);
if( s==(-1) && op==F_SETLK && (p->l_type==F_RDLCK || p->l_type==F_WRLCK) ){
struct flock l2;
l2 = *p;
osFcntl(fd, F_GETLK, &l2);
if( l2.l_type==F_RDLCK ){
zType = "RDLCK";
}else if( l2.l_type==F_WRLCK ){
zType = "WRLCK";
}else if( l2.l_type==F_UNLCK ){
zType = "UNLCK";
}else{
assert( 0 );
}
sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
zType, (int)l2.l_start, (int)l2.l_len, (int)l2.l_pid);
}
errno = savedErrno;
return s;
}
#undef osFcntl
#define osFcntl lockTrace
#endif /* SQLITE_LOCK_TRACE */
/*
** Retry ftruncate() calls that fail due to EINTR
**
** All calls to ftruncate() within this file should be made through
** this wrapper. On the Android platform, bypassing the logic below
** could lead to a corrupt database.
*/
static int robust_ftruncate(int h, sqlite3_int64 sz){
int rc;
#ifdef __ANDROID__
/* On Android, ftruncate() always uses 32-bit offsets, even if
** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
** truncate a file to any size larger than 2GiB. Silently ignore any
** such attempts. */
if( sz>(sqlite3_int64)0x7FFFFFFF ){
rc = SQLITE_OK;
}else
#endif
do{ rc = osFtruncate(h,sz); }while( rc<0 && errno==EINTR );
return rc;
}
/*
** This routine translates a standard POSIX errno code into something
** useful to the clients of the sqlite3 functions. Specifically, it is
** intended to translate a variety of "try again" errors into SQLITE_BUSY
** and a variety of "please close the file descriptor NOW" errors into
** SQLITE_IOERR
**
** Errors during initialization of locks, or file system support for locks,
** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
*/
static int sqliteErrorFromPosixError(int posixError, int sqliteIOErr) {
assert( (sqliteIOErr == SQLITE_IOERR_LOCK) ||
(sqliteIOErr == SQLITE_IOERR_UNLOCK) ||
(sqliteIOErr == SQLITE_IOERR_RDLOCK) ||
(sqliteIOErr == SQLITE_IOERR_CHECKRESERVEDLOCK) );
switch (posixError) {
case EACCES:
case EAGAIN:
case ETIMEDOUT:
case EBUSY:
case EINTR:
case ENOLCK:
/* random NFS retry error, unless during file system support
* introspection, in which it actually means what it says */
return SQLITE_BUSY;
case EPERM:
return SQLITE_PERM;
default:
return sqliteIOErr;
}
}
/******************************************************************************
****************** Begin Unique File ID Utility Used By VxWorks ***************
**
** On most versions of unix, we can get a unique ID for a file by concatenating
** the device number and the inode number. But this does not work on VxWorks.
** On VxWorks, a unique file id must be based on the canonical filename.
**
** A pointer to an instance of the following structure can be used as a
** unique file ID in VxWorks. Each instance of this structure contains
** a copy of the canonical filename. There is also a reference count.
** The structure is reclaimed when the number of pointers to it drops to
** zero.
**
** There are never very many files open at one time and lookups are not
** a performance-critical path, so it is sufficient to put these
** structures on a linked list.
*/
struct vxworksFileId {
struct vxworksFileId *pNext; /* Next in a list of them all */
int nRef; /* Number of references to this one */
int nName; /* Length of the zCanonicalName[] string */
char *zCanonicalName; /* Canonical filename */
};
#if OS_VXWORKS
/*
** All unique filenames are held on a linked list headed by this
** variable:
*/
static struct vxworksFileId *vxworksFileList = 0;
/*
** Simplify a filename into its canonical form
** by making the following changes:
**
** * removing any trailing and duplicate /
** * convert /./ into just /
** * convert /A/../ where A is any simple name into just /
**
** Changes are made in-place. Return the new name length.
**
** The original filename is in z[0..n-1]. Return the number of
** characters in the simplified name.
*/
static int vxworksSimplifyName(char *z, int n){
int i, j;
while( n>1 && z[n-1]=='/' ){ n--; }
for(i=j=0; i<n; i++){
if( z[i]=='/' ){
if( z[i+1]=='/' ) continue;
if( z[i+1]=='.' && i+2<n && z[i+2]=='/' ){
i += 1;
continue;
}
if( z[i+1]=='.' && i+3<n && z[i+2]=='.' && z[i+3]=='/' ){
while( j>0 && z[j-1]!='/' ){ j--; }
if( j>0 ){ j--; }
i += 2;
continue;
}
}
z[j++] = z[i];
}
z[j] = 0;
return j;
}
/*
** Find a unique file ID for the given absolute pathname. Return
** a pointer to the vxworksFileId object. This pointer is the unique
** file ID.
**
** The nRef field of the vxworksFileId object is incremented before
** the object is returned. A new vxworksFileId object is created
** and added to the global list if necessary.
**
** If a memory allocation error occurs, return NULL.
*/
static struct vxworksFileId *vxworksFindFileId(const char *zAbsoluteName){
struct vxworksFileId *pNew; /* search key and new file ID */
struct vxworksFileId *pCandidate; /* For looping over existing file IDs */
int n; /* Length of zAbsoluteName string */
assert( zAbsoluteName[0]=='/' );
n = (int)strlen(zAbsoluteName);
pNew = sqlite3_malloc64( sizeof(*pNew) + (n+1) );
if( pNew==0 ) return 0;
pNew->zCanonicalName = (char*)&pNew[1];
memcpy(pNew->zCanonicalName, zAbsoluteName, n+1);
n = vxworksSimplifyName(pNew->zCanonicalName, n);
/* Search for an existing entry that matching the canonical name.
** If found, increment the reference count and return a pointer to
** the existing file ID.
*/
unixEnterMutex();
for(pCandidate=vxworksFileList; pCandidate; pCandidate=pCandidate->pNext){
if( pCandidate->nName==n
&& memcmp(pCandidate->zCanonicalName, pNew->zCanonicalName, n)==0
){
sqlite3_free(pNew);
pCandidate->nRef++;
unixLeaveMutex();
return pCandidate;
}
}
/* No match was found. We will make a new file ID */
pNew->nRef = 1;
pNew->nName = n;
pNew->pNext = vxworksFileList;
vxworksFileList = pNew;
unixLeaveMutex();
return pNew;
}
/*
** Decrement the reference count on a vxworksFileId object. Free
** the object when the reference count reaches zero.
*/
static void vxworksReleaseFileId(struct vxworksFileId *pId){
unixEnterMutex();
assert( pId->nRef>0 );
pId->nRef--;
if( pId->nRef==0 ){
struct vxworksFileId **pp;
for(pp=&vxworksFileList; *pp && *pp!=pId; pp = &((*pp)->pNext)){}
assert( *pp==pId );
*pp = pId->pNext;
sqlite3_free(pId);
}
unixLeaveMutex();
}
#endif /* OS_VXWORKS */
/*************** End of Unique File ID Utility Used By VxWorks ****************
******************************************************************************/
/******************************************************************************
*************************** Posix Advisory Locking ****************************
**
** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
** section 6.5.2.2 lines 483 through 490 specify that when a process
** sets or clears a lock, that operation overrides any prior locks set
** by the same process. It does not explicitly say so, but this implies
** that it overrides locks set by the same process using a different
** file descriptor. Consider this test case:
**
** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
**
** Suppose ./file1 and ./file2 are really the same file (because
** one is a hard or symbolic link to the other) then if you set
** an exclusive lock on fd1, then try to get an exclusive lock
** on fd2, it works. I would have expected the second lock to
** fail since there was already a lock on the file due to fd1.
** But not so. Since both locks came from the same process, the
** second overrides the first, even though they were on different
** file descriptors opened on different file names.
**
** This means that we cannot use POSIX locks to synchronize file access
** among competing threads of the same process. POSIX locks will work fine
** to synchronize access for threads in separate processes, but not
** threads within the same process.
**
** To work around the problem, SQLite has to manage file locks internally
** on its own. Whenever a new database is opened, we have to find the
** specific inode of the database file (the inode is determined by the
** st_dev and st_ino fields of the stat structure that fstat() fills in)
** and check for locks already existing on that inode. When locks are
** created or removed, we have to look at our own internal record of the
** locks to see if another thread has previously set a lock on that same
** inode.
**
** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
** For VxWorks, we have to use the alternative unique ID system based on
** canonical filename and implemented in the previous division.)
**
** The sqlite3_file structure for POSIX is no longer just an integer file
** descriptor. It is now a structure that holds the integer file
** descriptor and a pointer to a structure that describes the internal
** locks on the corresponding inode. There is one locking structure
** per inode, so if the same inode is opened twice, both unixFile structures
** point to the same locking structure. The locking structure keeps
** a reference count (so we will know when to delete it) and a "cnt"
** field that tells us its internal lock status. cnt==0 means the
** file is unlocked. cnt==-1 means the file has an exclusive lock.
** cnt>0 means there are cnt shared locks on the file.
**
** Any attempt to lock or unlock a file first checks the locking
** structure. The fcntl() system call is only invoked to set a
** POSIX lock if the internal lock structure transitions between
** a locked and an unlocked state.
**
** But wait: there are yet more problems with POSIX advisory locks.
**
** If you close a file descriptor that points to a file that has locks,
** all locks on that file that are owned by the current process are
** released. To work around this problem, each unixInodeInfo object
** maintains a count of the number of pending locks on the inode.
** When an attempt is made to close an unixFile, if there are
** other unixFile open on the same inode that are holding locks, the call
** to close() the file descriptor is deferred until all of the locks clear.
** The unixInodeInfo structure keeps a list of file descriptors that need to
** be closed and that list is walked (and cleared) when the last lock
** clears.
**
** Yet another problem: LinuxThreads do not play well with posix locks.
**
** Many older versions of linux use the LinuxThreads library which is
** not posix compliant. Under LinuxThreads, a lock created by thread
** A cannot be modified or overridden by a different thread B.
** Only thread A can modify the lock. Locking behavior is correct
** if the application uses the newer Native Posix Thread Library (NPTL)
** on linux - with NPTL a lock created by thread A can override locks
** in thread B. But there is no way to know at compile-time which
** threading library is being used. So there is no way to know at
** compile-time whether or not thread A can override locks on thread B.
** One has to do a run-time check to discover the behavior of the
** current process.
**
** SQLite used to support LinuxThreads. But support for LinuxThreads
** was dropped beginning with version 3.7.0. SQLite will still work with
** LinuxThreads provided that (1) there is no more than one connection
** per database file in the same process and (2) database connections
** do not move across threads.
*/
/*
** An instance of the following structure serves as the key used
** to locate a particular unixInodeInfo object.
*/
struct unixFileId {
dev_t dev; /* Device number */
#if OS_VXWORKS
struct vxworksFileId *pId; /* Unique file ID for vxworks. */
#else
/* We are told that some versions of Android contain a bug that
** sizes ino_t at only 32-bits instead of 64-bits. (See
** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c)
** To work around this, always allocate 64-bits for the inode number.
** On small machines that only have 32-bit inodes, this wastes 4 bytes,
** but that should not be a big deal. */
/* WAS: ino_t ino; */
u64 ino; /* Inode number */
#endif
};
/*
** An instance of the following structure is allocated for each open
** inode.
**
** A single inode can have multiple file descriptors, so each unixFile
** structure contains a pointer to an instance of this object and this
** object keeps a count of the number of unixFile pointing to it.
**
** Mutex rules:
**
** (1) Only the pLockMutex mutex must be held in order to read or write
** any of the locking fields:
** nShared, nLock, eFileLock, bProcessLock, pUnused
**
** (2) When nRef>0, then the following fields are unchanging and can
** be read (but not written) without holding any mutex:
** fileId, pLockMutex
**
** (3) With the exceptions above, all the fields may only be read
** or written while holding the global unixBigLock mutex.
**
** Deadlock prevention: The global unixBigLock mutex may not
** be acquired while holding the pLockMutex mutex. If both unixBigLock
** and pLockMutex are needed, then unixBigLock must be acquired first.
*/
struct unixInodeInfo {
struct unixFileId fileId; /* The lookup key */
sqlite3_mutex *pLockMutex; /* Hold this mutex for... */
int nShared; /* Number of SHARED locks held */
int nLock; /* Number of outstanding file locks */
unsigned char eFileLock; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
unsigned char bProcessLock; /* An exclusive process lock is held */
UnixUnusedFd *pUnused; /* Unused file descriptors to close */
int nRef; /* Number of pointers to this structure */
unixShmNode *pShmNode; /* Shared memory associated with this inode */
unixInodeInfo *pNext; /* List of all unixInodeInfo objects */
unixInodeInfo *pPrev; /* .... doubly linked */
#if SQLITE_ENABLE_LOCKING_STYLE
unsigned long long sharedByte; /* for AFP simulated shared lock */
#endif
#if OS_VXWORKS
sem_t *pSem; /* Named POSIX semaphore */
char aSemName[MAX_PATHNAME+2]; /* Name of that semaphore */
#endif
};
/*
** A lists of all unixInodeInfo objects.
**
** Must hold unixBigLock in order to read or write this variable.
*/
static unixInodeInfo *inodeList = 0; /* All unixInodeInfo objects */
#ifdef SQLITE_DEBUG
/*
** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not.
** This routine is used only within assert() to help verify correct mutex
** usage.
*/
int unixFileMutexHeld(unixFile *pFile){
assert( pFile->pInode );
return sqlite3_mutex_held(pFile->pInode->pLockMutex);
}
int unixFileMutexNotheld(unixFile *pFile){
assert( pFile->pInode );
return sqlite3_mutex_notheld(pFile->pInode->pLockMutex);
}
#endif
/*
**
** This function - unixLogErrorAtLine(), is only ever called via the macro
** unixLogError().
**
** It is invoked after an error occurs in an OS function and errno has been
** set. It logs a message using sqlite3_log() containing the current value of
** errno and, if possible, the human-readable equivalent from strerror() or
** strerror_r().
**
** The first argument passed to the macro should be the error code that
** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
** The two subsequent arguments should be the name of the OS function that
** failed (e.g. "unlink", "open") and the associated file-system path,
** if any.
*/
#define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
static int unixLogErrorAtLine(
int errcode, /* SQLite error code */
const char *zFunc, /* Name of OS function that failed */
const char *zPath, /* File path associated with error */
int iLine /* Source line number where error occurred */
){
char *zErr; /* Message from strerror() or equivalent */
int iErrno = errno; /* Saved syscall error number */
/* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
** the strerror() function to obtain the human-readable error message
** equivalent to errno. Otherwise, use strerror_r().
*/
#if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
char aErr[80];
memset(aErr, 0, sizeof(aErr));
zErr = aErr;
/* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
** assume that the system provides the GNU version of strerror_r() that
** returns a pointer to a buffer containing the error message. That pointer
** may point to aErr[], or it may point to some static storage somewhere.
** Otherwise, assume that the system provides the POSIX version of
** strerror_r(), which always writes an error message into aErr[].
**
** If the code incorrectly assumes that it is the POSIX version that is
** available, the error message will often be an empty string. Not a
** huge problem. Incorrectly concluding that the GNU version is available
** could lead to a segfault though.
*/
#if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
zErr =
# endif
strerror_r(iErrno, aErr, sizeof(aErr)-1);
#elif SQLITE_THREADSAFE
/* This is a threadsafe build, but strerror_r() is not available. */
zErr = "";
#else
/* Non-threadsafe build, use strerror(). */
zErr = strerror(iErrno);
#endif
if( zPath==0 ) zPath = "";
sqlite3_log(errcode,
"os_unix.c:%d: (%d) %s(%s) - %s",
iLine, iErrno, zFunc, zPath, zErr
);
return errcode;
}
/*
** Close a file descriptor.
**
** We assume that close() almost always works, since it is only in a
** very sick application or on a very sick platform that it might fail.
** If it does fail, simply leak the file descriptor, but do log the
** error.
**
** Note that it is not safe to retry close() after EINTR since the
** file descriptor might have already been reused by another thread.
** So we don't even try to recover from an EINTR. Just log the error
** and move on.
*/
static void robust_close(unixFile *pFile, int h, int lineno){
if( osClose(h) ){
unixLogErrorAtLine(SQLITE_IOERR_CLOSE, "close",
pFile ? pFile->zPath : 0, lineno);
}
}
/*
** Set the pFile->lastErrno. Do this in a subroutine as that provides
** a convenient place to set a breakpoint.
*/
static void storeLastErrno(unixFile *pFile, int error){
pFile->lastErrno = error;
}
/*
** Close all file descriptors accumulated in the unixInodeInfo->pUnused list.
*/
static void closePendingFds(unixFile *pFile){
unixInodeInfo *pInode = pFile->pInode;
UnixUnusedFd *p;
UnixUnusedFd *pNext;
assert( unixFileMutexHeld(pFile) );
for(p=pInode->pUnused; p; p=pNext){
pNext = p->pNext;
robust_close(pFile, p->fd, __LINE__);
sqlite3_free(p);
}
pInode->pUnused = 0;
}
/*
** Release a unixInodeInfo structure previously allocated by findInodeInfo().
**
** The global mutex must be held when this routine is called, but the mutex
** on the inode being deleted must NOT be held.
*/
static void releaseInodeInfo(unixFile *pFile){
unixInodeInfo *pInode = pFile->pInode;
assert( unixMutexHeld() );
assert( unixFileMutexNotheld(pFile) );
if( ALWAYS(pInode) ){
pInode->nRef--;
if( pInode->nRef==0 ){
assert( pInode->pShmNode==0 );
sqlite3_mutex_enter(pInode->pLockMutex);
closePendingFds(pFile);
sqlite3_mutex_leave(pInode->pLockMutex);
if( pInode->pPrev ){
assert( pInode->pPrev->pNext==pInode );
pInode->pPrev->pNext = pInode->pNext;
}else{
assert( inodeList==pInode );
inodeList = pInode->pNext;
}
if( pInode->pNext ){
assert( pInode->pNext->pPrev==pInode );
pInode->pNext->pPrev = pInode->pPrev;
}
sqlite3_mutex_free(pInode->pLockMutex);
sqlite3_free(pInode);
}
}
}
/*
** Given a file descriptor, locate the unixInodeInfo object that
** describes that file descriptor. Create a new one if necessary. The
** return value might be uninitialized if an error occurs.
**
** The global mutex must held when calling this routine.
**
** Return an appropriate error code.
*/
static int findInodeInfo(
unixFile *pFile, /* Unix file with file desc used in the key */
unixInodeInfo **ppInode /* Return the unixInodeInfo object here */
){
int rc; /* System call return code */
int fd; /* The file descriptor for pFile */
struct unixFileId fileId; /* Lookup key for the unixInodeInfo */
struct stat statbuf; /* Low-level file information */
unixInodeInfo *pInode = 0; /* Candidate unixInodeInfo object */
assert( unixMutexHeld() );
/* Get low-level information about the file that we can used to
** create a unique name for the file.
*/
fd = pFile->h;
rc = osFstat(fd, &statbuf);
if( rc!=0 ){
storeLastErrno(pFile, errno);
#if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS)
if( pFile->lastErrno==EOVERFLOW ) return SQLITE_NOLFS;
#endif
return SQLITE_IOERR;
}
#ifdef __APPLE__
/* On OS X on an msdos filesystem, the inode number is reported
** incorrectly for zero-size files. See ticket #3260. To work
** around this problem (we consider it a bug in OS X, not SQLite)
** we always increase the file size to 1 by writing a single byte
** prior to accessing the inode number. The one byte written is
** an ASCII 'S' character which also happens to be the first byte
** in the header of every SQLite database. In this way, if there
** is a race condition such that another thread has already populated
** the first page of the database, no damage is done.
*/
if( statbuf.st_size==0 && (pFile->fsFlags & SQLITE_FSFLAGS_IS_MSDOS)!=0 ){
do{ rc = osWrite(fd, "S", 1); }while( rc<0 && errno==EINTR );
if( rc!=1 ){
storeLastErrno(pFile, errno);
return SQLITE_IOERR;
}
rc = osFstat(fd, &statbuf);
if( rc!=0 ){
storeLastErrno(pFile, errno);
return SQLITE_IOERR;
}
}
#endif
memset(&fileId, 0, sizeof(fileId));
fileId.dev = statbuf.st_dev;
#if OS_VXWORKS
fileId.pId = pFile->pId;
#else
fileId.ino = (u64)statbuf.st_ino;
#endif
assert( unixMutexHeld() );
pInode = inodeList;
while( pInode && memcmp(&fileId, &pInode->fileId, sizeof(fileId)) ){
pInode = pInode->pNext;
}
if( pInode==0 ){
pInode = sqlite3_malloc64( sizeof(*pInode) );
if( pInode==0 ){
return SQLITE_NOMEM_BKPT;
}
memset(pInode, 0, sizeof(*pInode));
memcpy(&pInode->fileId, &fileId, sizeof(fileId));
if( sqlite3GlobalConfig.bCoreMutex ){
pInode->pLockMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
if( pInode->pLockMutex==0 ){
sqlite3_free(pInode);
return SQLITE_NOMEM_BKPT;
}
}
pInode->nRef = 1;
assert( unixMutexHeld() );
pInode->pNext = inodeList;
pInode->pPrev = 0;
if( inodeList ) inodeList->pPrev = pInode;
inodeList = pInode;
}else{
pInode->nRef++;
}
*ppInode = pInode;
return SQLITE_OK;
}
/*
** Return TRUE if pFile has been renamed or unlinked since it was first opened.
*/
static int fileHasMoved(unixFile *pFile){
#if OS_VXWORKS
return pFile->pInode!=0 && pFile->pId!=pFile->pInode->fileId.pId;
#else
struct stat buf;
return pFile->pInode!=0 &&
(osStat(pFile->zPath, &buf)!=0
|| (u64)buf.st_ino!=pFile->pInode->fileId.ino);
#endif
}
/*
** Check a unixFile that is a database. Verify the following:
**
** (1) There is exactly one hard link on the file
** (2) The file is not a symbolic link
** (3) The file has not been renamed or unlinked
**
** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
*/
static void verifyDbFile(unixFile *pFile){
struct stat buf;
int rc;
/* These verifications occurs for the main database only */
if( pFile->ctrlFlags & UNIXFILE_NOLOCK ) return;
rc = osFstat(pFile->h, &buf);
if( rc!=0 ){
sqlite3_log(SQLITE_WARNING, "cannot fstat db file %s", pFile->zPath);
return;
}
if( buf.st_nlink==0 ){
sqlite3_log(SQLITE_WARNING, "file unlinked while open: %s", pFile->zPath);
return;
}
if( buf.st_nlink>1 ){
sqlite3_log(SQLITE_WARNING, "multiple links to file: %s", pFile->zPath);
return;
}
if( fileHasMoved(pFile) ){
sqlite3_log(SQLITE_WARNING, "file renamed while open: %s", pFile->zPath);
return;
}
}
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero. The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int unixCheckReservedLock(sqlite3_file *id, int *pResOut){
int rc = SQLITE_OK;
int reserved = 0;
unixFile *pFile = (unixFile*)id;
SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
assert( pFile );
assert( pFile->eFileLock<=SHARED_LOCK );
sqlite3_mutex_enter(pFile->pInode->pLockMutex);
/* Check if a thread in this process holds such a lock */
if( pFile->pInode->eFileLock>SHARED_LOCK ){
reserved = 1;
}
/* Otherwise see if some other process holds it.
*/
#ifndef __DJGPP__
if( !reserved && !pFile->pInode->bProcessLock ){
struct flock lock;
lock.l_whence = SEEK_SET;
lock.l_start = RESERVED_BYTE;
lock.l_len = 1;
lock.l_type = F_WRLCK;
if( osFcntl(pFile->h, F_GETLK, &lock) ){
rc = SQLITE_IOERR_CHECKRESERVEDLOCK;
storeLastErrno(pFile, errno);
} else if( lock.l_type!=F_UNLCK ){
reserved = 1;
}
}
#endif
sqlite3_mutex_leave(pFile->pInode->pLockMutex);
OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile->h, rc, reserved));
*pResOut = reserved;
return rc;
}
/* Forward declaration*/
static int unixSleep(sqlite3_vfs*,int);
/*
** Set a posix-advisory-lock.
**
** There are two versions of this routine. If compiled with
** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter
** which is a pointer to a unixFile. If the unixFile->iBusyTimeout
** value is set, then it is the number of milliseconds to wait before
** failing the lock. The iBusyTimeout value is always reset back to
** zero on each call.
**
** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking
** attempt to set the lock.
*/
#ifndef SQLITE_ENABLE_SETLK_TIMEOUT
# define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x)
#else
static int osSetPosixAdvisoryLock(
int h, /* The file descriptor on which to take the lock */
struct flock *pLock, /* The description of the lock */
unixFile *pFile /* Structure holding timeout value */
){
int tm = pFile->iBusyTimeout;
int rc = osFcntl(h,F_SETLK,pLock);
while( rc<0 && tm>0 ){
/* On systems that support some kind of blocking file lock with a timeout,
** make appropriate changes here to invoke that blocking file lock. On
** generic posix, however, there is no such API. So we simply try the
** lock once every millisecond until either the timeout expires, or until
** the lock is obtained. */
unixSleep(0,1000);
rc = osFcntl(h,F_SETLK,pLock);
tm--;
}
return rc;
}
#endif /* SQLITE_ENABLE_SETLK_TIMEOUT */
/*
** Attempt to set a system-lock on the file pFile. The lock is
** described by pLock.
**
** If the pFile was opened read/write from unix-excl, then the only lock
** ever obtained is an exclusive lock, and it is obtained exactly once
** the first time any lock is attempted. All subsequent system locking
** operations become no-ops. Locking operations still happen internally,
** in order to coordinate access between separate database connections
** within this process, but all of that is handled in memory and the
** operating system does not participate.
**
** This function is a pass-through to fcntl(F_SETLK) if pFile is using
** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
** and is read-only.
**
** Zero is returned if the call completes successfully, or -1 if a call
** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
*/
static int unixFileLock(unixFile *pFile, struct flock *pLock){
int rc;
unixInodeInfo *pInode = pFile->pInode;
assert( pInode!=0 );
assert( sqlite3_mutex_held(pInode->pLockMutex) );
if( (pFile->ctrlFlags & (UNIXFILE_EXCL|UNIXFILE_RDONLY))==UNIXFILE_EXCL ){
if( pInode->bProcessLock==0 ){
struct flock lock;
assert( pInode->nLock==0 );
lock.l_whence = SEEK_SET;
lock.l_start = SHARED_FIRST;
lock.l_len = SHARED_SIZE;
lock.l_type = F_WRLCK;
rc = osSetPosixAdvisoryLock(pFile->h, &lock, pFile);
if( rc<0 ) return rc;
pInode->bProcessLock = 1;
pInode->nLock++;
}else{
rc = 0;
}
}else{
rc = osSetPosixAdvisoryLock(pFile->h, pLock, pFile);
}
return rc;
}
/*
** Lock the file with the lock specified by parameter eFileLock - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** This routine will only increase a lock. Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
static int unixLock(sqlite3_file *id, int eFileLock){
/* The following describes the implementation of the various locks and
** lock transitions in terms of the POSIX advisory shared and exclusive
** lock primitives (called read-locks and write-locks below, to avoid
** confusion with SQLite lock names). The algorithms are complicated
** slightly in order to be compatible with Windows95 systems simultaneously
** accessing the same database file, in case that is ever required.
**
** Symbols defined in os.h identify the 'pending byte' and the 'reserved
** byte', each single bytes at well known offsets, and the 'shared byte
** range', a range of 510 bytes at a well known offset.
**
** To obtain a SHARED lock, a read-lock is obtained on the 'pending
** byte'. If this is successful, 'shared byte range' is read-locked
** and the lock on the 'pending byte' released. (Legacy note: When
** SQLite was first developed, Windows95 systems were still very common,
** and Windows95 lacks a shared-lock capability. So on Windows95, a
** single randomly selected by from the 'shared byte range' is locked.
** Windows95 is now pretty much extinct, but this work-around for the
** lack of shared-locks on Windows95 lives on, for backwards
** compatibility.)
**
** A process may only obtain a RESERVED lock after it has a SHARED lock.
** A RESERVED lock is implemented by grabbing a write-lock on the
** 'reserved byte'.
**
** An EXCLUSIVE lock may only be requested after either a SHARED or
** RESERVED lock is held. An EXCLUSIVE lock is implemented by obtaining
** a write-lock on the entire 'shared byte range'. Since all other locks
** require a read-lock on one of the bytes within this range, this ensures
** that no other locks are held on the database.
**
** If a process that holds a RESERVED lock requests an EXCLUSIVE, then
** a PENDING lock is obtained first. A PENDING lock is implemented by
** obtaining a write-lock on the 'pending byte'. This ensures that no new
** SHARED locks can be obtained, but existing SHARED locks are allowed to
** persist. If the call to this function fails to obtain the EXCLUSIVE
** lock in this case, it holds the PENDING lock instead. The client may
** then re-attempt the EXCLUSIVE lock later on, after existing SHARED
** locks have cleared.
*/
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
unixInodeInfo *pInode;
struct flock lock;
int tErrno = 0;
assert( pFile );
OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile->h,
azFileLock(eFileLock), azFileLock(pFile->eFileLock),
azFileLock(pFile->pInode->eFileLock), pFile->pInode->nShared,
osGetpid(0)));
/* If there is already a lock of this type or more restrictive on the
** unixFile, do nothing. Don't use the end_lock: exit path, as
** unixEnterMutex() hasn't been called yet.
*/
if( pFile->eFileLock>=eFileLock ){
OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile->h,
azFileLock(eFileLock)));
return SQLITE_OK;
}
/* Make sure the locking sequence is correct.
** (1) We never move from unlocked to anything higher than shared lock.
** (2) SQLite never explicitly requests a pending lock.
** (3) A shared lock is always held when a reserve lock is requested.
*/
assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
assert( eFileLock!=PENDING_LOCK );
assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
/* This mutex is needed because pFile->pInode is shared across threads
*/
pInode = pFile->pInode;
sqlite3_mutex_enter(pInode->pLockMutex);
/* If some thread using this PID has a lock via a different unixFile*
** handle that precludes the requested lock, return BUSY.
*/
if( (pFile->eFileLock!=pInode->eFileLock &&
(pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
){
rc = SQLITE_BUSY;
goto end_lock;
}
/* If a SHARED lock is requested, and some thread using this PID already
** has a SHARED or RESERVED lock, then increment reference counts and
** return SQLITE_OK.
*/
if( eFileLock==SHARED_LOCK &&
(pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
assert( eFileLock==SHARED_LOCK );
assert( pFile->eFileLock==0 );
assert( pInode->nShared>0 );
pFile->eFileLock = SHARED_LOCK;
pInode->nShared++;
pInode->nLock++;
goto end_lock;
}
/* A PENDING lock is needed before acquiring a SHARED lock and before
** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
** be released.
*/
lock.l_len = 1L;
lock.l_whence = SEEK_SET;
if( eFileLock==SHARED_LOCK
|| (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock==RESERVED_LOCK)
){
lock.l_type = (eFileLock==SHARED_LOCK?F_RDLCK:F_WRLCK);
lock.l_start = PENDING_BYTE;
if( unixFileLock(pFile, &lock) ){
tErrno = errno;
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
if( rc!=SQLITE_BUSY ){
storeLastErrno(pFile, tErrno);
}
goto end_lock;
}else if( eFileLock==EXCLUSIVE_LOCK ){
pFile->eFileLock = PENDING_LOCK;
pInode->eFileLock = PENDING_LOCK;
}
}
/* If control gets to this point, then actually go ahead and make
** operating system calls for the specified lock.
*/
if( eFileLock==SHARED_LOCK ){
assert( pInode->nShared==0 );
assert( pInode->eFileLock==0 );
assert( rc==SQLITE_OK );
/* Now get the read-lock */
lock.l_start = SHARED_FIRST;
lock.l_len = SHARED_SIZE;
if( unixFileLock(pFile, &lock) ){
tErrno = errno;
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
}
/* Drop the temporary PENDING lock */
lock.l_start = PENDING_BYTE;
lock.l_len = 1L;
lock.l_type = F_UNLCK;
if( unixFileLock(pFile, &lock) && rc==SQLITE_OK ){
/* This could happen with a network mount */
tErrno = errno;
rc = SQLITE_IOERR_UNLOCK;
}
if( rc ){
if( rc!=SQLITE_BUSY ){
storeLastErrno(pFile, tErrno);
}
goto end_lock;
}else{
pFile->eFileLock = SHARED_LOCK;
pInode->nLock++;
pInode->nShared = 1;
}
}else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
/* We are trying for an exclusive lock but another thread in this
** same process is still holding a shared lock. */
rc = SQLITE_BUSY;
}else{
/* The request was for a RESERVED or EXCLUSIVE lock. It is
** assumed that there is a SHARED or greater lock on the file
** already.
*/
assert( 0!=pFile->eFileLock );
lock.l_type = F_WRLCK;
assert( eFileLock==RESERVED_LOCK || eFileLock==EXCLUSIVE_LOCK );
if( eFileLock==RESERVED_LOCK ){
lock.l_start = RESERVED_BYTE;
lock.l_len = 1L;
}else{
lock.l_start = SHARED_FIRST;
lock.l_len = SHARED_SIZE;
}
if( unixFileLock(pFile, &lock) ){
tErrno = errno;
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
if( rc!=SQLITE_BUSY ){
storeLastErrno(pFile, tErrno);
}
}
}
#ifdef SQLITE_DEBUG
/* Set up the transaction-counter change checking flags when
** transitioning from a SHARED to a RESERVED lock. The change
** from SHARED to RESERVED marks the beginning of a normal
** write operation (not a hot journal rollback).
*/
if( rc==SQLITE_OK
&& pFile->eFileLock<=SHARED_LOCK
&& eFileLock==RESERVED_LOCK
){
pFile->transCntrChng = 0;
pFile->dbUpdate = 0;
pFile->inNormalWrite = 1;
}
#endif
if( rc==SQLITE_OK ){
pFile->eFileLock = eFileLock;
pInode->eFileLock = eFileLock;
}
end_lock:
sqlite3_mutex_leave(pInode->pLockMutex);
OSTRACE(("LOCK %d %s %s (unix)\n", pFile->h, azFileLock(eFileLock),
rc==SQLITE_OK ? "ok" : "failed"));
return rc;
}
/*
** Add the file descriptor used by file handle pFile to the corresponding
** pUnused list.
*/
static void setPendingFd(unixFile *pFile){
unixInodeInfo *pInode = pFile->pInode;
UnixUnusedFd *p = pFile->pPreallocatedUnused;
assert( unixFileMutexHeld(pFile) );
p->pNext = pInode->pUnused;
pInode->pUnused = p;
pFile->h = -1;
pFile->pPreallocatedUnused = 0;
}
/*
** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
** the byte range is divided into 2 parts and the first part is unlocked then
** set to a read lock, then the other part is simply unlocked. This works
** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
** remove the write lock on a region when a read lock is set.
*/
static int posixUnlock(sqlite3_file *id, int eFileLock, int handleNFSUnlock){
unixFile *pFile = (unixFile*)id;
unixInodeInfo *pInode;
struct flock lock;
int rc = SQLITE_OK;
assert( pFile );
OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile->h, eFileLock,
pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
osGetpid(0)));
assert( eFileLock<=SHARED_LOCK );
if( pFile->eFileLock<=eFileLock ){
return SQLITE_OK;
}
pInode = pFile->pInode;
sqlite3_mutex_enter(pInode->pLockMutex);
assert( pInode->nShared!=0 );
if( pFile->eFileLock>SHARED_LOCK ){
assert( pInode->eFileLock==pFile->eFileLock );
#ifdef SQLITE_DEBUG
/* When reducing a lock such that other processes can start
** reading the database file again, make sure that the
** transaction counter was updated if any part of the database
** file changed. If the transaction counter is not updated,
** other connections to the same file might not realize that
** the file has changed and hence might not know to flush their
** cache. The use of a stale cache can lead to database corruption.
*/
pFile->inNormalWrite = 0;
#endif
/* downgrading to a shared lock on NFS involves clearing the write lock
** before establishing the readlock - to avoid a race condition we downgrade
** the lock in 2 blocks, so that part of the range will be covered by a
** write lock until the rest is covered by a read lock:
** 1: [WWWWW]
** 2: [....W]
** 3: [RRRRW]
** 4: [RRRR.]
*/
if( eFileLock==SHARED_LOCK ){
#if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
(void)handleNFSUnlock;
assert( handleNFSUnlock==0 );
#endif
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
if( handleNFSUnlock ){
int tErrno; /* Error code from system call errors */
off_t divSize = SHARED_SIZE - 1;
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = SHARED_FIRST;
lock.l_len = divSize;
if( unixFileLock(pFile, &lock)==(-1) ){
tErrno = errno;
rc = SQLITE_IOERR_UNLOCK;
storeLastErrno(pFile, tErrno);
goto end_unlock;
}
lock.l_type = F_RDLCK;
lock.l_whence = SEEK_SET;
lock.l_start = SHARED_FIRST;
lock.l_len = divSize;
if( unixFileLock(pFile, &lock)==(-1) ){
tErrno = errno;
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_RDLOCK);
if( IS_LOCK_ERROR(rc) ){
storeLastErrno(pFile, tErrno);
}
goto end_unlock;
}
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = SHARED_FIRST+divSize;
lock.l_len = SHARED_SIZE-divSize;
if( unixFileLock(pFile, &lock)==(-1) ){
tErrno = errno;
rc = SQLITE_IOERR_UNLOCK;
storeLastErrno(pFile, tErrno);
goto end_unlock;
}
}else
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
{
lock.l_type = F_RDLCK;
lock.l_whence = SEEK_SET;
lock.l_start = SHARED_FIRST;
lock.l_len = SHARED_SIZE;
if( unixFileLock(pFile, &lock) ){
/* In theory, the call to unixFileLock() cannot fail because another
** process is holding an incompatible lock. If it does, this
** indicates that the other process is not following the locking
** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
** SQLITE_BUSY would confuse the upper layer (in practice it causes
** an assert to fail). */
rc = SQLITE_IOERR_RDLOCK;
storeLastErrno(pFile, errno);
goto end_unlock;
}
}
}
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = PENDING_BYTE;
lock.l_len = 2L; assert( PENDING_BYTE+1==RESERVED_BYTE );
if( unixFileLock(pFile, &lock)==0 ){
pInode->eFileLock = SHARED_LOCK;
}else{
rc = SQLITE_IOERR_UNLOCK;
storeLastErrno(pFile, errno);
goto end_unlock;
}
}
if( eFileLock==NO_LOCK ){
/* Decrement the shared lock counter. Release the lock using an
** OS call only when all threads in this same process have released
** the lock.
*/
pInode->nShared--;
if( pInode->nShared==0 ){
lock.l_type = F_UNLCK;
lock.l_whence = SEEK_SET;
lock.l_start = lock.l_len = 0L;
if( unixFileLock(pFile, &lock)==0 ){
pInode->eFileLock = NO_LOCK;
}else{
rc = SQLITE_IOERR_UNLOCK;
storeLastErrno(pFile, errno);
pInode->eFileLock = NO_LOCK;
pFile->eFileLock = NO_LOCK;
}
}
/* Decrement the count of locks against this same file. When the
** count reaches zero, close any other file descriptors whose close
** was deferred because of outstanding locks.
*/
pInode->nLock--;
assert( pInode->nLock>=0 );
if( pInode->nLock==0 ) closePendingFds(pFile);
}
end_unlock:
sqlite3_mutex_leave(pInode->pLockMutex);
if( rc==SQLITE_OK ){
pFile->eFileLock = eFileLock;
}
return rc;
}
/*
** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int unixUnlock(sqlite3_file *id, int eFileLock){
#if SQLITE_MAX_MMAP_SIZE>0
assert( eFileLock==SHARED_LOCK || ((unixFile *)id)->nFetchOut==0 );
#endif
return posixUnlock(id, eFileLock, 0);
}
#if SQLITE_MAX_MMAP_SIZE>0
static int unixMapfile(unixFile *pFd, i64 nByte);
static void unixUnmapfile(unixFile *pFd);
#endif
/*
** This function performs the parts of the "close file" operation
** common to all locking schemes. It closes the directory and file
** handles, if they are valid, and sets all fields of the unixFile
** structure to 0.
**
** It is *not* necessary to hold the mutex when this routine is called,
** even on VxWorks. A mutex will be acquired on VxWorks by the
** vxworksReleaseFileId() routine.
*/
static int closeUnixFile(sqlite3_file *id){
unixFile *pFile = (unixFile*)id;
#if SQLITE_MAX_MMAP_SIZE>0
unixUnmapfile(pFile);
#endif
if( pFile->h>=0 ){
robust_close(pFile, pFile->h, __LINE__);
pFile->h = -1;
}
#if OS_VXWORKS
if( pFile->pId ){
if( pFile->ctrlFlags & UNIXFILE_DELETE ){
osUnlink(pFile->pId->zCanonicalName);
}
vxworksReleaseFileId(pFile->pId);
pFile->pId = 0;
}
#endif
#ifdef SQLITE_UNLINK_AFTER_CLOSE
if( pFile->ctrlFlags & UNIXFILE_DELETE ){
osUnlink(pFile->zPath);
sqlite3_free(*(char**)&pFile->zPath);
pFile->zPath = 0;
}
#endif
OSTRACE(("CLOSE %-3d\n", pFile->h));
OpenCounter(-1);
sqlite3_free(pFile->pPreallocatedUnused);
memset(pFile, 0, sizeof(unixFile));
return SQLITE_OK;
}
/*
** Close a file.
*/
static int unixClose(sqlite3_file *id){
int rc = SQLITE_OK;
unixFile *pFile = (unixFile *)id;
unixInodeInfo *pInode = pFile->pInode;
assert( pInode!=0 );
verifyDbFile(pFile);
unixUnlock(id, NO_LOCK);
assert( unixFileMutexNotheld(pFile) );
unixEnterMutex();
/* unixFile.pInode is always valid here. Otherwise, a different close
** routine (e.g. nolockClose()) would be called instead.
*/
assert( pFile->pInode->nLock>0 || pFile->pInode->bProcessLock==0 );
sqlite3_mutex_enter(pInode->pLockMutex);
if( pInode->nLock ){
/* If there are outstanding locks, do not actually close the file just
** yet because that would clear those locks. Instead, add the file
** descriptor to pInode->pUnused list. It will be automatically closed
** when the last lock is cleared.
*/
setPendingFd(pFile);
}
sqlite3_mutex_leave(pInode->pLockMutex);
releaseInodeInfo(pFile);
assert( pFile->pShm==0 );
rc = closeUnixFile(id);
unixLeaveMutex();
return rc;
}
/************** End of the posix advisory lock implementation *****************
******************************************************************************/
/******************************************************************************
****************************** No-op Locking **********************************
**
** Of the various locking implementations available, this is by far the
** simplest: locking is ignored. No attempt is made to lock the database
** file for reading or writing.
**
** This locking mode is appropriate for use on read-only databases
** (ex: databases that are burned into CD-ROM, for example.) It can
** also be used if the application employs some external mechanism to
** prevent simultaneous access of the same database by two or more
** database connections. But there is a serious risk of database
** corruption if this locking mode is used in situations where multiple
** database connections are accessing the same database file at the same
** time and one or more of those connections are writing.
*/
static int nolockCheckReservedLock(sqlite3_file *NotUsed, int *pResOut){
UNUSED_PARAMETER(NotUsed);
*pResOut = 0;
return SQLITE_OK;
}
static int nolockLock(sqlite3_file *NotUsed, int NotUsed2){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
return SQLITE_OK;
}
static int nolockUnlock(sqlite3_file *NotUsed, int NotUsed2){
UNUSED_PARAMETER2(NotUsed, NotUsed2);
return SQLITE_OK;
}
/*
** Close the file.
*/
static int nolockClose(sqlite3_file *id) {
return closeUnixFile(id);
}
/******************* End of the no-op lock implementation *********************
******************************************************************************/
/******************************************************************************
************************* Begin dot-file Locking ******************************
**
** The dotfile locking implementation uses the existence of separate lock
** files (really a directory) to control access to the database. This works
** on just about every filesystem imaginable. But there are serious downsides:
**
** (1) There is zero concurrency. A single reader blocks all other
** connections from reading or writing the database.
**
** (2) An application crash or power loss can leave stale lock files
** sitting around that need to be cleared manually.
**
** Nevertheless, a dotlock is an appropriate locking mode for use if no
** other locking strategy is available.
**
** Dotfile locking works by creating a subdirectory in the same directory as
** the database and with the same name but with a ".lock" extension added.
** The existence of a lock directory implies an EXCLUSIVE lock. All other
** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
*/
/*
** The file suffix added to the data base filename in order to create the
** lock directory.
*/
#define DOTLOCK_SUFFIX ".lock"
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero. The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
**
** In dotfile locking, either a lock exists or it does not. So in this
** variation of CheckReservedLock(), *pResOut is set to true if any lock
** is held on the file and false if the file is unlocked.
*/
static int dotlockCheckReservedLock(sqlite3_file *id, int *pResOut) {
int rc = SQLITE_OK;
int reserved = 0;
unixFile *pFile = (unixFile*)id;
SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
assert( pFile );
reserved = osAccess((const char*)pFile->lockingContext, 0)==0;
OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile->h, rc, reserved));
*pResOut = reserved;
return rc;
}
/*
** Lock the file with the lock specified by parameter eFileLock - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** This routine will only increase a lock. Use the sqlite3OsUnlock()
** routine to lower a locking level.
**
** With dotfile locking, we really only support state (4): EXCLUSIVE.
** But we track the other locking levels internally.
*/
static int dotlockLock(sqlite3_file *id, int eFileLock) {
unixFile *pFile = (unixFile*)id;
char *zLockFile = (char *)pFile->lockingContext;
int rc = SQLITE_OK;
/* If we have any lock, then the lock file already exists. All we have
** to do is adjust our internal record of the lock level.
*/
if( pFile->eFileLock > NO_LOCK ){
pFile->eFileLock = eFileLock;
/* Always update the timestamp on the old file */
#ifdef HAVE_UTIME
utime(zLockFile, NULL);
#else
utimes(zLockFile, NULL);
#endif
return SQLITE_OK;
}
/* grab an exclusive lock */
rc = osMkdir(zLockFile, 0777);
if( rc<0 ){
/* failed to open/create the lock directory */
int tErrno = errno;
if( EEXIST == tErrno ){
rc = SQLITE_BUSY;
} else {
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
if( rc!=SQLITE_BUSY ){
storeLastErrno(pFile, tErrno);
}
}
return rc;
}
/* got it, set the type and return ok */
pFile->eFileLock = eFileLock;
return rc;
}
/*
** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** When the locking level reaches NO_LOCK, delete the lock file.
*/
static int dotlockUnlock(sqlite3_file *id, int eFileLock) {
unixFile *pFile = (unixFile*)id;
char *zLockFile = (char *)pFile->lockingContext;
int rc;
assert( pFile );
OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile->h, eFileLock,
pFile->eFileLock, osGetpid(0)));
assert( eFileLock<=SHARED_LOCK );
/* no-op if possible */
if( pFile->eFileLock==eFileLock ){
return SQLITE_OK;
}
/* To downgrade to shared, simply update our internal notion of the
** lock state. No need to mess with the file on disk.
*/
if( eFileLock==SHARED_LOCK ){
pFile->eFileLock = SHARED_LOCK;
return SQLITE_OK;
}
/* To fully unlock the database, delete the lock file */
assert( eFileLock==NO_LOCK );
rc = osRmdir(zLockFile);
if( rc<0 ){
int tErrno = errno;
if( tErrno==ENOENT ){
rc = SQLITE_OK;
}else{
rc = SQLITE_IOERR_UNLOCK;
storeLastErrno(pFile, tErrno);
}
return rc;
}
pFile->eFileLock = NO_LOCK;
return SQLITE_OK;
}
/*
** Close a file. Make sure the lock has been released before closing.
*/
static int dotlockClose(sqlite3_file *id) {
unixFile *pFile = (unixFile*)id;
assert( id!=0 );
dotlockUnlock(id, NO_LOCK);
sqlite3_free(pFile->lockingContext);
return closeUnixFile(id);
}
/****************** End of the dot-file lock implementation *******************
******************************************************************************/
/******************************************************************************
************************** Begin flock Locking ********************************
**
** Use the flock() system call to do file locking.
**
** flock() locking is like dot-file locking in that the various
** fine-grain locking levels supported by SQLite are collapsed into
** a single exclusive lock. In other words, SHARED, RESERVED, and
** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
** still works when you do this, but concurrency is reduced since
** only a single process can be reading the database at a time.
**
** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off
*/
#if SQLITE_ENABLE_LOCKING_STYLE
/*
** Retry flock() calls that fail with EINTR
*/
#ifdef EINTR
static int robust_flock(int fd, int op){
int rc;
do{ rc = flock(fd,op); }while( rc<0 && errno==EINTR );
return rc;
}
#else
# define robust_flock(a,b) flock(a,b)
#endif
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero. The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int flockCheckReservedLock(sqlite3_file *id, int *pResOut){
int rc = SQLITE_OK;
int reserved = 0;
unixFile *pFile = (unixFile*)id;
SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
assert( pFile );
/* Check if a thread in this process holds such a lock */
if( pFile->eFileLock>SHARED_LOCK ){
reserved = 1;
}
/* Otherwise see if some other process holds it. */
if( !reserved ){
/* attempt to get the lock */
int lrc = robust_flock(pFile->h, LOCK_EX | LOCK_NB);
if( !lrc ){
/* got the lock, unlock it */
lrc = robust_flock(pFile->h, LOCK_UN);
if ( lrc ) {
int tErrno = errno;
/* unlock failed with an error */
lrc = SQLITE_IOERR_UNLOCK;
storeLastErrno(pFile, tErrno);
rc = lrc;
}
} else {
int tErrno = errno;
reserved = 1;
/* someone else might have it reserved */
lrc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
if( IS_LOCK_ERROR(lrc) ){
storeLastErrno(pFile, tErrno);
rc = lrc;
}
}
}
OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile->h, rc, reserved));
#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
if( (rc & 0xff) == SQLITE_IOERR ){
rc = SQLITE_OK;
reserved=1;
}
#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
*pResOut = reserved;
return rc;
}
/*
** Lock the file with the lock specified by parameter eFileLock - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** flock() only really support EXCLUSIVE locks. We track intermediate
** lock states in the sqlite3_file structure, but all locks SHARED or
** above are really EXCLUSIVE locks and exclude all other processes from
** access the file.
**
** This routine will only increase a lock. Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
static int flockLock(sqlite3_file *id, int eFileLock) {
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
assert( pFile );
/* if we already have a lock, it is exclusive.
** Just adjust level and punt on outta here. */
if (pFile->eFileLock > NO_LOCK) {
pFile->eFileLock = eFileLock;
return SQLITE_OK;
}
/* grab an exclusive lock */
if (robust_flock(pFile->h, LOCK_EX | LOCK_NB)) {
int tErrno = errno;
/* didn't get, must be busy */
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_LOCK);
if( IS_LOCK_ERROR(rc) ){
storeLastErrno(pFile, tErrno);
}
} else {
/* got it, set the type and return ok */
pFile->eFileLock = eFileLock;
}
OSTRACE(("LOCK %d %s %s (flock)\n", pFile->h, azFileLock(eFileLock),
rc==SQLITE_OK ? "ok" : "failed"));
#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
if( (rc & 0xff) == SQLITE_IOERR ){
rc = SQLITE_BUSY;
}
#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
return rc;
}
/*
** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int flockUnlock(sqlite3_file *id, int eFileLock) {
unixFile *pFile = (unixFile*)id;
assert( pFile );
OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile->h, eFileLock,
pFile->eFileLock, osGetpid(0)));
assert( eFileLock<=SHARED_LOCK );
/* no-op if possible */
if( pFile->eFileLock==eFileLock ){
return SQLITE_OK;
}
/* shared can just be set because we always have an exclusive */
if (eFileLock==SHARED_LOCK) {
pFile->eFileLock = eFileLock;
return SQLITE_OK;
}
/* no, really, unlock. */
if( robust_flock(pFile->h, LOCK_UN) ){
#ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
return SQLITE_OK;
#endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
return SQLITE_IOERR_UNLOCK;
}else{
pFile->eFileLock = NO_LOCK;
return SQLITE_OK;
}
}
/*
** Close a file.
*/
static int flockClose(sqlite3_file *id) {
assert( id!=0 );
flockUnlock(id, NO_LOCK);
return closeUnixFile(id);
}
#endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
/******************* End of the flock lock implementation *********************
******************************************************************************/
/******************************************************************************
************************ Begin Named Semaphore Locking ************************
**
** Named semaphore locking is only supported on VxWorks.
**
** Semaphore locking is like dot-lock and flock in that it really only
** supports EXCLUSIVE locking. Only a single process can read or write
** the database file at a time. This reduces potential concurrency, but
** makes the lock implementation much easier.
*/
#if OS_VXWORKS
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero. The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int semXCheckReservedLock(sqlite3_file *id, int *pResOut) {
int rc = SQLITE_OK;
int reserved = 0;
unixFile *pFile = (unixFile*)id;
SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
assert( pFile );
/* Check if a thread in this process holds such a lock */
if( pFile->eFileLock>SHARED_LOCK ){
reserved = 1;
}
/* Otherwise see if some other process holds it. */
if( !reserved ){
sem_t *pSem = pFile->pInode->pSem;
if( sem_trywait(pSem)==-1 ){
int tErrno = errno;
if( EAGAIN != tErrno ){
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_CHECKRESERVEDLOCK);
storeLastErrno(pFile, tErrno);
} else {
/* someone else has the lock when we are in NO_LOCK */
reserved = (pFile->eFileLock < SHARED_LOCK);
}
}else{
/* we could have it if we want it */
sem_post(pSem);
}
}
OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile->h, rc, reserved));
*pResOut = reserved;
return rc;
}
/*
** Lock the file with the lock specified by parameter eFileLock - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
** lock states in the sqlite3_file structure, but all locks SHARED or
** above are really EXCLUSIVE locks and exclude all other processes from
** access the file.
**
** This routine will only increase a lock. Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
static int semXLock(sqlite3_file *id, int eFileLock) {
unixFile *pFile = (unixFile*)id;
sem_t *pSem = pFile->pInode->pSem;
int rc = SQLITE_OK;
/* if we already have a lock, it is exclusive.
** Just adjust level and punt on outta here. */
if (pFile->eFileLock > NO_LOCK) {
pFile->eFileLock = eFileLock;
rc = SQLITE_OK;
goto sem_end_lock;
}
/* lock semaphore now but bail out when already locked. */
if( sem_trywait(pSem)==-1 ){
rc = SQLITE_BUSY;
goto sem_end_lock;
}
/* got it, set the type and return ok */
pFile->eFileLock = eFileLock;
sem_end_lock:
return rc;
}
/*
** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int semXUnlock(sqlite3_file *id, int eFileLock) {
unixFile *pFile = (unixFile*)id;
sem_t *pSem = pFile->pInode->pSem;
assert( pFile );
assert( pSem );
OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile->h, eFileLock,
pFile->eFileLock, osGetpid(0)));
assert( eFileLock<=SHARED_LOCK );
/* no-op if possible */
if( pFile->eFileLock==eFileLock ){
return SQLITE_OK;
}
/* shared can just be set because we always have an exclusive */
if (eFileLock==SHARED_LOCK) {
pFile->eFileLock = eFileLock;
return SQLITE_OK;
}
/* no, really unlock. */
if ( sem_post(pSem)==-1 ) {
int rc, tErrno = errno;
rc = sqliteErrorFromPosixError(tErrno, SQLITE_IOERR_UNLOCK);
if( IS_LOCK_ERROR(rc) ){
storeLastErrno(pFile, tErrno);
}
return rc;
}
pFile->eFileLock = NO_LOCK;
return SQLITE_OK;
}
/*
** Close a file.
*/
static int semXClose(sqlite3_file *id) {
if( id ){
unixFile *pFile = (unixFile*)id;
semXUnlock(id, NO_LOCK);
assert( pFile );
assert( unixFileMutexNotheld(pFile) );
unixEnterMutex();
releaseInodeInfo(pFile);
unixLeaveMutex();
closeUnixFile(id);
}
return SQLITE_OK;
}
#endif /* OS_VXWORKS */
/*
** Named semaphore locking is only available on VxWorks.
**
*************** End of the named semaphore lock implementation ****************
******************************************************************************/
/******************************************************************************
*************************** Begin AFP Locking *********************************
**
** AFP is the Apple Filing Protocol. AFP is a network filesystem found
** on Apple Macintosh computers - both OS9 and OSX.
**
** Third-party implementations of AFP are available. But this code here
** only works on OSX.
*/
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
/*
** The afpLockingContext structure contains all afp lock specific state
*/
typedef struct afpLockingContext afpLockingContext;
struct afpLockingContext {
int reserved;
const char *dbPath; /* Name of the open file */
};
struct ByteRangeLockPB2
{
unsigned long long offset; /* offset to first byte to lock */
unsigned long long length; /* nbr of bytes to lock */
unsigned long long retRangeStart; /* nbr of 1st byte locked if successful */
unsigned char unLockFlag; /* 1 = unlock, 0 = lock */
unsigned char startEndFlag; /* 1=rel to end of fork, 0=rel to start */
int fd; /* file desc to assoc this lock with */
};
#define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
/*
** This is a utility for setting or clearing a bit-range lock on an
** AFP filesystem.
**
** Return SQLITE_OK on success, SQLITE_BUSY on failure.
*/
static int afpSetLock(
const char *path, /* Name of the file to be locked or unlocked */
unixFile *pFile, /* Open file descriptor on path */
unsigned long long offset, /* First byte to be locked */
unsigned long long length, /* Number of bytes to lock */
int setLockFlag /* True to set lock. False to clear lock */
){
struct ByteRangeLockPB2 pb;
int err;
pb.unLockFlag = setLockFlag ? 0 : 1;
pb.startEndFlag = 0;
pb.offset = offset;
pb.length = length;
pb.fd = pFile->h;
OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
(setLockFlag?"ON":"OFF"), pFile->h, (pb.fd==-1?"[testval-1]":""),
offset, length));
err = fsctl(path, afpfsByteRangeLock2FSCTL, &pb, 0);
if ( err==-1 ) {
int rc;
int tErrno = errno;
OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
path, tErrno, strerror(tErrno)));
#ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
rc = SQLITE_BUSY;
#else
rc = sqliteErrorFromPosixError(tErrno,
setLockFlag ? SQLITE_IOERR_LOCK : SQLITE_IOERR_UNLOCK);
#endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
if( IS_LOCK_ERROR(rc) ){
storeLastErrno(pFile, tErrno);
}
return rc;
} else {
return SQLITE_OK;
}
}
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero. The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int afpCheckReservedLock(sqlite3_file *id, int *pResOut){
int rc = SQLITE_OK;
int reserved = 0;
unixFile *pFile = (unixFile*)id;
afpLockingContext *context;
SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK; );
assert( pFile );
context = (afpLockingContext *) pFile->lockingContext;
if( context->reserved ){
*pResOut = 1;
return SQLITE_OK;
}
sqlite3_mutex_enter(pFile->pInode->pLockMutex);
/* Check if a thread in this process holds such a lock */
if( pFile->pInode->eFileLock>SHARED_LOCK ){
reserved = 1;
}
/* Otherwise see if some other process holds it.
*/
if( !reserved ){
/* lock the RESERVED byte */
int lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
if( SQLITE_OK==lrc ){
/* if we succeeded in taking the reserved lock, unlock it to restore
** the original state */
lrc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
} else {
/* if we failed to get the lock then someone else must have it */
reserved = 1;
}
if( IS_LOCK_ERROR(lrc) ){
rc=lrc;
}
}
sqlite3_mutex_leave(pFile->pInode->pLockMutex);
OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile->h, rc, reserved));
*pResOut = reserved;
return rc;
}
/*
** Lock the file with the lock specified by parameter eFileLock - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** This routine will only increase a lock. Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
static int afpLock(sqlite3_file *id, int eFileLock){
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
unixInodeInfo *pInode = pFile->pInode;
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
assert( pFile );
OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile->h,
azFileLock(eFileLock), azFileLock(pFile->eFileLock),
azFileLock(pInode->eFileLock), pInode->nShared , osGetpid(0)));
/* If there is already a lock of this type or more restrictive on the
** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
** unixEnterMutex() hasn't been called yet.
*/
if( pFile->eFileLock>=eFileLock ){
OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile->h,
azFileLock(eFileLock)));
return SQLITE_OK;
}
/* Make sure the locking sequence is correct
** (1) We never move from unlocked to anything higher than shared lock.
** (2) SQLite never explicitly requests a pending lock.
** (3) A shared lock is always held when a reserve lock is requested.
*/
assert( pFile->eFileLock!=NO_LOCK || eFileLock==SHARED_LOCK );
assert( eFileLock!=PENDING_LOCK );
assert( eFileLock!=RESERVED_LOCK || pFile->eFileLock==SHARED_LOCK );
/* This mutex is needed because pFile->pInode is shared across threads
*/
pInode = pFile->pInode;
sqlite3_mutex_enter(pInode->pLockMutex);
/* If some thread using this PID has a lock via a different unixFile*
** handle that precludes the requested lock, return BUSY.
*/
if( (pFile->eFileLock!=pInode->eFileLock &&
(pInode->eFileLock>=PENDING_LOCK || eFileLock>SHARED_LOCK))
){
rc = SQLITE_BUSY;
goto afp_end_lock;
}
/* If a SHARED lock is requested, and some thread using this PID already
** has a SHARED or RESERVED lock, then increment reference counts and
** return SQLITE_OK.
*/
if( eFileLock==SHARED_LOCK &&
(pInode->eFileLock==SHARED_LOCK || pInode->eFileLock==RESERVED_LOCK) ){
assert( eFileLock==SHARED_LOCK );
assert( pFile->eFileLock==0 );
assert( pInode->nShared>0 );
pFile->eFileLock = SHARED_LOCK;
pInode->nShared++;
pInode->nLock++;
goto afp_end_lock;
}
/* A PENDING lock is needed before acquiring a SHARED lock and before
** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
** be released.
*/
if( eFileLock==SHARED_LOCK
|| (eFileLock==EXCLUSIVE_LOCK && pFile->eFileLock<PENDING_LOCK)
){
int failed;
failed = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 1);
if (failed) {
rc = failed;
goto afp_end_lock;
}
}
/* If control gets to this point, then actually go ahead and make
** operating system calls for the specified lock.
*/
if( eFileLock==SHARED_LOCK ){
int lrc1, lrc2, lrc1Errno = 0;
long lk, mask;
assert( pInode->nShared==0 );
assert( pInode->eFileLock==0 );
mask = (sizeof(long)==8) ? LARGEST_INT64 : 0x7fffffff;
/* Now get the read-lock SHARED_LOCK */
/* note that the quality of the randomness doesn't matter that much */
lk = random();
pInode->sharedByte = (lk & mask)%(SHARED_SIZE - 1);
lrc1 = afpSetLock(context->dbPath, pFile,
SHARED_FIRST+pInode->sharedByte, 1, 1);
if( IS_LOCK_ERROR(lrc1) ){
lrc1Errno = pFile->lastErrno;
}
/* Drop the temporary PENDING lock */
lrc2 = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
if( IS_LOCK_ERROR(lrc1) ) {
storeLastErrno(pFile, lrc1Errno);
rc = lrc1;
goto afp_end_lock;
} else if( IS_LOCK_ERROR(lrc2) ){
rc = lrc2;
goto afp_end_lock;
} else if( lrc1 != SQLITE_OK ) {
rc = lrc1;
} else {
pFile->eFileLock = SHARED_LOCK;
pInode->nLock++;
pInode->nShared = 1;
}
}else if( eFileLock==EXCLUSIVE_LOCK && pInode->nShared>1 ){
/* We are trying for an exclusive lock but another thread in this
** same process is still holding a shared lock. */
rc = SQLITE_BUSY;
}else{
/* The request was for a RESERVED or EXCLUSIVE lock. It is
** assumed that there is a SHARED or greater lock on the file
** already.
*/
int failed = 0;
assert( 0!=pFile->eFileLock );
if (eFileLock >= RESERVED_LOCK && pFile->eFileLock < RESERVED_LOCK) {
/* Acquire a RESERVED lock */
failed = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1,1);
if( !failed ){
context->reserved = 1;
}
}
if (!failed && eFileLock == EXCLUSIVE_LOCK) {
/* Acquire an EXCLUSIVE lock */
/* Remove the shared lock before trying the range. we'll need to
** reestablish the shared lock if we can't get the afpUnlock
*/
if( !(failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST +
pInode->sharedByte, 1, 0)) ){
int failed2 = SQLITE_OK;
/* now attempt to get the exclusive lock range */
failed = afpSetLock(context->dbPath, pFile, SHARED_FIRST,
SHARED_SIZE, 1);
if( failed && (failed2 = afpSetLock(context->dbPath, pFile,
SHARED_FIRST + pInode->sharedByte, 1, 1)) ){
/* Can't reestablish the shared lock. Sqlite can't deal, this is
** a critical I/O error
*/
rc = ((failed & 0xff) == SQLITE_IOERR) ? failed2 :
SQLITE_IOERR_LOCK;
goto afp_end_lock;
}
}else{
rc = failed;
}
}
if( failed ){
rc = failed;
}
}
if( rc==SQLITE_OK ){
pFile->eFileLock = eFileLock;
pInode->eFileLock = eFileLock;
}else if( eFileLock==EXCLUSIVE_LOCK ){
pFile->eFileLock = PENDING_LOCK;
pInode->eFileLock = PENDING_LOCK;
}
afp_end_lock:
sqlite3_mutex_leave(pInode->pLockMutex);
OSTRACE(("LOCK %d %s %s (afp)\n", pFile->h, azFileLock(eFileLock),
rc==SQLITE_OK ? "ok" : "failed"));
return rc;
}
/*
** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int afpUnlock(sqlite3_file *id, int eFileLock) {
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
unixInodeInfo *pInode;
afpLockingContext *context = (afpLockingContext *) pFile->lockingContext;
int skipShared = 0;
assert( pFile );
OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile->h, eFileLock,
pFile->eFileLock, pFile->pInode->eFileLock, pFile->pInode->nShared,
osGetpid(0)));
assert( eFileLock<=SHARED_LOCK );
if( pFile->eFileLock<=eFileLock ){
return SQLITE_OK;
}
pInode = pFile->pInode;
sqlite3_mutex_enter(pInode->pLockMutex);
assert( pInode->nShared!=0 );
if( pFile->eFileLock>SHARED_LOCK ){
assert( pInode->eFileLock==pFile->eFileLock );
#ifdef SQLITE_DEBUG
/* When reducing a lock such that other processes can start
** reading the database file again, make sure that the
** transaction counter was updated if any part of the database
** file changed. If the transaction counter is not updated,
** other connections to the same file might not realize that
** the file has changed and hence might not know to flush their
** cache. The use of a stale cache can lead to database corruption.
*/
assert( pFile->inNormalWrite==0
|| pFile->dbUpdate==0
|| pFile->transCntrChng==1 );
pFile->inNormalWrite = 0;
#endif
if( pFile->eFileLock==EXCLUSIVE_LOCK ){
rc = afpSetLock(context->dbPath, pFile, SHARED_FIRST, SHARED_SIZE, 0);
if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1) ){
/* only re-establish the shared lock if necessary */
int sharedLockByte = SHARED_FIRST+pInode->sharedByte;
rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 1);
} else {
skipShared = 1;
}
}
if( rc==SQLITE_OK && pFile->eFileLock>=PENDING_LOCK ){
rc = afpSetLock(context->dbPath, pFile, PENDING_BYTE, 1, 0);
}
if( rc==SQLITE_OK && pFile->eFileLock>=RESERVED_LOCK && context->reserved ){
rc = afpSetLock(context->dbPath, pFile, RESERVED_BYTE, 1, 0);
if( !rc ){
context->reserved = 0;
}
}
if( rc==SQLITE_OK && (eFileLock==SHARED_LOCK || pInode->nShared>1)){
pInode->eFileLock = SHARED_LOCK;
}
}
if( rc==SQLITE_OK && eFileLock==NO_LOCK ){
/* Decrement the shared lock counter. Release the lock using an
** OS call only when all threads in this same process have released
** the lock.
*/
unsigned long long sharedLockByte = SHARED_FIRST+pInode->sharedByte;
pInode->nShared--;
if( pInode->nShared==0 ){
if( !skipShared ){
rc = afpSetLock(context->dbPath, pFile, sharedLockByte, 1, 0);
}
if( !rc ){
pInode->eFileLock = NO_LOCK;
pFile->eFileLock = NO_LOCK;
}
}
if( rc==SQLITE_OK ){
pInode->nLock--;
assert( pInode->nLock>=0 );
if( pInode->nLock==0 ) closePendingFds(pFile);
}
}
sqlite3_mutex_leave(pInode->pLockMutex);
if( rc==SQLITE_OK ){
pFile->eFileLock = eFileLock;
}
return rc;
}
/*
** Close a file & cleanup AFP specific locking context
*/
static int afpClose(sqlite3_file *id) {
int rc = SQLITE_OK;
unixFile *pFile = (unixFile*)id;
assert( id!=0 );
afpUnlock(id, NO_LOCK);
assert( unixFileMutexNotheld(pFile) );
unixEnterMutex();
if( pFile->pInode ){
unixInodeInfo *pInode = pFile->pInode;
sqlite3_mutex_enter(pInode->pLockMutex);
if( pInode->nLock ){
/* If there are outstanding locks, do not actually close the file just
** yet because that would clear those locks. Instead, add the file
** descriptor to pInode->aPending. It will be automatically closed when
** the last lock is cleared.
*/
setPendingFd(pFile);
}
sqlite3_mutex_leave(pInode->pLockMutex);
}
releaseInodeInfo(pFile);
sqlite3_free(pFile->lockingContext);
rc = closeUnixFile(id);
unixLeaveMutex();
return rc;
}
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
/*
** The code above is the AFP lock implementation. The code is specific
** to MacOSX and does not work on other unix platforms. No alternative
** is available. If you don't compile for a mac, then the "unix-afp"
** VFS is not available.
**
********************* End of the AFP lock implementation **********************
******************************************************************************/
/******************************************************************************
*************************** Begin NFS Locking ********************************/
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
/*
** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int nfsUnlock(sqlite3_file *id, int eFileLock){
return posixUnlock(id, eFileLock, 1);
}
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
/*
** The code above is the NFS lock implementation. The code is specific
** to MacOSX and does not work on other unix platforms. No alternative
** is available.
**
********************* End of the NFS lock implementation **********************
******************************************************************************/
/******************************************************************************
**************** Non-locking sqlite3_file methods *****************************
**
** The next division contains implementations for all methods of the
** sqlite3_file object other than the locking methods. The locking
** methods were defined in divisions above (one locking method per
** division). Those methods that are common to all locking modes
** are gather together into this division.
*/
/*
** Seek to the offset passed as the second argument, then read cnt
** bytes into pBuf. Return the number of bytes actually read.
**
** To avoid stomping the errno value on a failed read the lastErrno value
** is set before returning.
*/
static int seekAndRead(unixFile *id, sqlite3_int64 offset, void *pBuf, int cnt){
int got;
int prior = 0;
#if (!defined(USE_PREAD) && !defined(USE_PREAD64))
i64 newOffset;
#endif
TIMER_START;
assert( cnt==(cnt&0x1ffff) );
assert( id->h>2 );
do{
#if defined(USE_PREAD)
got = osPread(id->h, pBuf, cnt, offset);
SimulateIOError( got = -1 );
#elif defined(USE_PREAD64)
got = osPread64(id->h, pBuf, cnt, offset);
SimulateIOError( got = -1 );
#else
newOffset = lseek(id->h, offset, SEEK_SET);
SimulateIOError( newOffset = -1 );
if( newOffset<0 ){
storeLastErrno((unixFile*)id, errno);
return -1;
}
got = osRead(id->h, pBuf, cnt);
#endif
if( got==cnt ) break;
if( got<0 ){
if( errno==EINTR ){ got = 1; continue; }
prior = 0;
storeLastErrno((unixFile*)id, errno);
break;
}else if( got>0 ){
cnt -= got;
offset += got;
prior += got;
pBuf = (void*)(got + (char*)pBuf);
}
}while( got>0 );
TIMER_END;
OSTRACE(("READ %-3d %5d %7lld %llu\n",
id->h, got+prior, offset-prior, TIMER_ELAPSED));
return got+prior;
}
/*
** Read data from a file into a buffer. Return SQLITE_OK if all
** bytes were read successfully and SQLITE_IOERR if anything goes
** wrong.
*/
static int unixRead(
sqlite3_file *id,
void *pBuf,
int amt,
sqlite3_int64 offset
){
unixFile *pFile = (unixFile *)id;
int got;
assert( id );
assert( offset>=0 );
assert( amt>0 );
/* If this is a database file (not a journal, super-journal or temp
** file), the bytes in the locking range should never be read or written. */
#if 0
assert( pFile->pPreallocatedUnused==0
|| offset>=PENDING_BYTE+512
|| offset+amt<=PENDING_BYTE
);
#endif
#if SQLITE_MAX_MMAP_SIZE>0
/* Deal with as much of this read request as possible by transferring
** data from the memory mapping using memcpy(). */
if( offset<pFile->mmapSize ){
if( offset+amt <= pFile->mmapSize ){
memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], amt);
return SQLITE_OK;
}else{
int nCopy = pFile->mmapSize - offset;
memcpy(pBuf, &((u8 *)(pFile->pMapRegion))[offset], nCopy);
pBuf = &((u8 *)pBuf)[nCopy];
amt -= nCopy;
offset += nCopy;
}
}
#endif
got = seekAndRead(pFile, offset, pBuf, amt);
if( got==amt ){
return SQLITE_OK;
}else if( got<0 ){
/* pFile->lastErrno has been set by seekAndRead().
** Usually we return SQLITE_IOERR_READ here, though for some
** kinds of errors we return SQLITE_IOERR_CORRUPTFS. The
** SQLITE_IOERR_CORRUPTFS will be converted into SQLITE_CORRUPT
** prior to returning to the application by the sqlite3ApiExit()
** routine.
*/
switch( pFile->lastErrno ){
case ERANGE:
case EIO:
#ifdef ENXIO
case ENXIO:
#endif
#ifdef EDEVERR
case EDEVERR:
#endif
return SQLITE_IOERR_CORRUPTFS;
}
return SQLITE_IOERR_READ;
}else{
storeLastErrno(pFile, 0); /* not a system error */
/* Unread parts of the buffer must be zero-filled */
memset(&((char*)pBuf)[got], 0, amt-got);
return SQLITE_IOERR_SHORT_READ;
}
}
/*
** Attempt to seek the file-descriptor passed as the first argument to
** absolute offset iOff, then attempt to write nBuf bytes of data from
** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise,
** return the actual number of bytes written (which may be less than
** nBuf).
*/
static int seekAndWriteFd(
int fd, /* File descriptor to write to */
i64 iOff, /* File offset to begin writing at */
const void *pBuf, /* Copy data from this buffer to the file */
int nBuf, /* Size of buffer pBuf in bytes */
int *piErrno /* OUT: Error number if error occurs */
){
int rc = 0; /* Value returned by system call */
assert( nBuf==(nBuf&0x1ffff) );
assert( fd>2 );
assert( piErrno!=0 );
nBuf &= 0x1ffff;
TIMER_START;
#if defined(USE_PREAD)
do{ rc = (int)osPwrite(fd, pBuf, nBuf, iOff); }while( rc<0 && errno==EINTR );
#elif defined(USE_PREAD64)
do{ rc = (int)osPwrite64(fd, pBuf, nBuf, iOff);}while( rc<0 && errno==EINTR);
#else
do{
i64 iSeek = lseek(fd, iOff, SEEK_SET);
SimulateIOError( iSeek = -1 );
if( iSeek<0 ){
rc = -1;
break;
}
rc = osWrite(fd, pBuf, nBuf);
}while( rc<0 && errno==EINTR );
#endif
TIMER_END;
OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd, rc, iOff, TIMER_ELAPSED));
if( rc<0 ) *piErrno = errno;
return rc;
}
/*
** Seek to the offset in id->offset then read cnt bytes into pBuf.
** Return the number of bytes actually read. Update the offset.
**
** To avoid stomping the errno value on a failed write the lastErrno value
** is set before returning.
*/
static int seekAndWrite(unixFile *id, i64 offset, const void *pBuf, int cnt){
return seekAndWriteFd(id->h, offset, pBuf, cnt, &id->lastErrno);
}
/*
** Write data from a buffer into a file. Return SQLITE_OK on success
** or some other error code on failure.
*/
static int unixWrite(
sqlite3_file *id,
const void *pBuf,
int amt,
sqlite3_int64 offset
){
unixFile *pFile = (unixFile*)id;
int wrote = 0;
assert( id );
assert( amt>0 );
/* If this is a database file (not a journal, super-journal or temp
** file), the bytes in the locking range should never be read or written. */
#if 0
assert( pFile->pPreallocatedUnused==0
|| offset>=PENDING_BYTE+512
|| offset+amt<=PENDING_BYTE
);
#endif
#ifdef SQLITE_DEBUG
/* If we are doing a normal write to a database file (as opposed to
** doing a hot-journal rollback or a write to some file other than a
** normal database file) then record the fact that the database
** has changed. If the transaction counter is modified, record that
** fact too.
*/
if( pFile->inNormalWrite ){
pFile->dbUpdate = 1; /* The database has been modified */
if( offset<=24 && offset+amt>=27 ){
int rc;
char oldCntr[4];
SimulateIOErrorBenign(1);
rc = seekAndRead(pFile, 24, oldCntr, 4);
SimulateIOErrorBenign(0);
if( rc!=4 || memcmp(oldCntr, &((char*)pBuf)[24-offset], 4)!=0 ){
pFile->transCntrChng = 1; /* The transaction counter has changed */
}
}
}
#endif
#if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
/* Deal with as much of this write request as possible by transferring
** data from the memory mapping using memcpy(). */
if( offset<pFile->mmapSize ){
if( offset+amt <= pFile->mmapSize ){
memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, amt);
return SQLITE_OK;
}else{
int nCopy = pFile->mmapSize - offset;
memcpy(&((u8 *)(pFile->pMapRegion))[offset], pBuf, nCopy);
pBuf = &((u8 *)pBuf)[nCopy];
amt -= nCopy;
offset += nCopy;
}
}
#endif
while( (wrote = seekAndWrite(pFile, offset, pBuf, amt))<amt && wrote>0 ){
amt -= wrote;
offset += wrote;
pBuf = &((char*)pBuf)[wrote];
}
SimulateIOError(( wrote=(-1), amt=1 ));
SimulateDiskfullError(( wrote=0, amt=1 ));
if( amt>wrote ){
if( wrote<0 && pFile->lastErrno!=ENOSPC ){
/* lastErrno set by seekAndWrite */
return SQLITE_IOERR_WRITE;
}else{
storeLastErrno(pFile, 0); /* not a system error */
return SQLITE_FULL;
}
}
return SQLITE_OK;
}
#ifdef SQLITE_TEST
/*
** Count the number of fullsyncs and normal syncs. This is used to test
** that syncs and fullsyncs are occurring at the right times.
*/
int sqlite3_sync_count = 0;
int sqlite3_fullsync_count = 0;
#endif
/*
** We do not trust systems to provide a working fdatasync(). Some do.
** Others do no. To be safe, we will stick with the (slightly slower)
** fsync(). If you know that your system does support fdatasync() correctly,
** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC
*/
#if !defined(fdatasync) && !HAVE_FDATASYNC
# define fdatasync fsync
#endif
/*
** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
** only available on Mac OS X. But that could change.
*/
#ifdef F_FULLFSYNC
# define HAVE_FULLFSYNC 1
#else
# define HAVE_FULLFSYNC 0
#endif
/*
** The fsync() system call does not work as advertised on many
** unix systems. The following procedure is an attempt to make
** it work better.
**
** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
** for testing when we want to run through the test suite quickly.
** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
** or power failure will likely corrupt the database file.
**
** SQLite sets the dataOnly flag if the size of the file is unchanged.
** The idea behind dataOnly is that it should only write the file content
** to disk, not the inode. We only set dataOnly if the file size is
** unchanged since the file size is part of the inode. However,
** Ted Ts'o tells us that fdatasync() will also write the inode if the
** file size has changed. The only real difference between fdatasync()
** and fsync(), Ted tells us, is that fdatasync() will not flush the
** inode if the mtime or owner or other inode attributes have changed.
** We only care about the file size, not the other file attributes, so
** as far as SQLite is concerned, an fdatasync() is always adequate.
** So, we always use fdatasync() if it is available, regardless of
** the value of the dataOnly flag.
*/
static int full_fsync(int fd, int fullSync, int dataOnly){
int rc;
/* The following "ifdef/elif/else/" block has the same structure as
** the one below. It is replicated here solely to avoid cluttering
** up the real code with the UNUSED_PARAMETER() macros.
*/
#ifdef SQLITE_NO_SYNC
UNUSED_PARAMETER(fd);
UNUSED_PARAMETER(fullSync);
UNUSED_PARAMETER(dataOnly);
#elif HAVE_FULLFSYNC
UNUSED_PARAMETER(dataOnly);
#else
UNUSED_PARAMETER(fullSync);
UNUSED_PARAMETER(dataOnly);
#endif
/* Record the number of times that we do a normal fsync() and
** FULLSYNC. This is used during testing to verify that this procedure
** gets called with the correct arguments.
*/
#ifdef SQLITE_TEST
if( fullSync ) sqlite3_fullsync_count++;
sqlite3_sync_count++;
#endif
/* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
** no-op. But go ahead and call fstat() to validate the file
** descriptor as we need a method to provoke a failure during
** coverage testing.
*/
#ifdef SQLITE_NO_SYNC
{
struct stat buf;
rc = osFstat(fd, &buf);
}
#elif HAVE_FULLFSYNC
if( fullSync ){
rc = osFcntl(fd, F_FULLFSYNC, 0);
}else{
rc = 1;
}
/* If the FULLFSYNC failed, fall back to attempting an fsync().
** It shouldn't be possible for fullfsync to fail on the local
** file system (on OSX), so failure indicates that FULLFSYNC
** isn't supported for this file system. So, attempt an fsync
** and (for now) ignore the overhead of a superfluous fcntl call.
** It'd be better to detect fullfsync support once and avoid
** the fcntl call every time sync is called.
*/
if( rc ) rc = fsync(fd);
#elif defined(__APPLE__)
/* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
** so currently we default to the macro that redefines fdatasync to fsync
*/
rc = fsync(fd);
#else
rc = fdatasync(fd);
#if OS_VXWORKS
if( rc==-1 && errno==ENOTSUP ){
rc = fsync(fd);
}
#endif /* OS_VXWORKS */
#endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
if( OS_VXWORKS && rc!= -1 ){
rc = 0;
}
return rc;
}
/*
** Open a file descriptor to the directory containing file zFilename.
** If successful, *pFd is set to the opened file descriptor and
** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
** value.
**
** The directory file descriptor is used for only one thing - to
** fsync() a directory to make sure file creation and deletion events
** are flushed to disk. Such fsyncs are not needed on newer
** journaling filesystems, but are required on older filesystems.
**
** This routine can be overridden using the xSetSysCall interface.
** The ability to override this routine was added in support of the
** chromium sandbox. Opening a directory is a security risk (we are
** told) so making it overrideable allows the chromium sandbox to
** replace this routine with a harmless no-op. To make this routine
** a no-op, replace it with a stub that returns SQLITE_OK but leaves
** *pFd set to a negative number.
**
** If SQLITE_OK is returned, the caller is responsible for closing
** the file descriptor *pFd using close().
*/
static int openDirectory(const char *zFilename, int *pFd){
int ii;
int fd = -1;
char zDirname[MAX_PATHNAME+1];
sqlite3_snprintf(MAX_PATHNAME, zDirname, "%s", zFilename);
for(ii=(int)strlen(zDirname); ii>0 && zDirname[ii]!='/'; ii--);
if( ii>0 ){
zDirname[ii] = '\0';
}else{
if( zDirname[0]!='/' ) zDirname[0] = '.';
zDirname[1] = 0;
}
fd = robust_open(zDirname, O_RDONLY|O_BINARY, 0);
if( fd>=0 ){
OSTRACE(("OPENDIR %-3d %s\n", fd, zDirname));
}
*pFd = fd;
if( fd>=0 ) return SQLITE_OK;
return unixLogError(SQLITE_CANTOPEN_BKPT, "openDirectory", zDirname);
}
/*
** Make sure all writes to a particular file are committed to disk.
**
** If dataOnly==0 then both the file itself and its metadata (file
** size, access time, etc) are synced. If dataOnly!=0 then only the
** file data is synced.
**
** Under Unix, also make sure that the directory entry for the file
** has been created by fsync-ing the directory that contains the file.
** If we do not do this and we encounter a power failure, the directory
** entry for the journal might not exist after we reboot. The next
** SQLite to access the file will not know that the journal exists (because
** the directory entry for the journal was never created) and the transaction
** will not roll back - possibly leading to database corruption.
*/
static int unixSync(sqlite3_file *id, int flags){
int rc;
unixFile *pFile = (unixFile*)id;
int isDataOnly = (flags&SQLITE_SYNC_DATAONLY);
int isFullsync = (flags&0x0F)==SQLITE_SYNC_FULL;
/* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
assert((flags&0x0F)==SQLITE_SYNC_NORMAL
|| (flags&0x0F)==SQLITE_SYNC_FULL
);
/* Unix cannot, but some systems may return SQLITE_FULL from here. This
** line is to test that doing so does not cause any problems.
*/
SimulateDiskfullError( return SQLITE_FULL );
assert( pFile );
OSTRACE(("SYNC %-3d\n", pFile->h));
rc = full_fsync(pFile->h, isFullsync, isDataOnly);
SimulateIOError( rc=1 );
if( rc ){
storeLastErrno(pFile, errno);
return unixLogError(SQLITE_IOERR_FSYNC, "full_fsync", pFile->zPath);
}
/* Also fsync the directory containing the file if the DIRSYNC flag
** is set. This is a one-time occurrence. Many systems (examples: AIX)
** are unable to fsync a directory, so ignore errors on the fsync.
*/
if( pFile->ctrlFlags & UNIXFILE_DIRSYNC ){
int dirfd;
OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile->zPath,
HAVE_FULLFSYNC, isFullsync));
rc = osOpenDirectory(pFile->zPath, &dirfd);
if( rc==SQLITE_OK ){
full_fsync(dirfd, 0, 0);
robust_close(pFile, dirfd, __LINE__);
}else{
assert( rc==SQLITE_CANTOPEN );
rc = SQLITE_OK;
}
pFile->ctrlFlags &= ~UNIXFILE_DIRSYNC;
}
return rc;
}
/*
** Truncate an open file to a specified size
*/
static int unixTruncate(sqlite3_file *id, i64 nByte){
unixFile *pFile = (unixFile *)id;
int rc;
assert( pFile );
SimulateIOError( return SQLITE_IOERR_TRUNCATE );
/* If the user has configured a chunk-size for this file, truncate the
** file so that it consists of an integer number of chunks (i.e. the
** actual file size after the operation may be larger than the requested
** size).
*/
if( pFile->szChunk>0 ){
nByte = ((nByte + pFile->szChunk - 1)/pFile->szChunk) * pFile->szChunk;
}
rc = robust_ftruncate(pFile->h, nByte);
if( rc ){
storeLastErrno(pFile, errno);
return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
}else{
#ifdef SQLITE_DEBUG
/* If we are doing a normal write to a database file (as opposed to
** doing a hot-journal rollback or a write to some file other than a
** normal database file) and we truncate the file to zero length,
** that effectively updates the change counter. This might happen
** when restoring a database using the backup API from a zero-length
** source.
*/
if( pFile->inNormalWrite && nByte==0 ){
pFile->transCntrChng = 1;
}
#endif
#if SQLITE_MAX_MMAP_SIZE>0
/* If the file was just truncated to a size smaller than the currently
** mapped region, reduce the effective mapping size as well. SQLite will
** use read() and write() to access data beyond this point from now on.
*/
if( nByte<pFile->mmapSize ){
pFile->mmapSize = nByte;
}
#endif
return SQLITE_OK;
}
}
/*
** Determine the current size of a file in bytes
*/
static int unixFileSize(sqlite3_file *id, i64 *pSize){
int rc;
struct stat buf;
assert( id );
rc = osFstat(((unixFile*)id)->h, &buf);
SimulateIOError( rc=1 );
if( rc!=0 ){
storeLastErrno((unixFile*)id, errno);
return SQLITE_IOERR_FSTAT;
}
*pSize = buf.st_size;
/* When opening a zero-size database, the findInodeInfo() procedure
** writes a single byte into that file in order to work around a bug
** in the OS-X msdos filesystem. In order to avoid problems with upper
** layers, we need to report this file size as zero even though it is
** really 1. Ticket #3260.
*/
if( *pSize==1 ) *pSize = 0;
return SQLITE_OK;
}
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
/*
** Handler for proxy-locking file-control verbs. Defined below in the
** proxying locking division.
*/
static int proxyFileControl(sqlite3_file*,int,void*);
#endif
/*
** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
** file-control operation. Enlarge the database to nBytes in size
** (rounded up to the next chunk-size). If the database is already
** nBytes or larger, this routine is a no-op.
*/
static int fcntlSizeHint(unixFile *pFile, i64 nByte){
if( pFile->szChunk>0 ){
i64 nSize; /* Required file size */
struct stat buf; /* Used to hold return values of fstat() */
if( osFstat(pFile->h, &buf) ){
return SQLITE_IOERR_FSTAT;
}
nSize = ((nByte+pFile->szChunk-1) / pFile->szChunk) * pFile->szChunk;
if( nSize>(i64)buf.st_size ){
#if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
/* The code below is handling the return value of osFallocate()
** correctly. posix_fallocate() is defined to "returns zero on success,
** or an error number on failure". See the manpage for details. */
int err;
do{
err = osFallocate(pFile->h, buf.st_size, nSize-buf.st_size);
}while( err==EINTR );
if( err && err!=EINVAL ) return SQLITE_IOERR_WRITE;
#else
/* If the OS does not have posix_fallocate(), fake it. Write a
** single byte to the last byte in each block that falls entirely
** within the extended region. Then, if required, a single byte
** at offset (nSize-1), to set the size of the file correctly.
** This is a similar technique to that used by glibc on systems
** that do not have a real fallocate() call.
*/
int nBlk = buf.st_blksize; /* File-system block size */
int nWrite = 0; /* Number of bytes written by seekAndWrite */
i64 iWrite; /* Next offset to write to */
iWrite = (buf.st_size/nBlk)*nBlk + nBlk - 1;
assert( iWrite>=buf.st_size );
assert( ((iWrite+1)%nBlk)==0 );
for(/*no-op*/; iWrite<nSize+nBlk-1; iWrite+=nBlk ){
if( iWrite>=nSize ) iWrite = nSize - 1;
nWrite = seekAndWrite(pFile, iWrite, "", 1);
if( nWrite!=1 ) return SQLITE_IOERR_WRITE;
}
#endif
}
}
#if SQLITE_MAX_MMAP_SIZE>0
if( pFile->mmapSizeMax>0 && nByte>pFile->mmapSize ){
int rc;
if( pFile->szChunk<=0 ){
if( robust_ftruncate(pFile->h, nByte) ){
storeLastErrno(pFile, errno);
return unixLogError(SQLITE_IOERR_TRUNCATE, "ftruncate", pFile->zPath);
}
}
rc = unixMapfile(pFile, nByte);
return rc;
}
#endif
return SQLITE_OK;
}
/*
** If *pArg is initially negative then this is a query. Set *pArg to
** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
**
** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
*/
static void unixModeBit(unixFile *pFile, unsigned char mask, int *pArg){
if( *pArg<0 ){
*pArg = (pFile->ctrlFlags & mask)!=0;
}else if( (*pArg)==0 ){
pFile->ctrlFlags &= ~mask;
}else{
pFile->ctrlFlags |= mask;
}
}
/* Forward declaration */
static int unixGetTempname(int nBuf, char *zBuf);
#ifndef SQLITE_OMIT_SHARED_MEM
static int unixFcntlExternalReader(unixFile*, int*);
#endif
/*
** Information and control of an open file handle.
*/
static int unixFileControl(sqlite3_file *id, int op, void *pArg){
unixFile *pFile = (unixFile*)id;
switch( op ){
#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE: {
int rc = osIoctl(pFile->h, F2FS_IOC_START_ATOMIC_WRITE);
return rc ? SQLITE_IOERR_BEGIN_ATOMIC : SQLITE_OK;
}
case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE: {
int rc = osIoctl(pFile->h, F2FS_IOC_COMMIT_ATOMIC_WRITE);
return rc ? SQLITE_IOERR_COMMIT_ATOMIC : SQLITE_OK;
}
case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE: {
int rc = osIoctl(pFile->h, F2FS_IOC_ABORT_VOLATILE_WRITE);
return rc ? SQLITE_IOERR_ROLLBACK_ATOMIC : SQLITE_OK;
}
#endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
case SQLITE_FCNTL_LOCKSTATE: {
*(int*)pArg = pFile->eFileLock;
return SQLITE_OK;
}
case SQLITE_FCNTL_LAST_ERRNO: {
*(int*)pArg = pFile->lastErrno;
return SQLITE_OK;
}
case SQLITE_FCNTL_CHUNK_SIZE: {
pFile->szChunk = *(int *)pArg;
return SQLITE_OK;
}
case SQLITE_FCNTL_SIZE_HINT: {
int rc;
SimulateIOErrorBenign(1);
rc = fcntlSizeHint(pFile, *(i64 *)pArg);
SimulateIOErrorBenign(0);
return rc;
}
case SQLITE_FCNTL_PERSIST_WAL: {
unixModeBit(pFile, UNIXFILE_PERSIST_WAL, (int*)pArg);
return SQLITE_OK;
}
case SQLITE_FCNTL_POWERSAFE_OVERWRITE: {
unixModeBit(pFile, UNIXFILE_PSOW, (int*)pArg);
return SQLITE_OK;
}
case SQLITE_FCNTL_VFSNAME: {
*(char**)pArg = sqlite3_mprintf("%s", pFile->pVfs->zName);
return SQLITE_OK;
}
case SQLITE_FCNTL_TEMPFILENAME: {
char *zTFile = sqlite3_malloc64( pFile->pVfs->mxPathname );
if( zTFile ){
unixGetTempname(pFile->pVfs->mxPathname, zTFile);
*(char**)pArg = zTFile;
}
return SQLITE_OK;
}
case SQLITE_FCNTL_HAS_MOVED: {
*(int*)pArg = fileHasMoved(pFile);
return SQLITE_OK;
}
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
case SQLITE_FCNTL_LOCK_TIMEOUT: {
int iOld = pFile->iBusyTimeout;
#if SQLITE_ENABLE_SETLK_TIMEOUT==1
pFile->iBusyTimeout = *(int*)pArg;
#elif SQLITE_ENABLE_SETLK_TIMEOUT==2
pFile->iBusyTimeout = !!(*(int*)pArg);
#else
# error "SQLITE_ENABLE_SETLK_TIMEOUT must be set to 1 or 2"
#endif
*(int*)pArg = iOld;
return SQLITE_OK;
}
#endif
#if SQLITE_MAX_MMAP_SIZE>0
case SQLITE_FCNTL_MMAP_SIZE: {
i64 newLimit = *(i64*)pArg;
int rc = SQLITE_OK;
if( newLimit>sqlite3GlobalConfig.mxMmap ){
newLimit = sqlite3GlobalConfig.mxMmap;
}
/* The value of newLimit may be eventually cast to (size_t) and passed
** to mmap(). Restrict its value to 2GB if (size_t) is not at least a
** 64-bit type. */
if( newLimit>0 && sizeof(size_t)<8 ){
newLimit = (newLimit & 0x7FFFFFFF);
}
*(i64*)pArg = pFile->mmapSizeMax;
if( newLimit>=0 && newLimit!=pFile->mmapSizeMax && pFile->nFetchOut==0 ){
pFile->mmapSizeMax = newLimit;
if( pFile->mmapSize>0 ){
unixUnmapfile(pFile);
rc = unixMapfile(pFile, -1);
}
}
return rc;
}
#endif
#ifdef SQLITE_DEBUG
/* The pager calls this method to signal that it has done
** a rollback and that the database is therefore unchanged and
** it hence it is OK for the transaction change counter to be
** unchanged.
*/
case SQLITE_FCNTL_DB_UNCHANGED: {
((unixFile*)id)->dbUpdate = 0;
return SQLITE_OK;
}
#endif
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
case SQLITE_FCNTL_SET_LOCKPROXYFILE:
case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
return proxyFileControl(id,op,pArg);
}
#endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
case SQLITE_FCNTL_EXTERNAL_READER: {
#ifndef SQLITE_OMIT_SHARED_MEM
return unixFcntlExternalReader((unixFile*)id, (int*)pArg);
#else
*(int*)pArg = 0;
return SQLITE_OK;
#endif
}
}
return SQLITE_NOTFOUND;
}
/*
** If pFd->sectorSize is non-zero when this function is called, it is a
** no-op. Otherwise, the values of pFd->sectorSize and
** pFd->deviceCharacteristics are set according to the file-system
** characteristics.
**
** There are two versions of this function. One for QNX and one for all
** other systems.
*/
#ifndef __QNXNTO__
static void setDeviceCharacteristics(unixFile *pFd){
assert( pFd->deviceCharacteristics==0 || pFd->sectorSize!=0 );
if( pFd->sectorSize==0 ){
#if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
int res;
u32 f = 0;
/* Check for support for F2FS atomic batch writes. */
res = osIoctl(pFd->h, F2FS_IOC_GET_FEATURES, &f);
if( res==0 && (f & F2FS_FEATURE_ATOMIC_WRITE) ){
pFd->deviceCharacteristics = SQLITE_IOCAP_BATCH_ATOMIC;
}
#endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
/* Set the POWERSAFE_OVERWRITE flag if requested. */
if( pFd->ctrlFlags & UNIXFILE_PSOW ){
pFd->deviceCharacteristics |= SQLITE_IOCAP_POWERSAFE_OVERWRITE;
}
pFd->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
}
}
#else
#include <sys/dcmd_blk.h>
#include <sys/statvfs.h>
static void setDeviceCharacteristics(unixFile *pFile){
if( pFile->sectorSize == 0 ){
struct statvfs fsInfo;
/* Set defaults for non-supported filesystems */
pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
pFile->deviceCharacteristics = 0;
if( fstatvfs(pFile->h, &fsInfo) == -1 ) {
return;
}
if( !strcmp(fsInfo.f_basetype, "tmp") ) {
pFile->sectorSize = fsInfo.f_bsize;
pFile->deviceCharacteristics =
SQLITE_IOCAP_ATOMIC4K | /* All ram filesystem writes are atomic */
SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
** the write succeeds */
SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
** so it is ordered */
0;
}else if( strstr(fsInfo.f_basetype, "etfs") ){
pFile->sectorSize = fsInfo.f_bsize;
pFile->deviceCharacteristics =
/* etfs cluster size writes are atomic */
(pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) |
SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
** the write succeeds */
SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
** so it is ordered */
0;
}else if( !strcmp(fsInfo.f_basetype, "qnx6") ){
pFile->sectorSize = fsInfo.f_bsize;
pFile->deviceCharacteristics =
SQLITE_IOCAP_ATOMIC | /* All filesystem writes are atomic */
SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
** the write succeeds */
SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
** so it is ordered */
0;
}else if( !strcmp(fsInfo.f_basetype, "qnx4") ){
pFile->sectorSize = fsInfo.f_bsize;
pFile->deviceCharacteristics =
/* full bitset of atomics from max sector size and smaller */
((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
** so it is ordered */
0;
}else if( strstr(fsInfo.f_basetype, "dos") ){
pFile->sectorSize = fsInfo.f_bsize;
pFile->deviceCharacteristics =
/* full bitset of atomics from max sector size and smaller */
((pFile->sectorSize / 512 * SQLITE_IOCAP_ATOMIC512) << 1) - 2 |
SQLITE_IOCAP_SEQUENTIAL | /* The ram filesystem has no write behind
** so it is ordered */
0;
}else{
pFile->deviceCharacteristics =
SQLITE_IOCAP_ATOMIC512 | /* blocks are atomic */
SQLITE_IOCAP_SAFE_APPEND | /* growing the file does not occur until
** the write succeeds */
0;
}
}
/* Last chance verification. If the sector size isn't a multiple of 512
** then it isn't valid.*/
if( pFile->sectorSize % 512 != 0 ){
pFile->deviceCharacteristics = 0;
pFile->sectorSize = SQLITE_DEFAULT_SECTOR_SIZE;
}
}
#endif
/*
** Return the sector size in bytes of the underlying block device for
** the specified file. This is almost always 512 bytes, but may be
** larger for some devices.
**
** SQLite code assumes this function cannot fail. It also assumes that
** if two files are created in the same file-system directory (i.e.
** a database and its journal file) that the sector size will be the
** same for both.
*/
static int unixSectorSize(sqlite3_file *id){
unixFile *pFd = (unixFile*)id;
setDeviceCharacteristics(pFd);
return pFd->sectorSize;
}
/*
** Return the device characteristics for the file.
**
** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
** However, that choice is controversial since technically the underlying
** file system does not always provide powersafe overwrites. (In other
** words, after a power-loss event, parts of the file that were never
** written might end up being altered.) However, non-PSOW behavior is very,
** very rare. And asserting PSOW makes a large reduction in the amount
** of required I/O for journaling, since a lot of padding is eliminated.
** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
** available to turn it off and URI query parameter available to turn it off.
*/
static int unixDeviceCharacteristics(sqlite3_file *id){
unixFile *pFd = (unixFile*)id;
setDeviceCharacteristics(pFd);
return pFd->deviceCharacteristics;
}
#if !defined(SQLITE_OMIT_SHARED_MEM) || SQLITE_MAX_MMAP_SIZE>0
/*
** Return the system page size.
**
** This function should not be called directly by other code in this file.
** Instead, it should be called via macro osGetpagesize().
*/
static int unixGetpagesize(void){
#if OS_VXWORKS
return 1024;
#elif defined(_BSD_SOURCE)
return getpagesize();
#else
return (int)sysconf(_SC_PAGESIZE);
#endif
}
#endif /* !defined(SQLITE_OMIT_SHARED_MEM) || SQLITE_MAX_MMAP_SIZE>0 */
#ifndef SQLITE_OMIT_SHARED_MEM
/*
** Object used to represent an shared memory buffer.
**
** When multiple threads all reference the same wal-index, each thread
** has its own unixShm object, but they all point to a single instance
** of this unixShmNode object. In other words, each wal-index is opened
** only once per process.
**
** Each unixShmNode object is connected to a single unixInodeInfo object.
** We could coalesce this object into unixInodeInfo, but that would mean
** every open file that does not use shared memory (in other words, most
** open files) would have to carry around this extra information. So
** the unixInodeInfo object contains a pointer to this unixShmNode object
** and the unixShmNode object is created only when needed.
**
** unixMutexHeld() must be true when creating or destroying
** this object or while reading or writing the following fields:
**
** nRef
**
** The following fields are read-only after the object is created:
**
** hShm
** zFilename
**
** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and
** unixMutexHeld() is true when reading or writing any other field
** in this structure.
**
** aLock[SQLITE_SHM_NLOCK]:
** This array records the various locks held by clients on each of the
** SQLITE_SHM_NLOCK slots. If the aLock[] entry is set to 0, then no
** locks are held by the process on this slot. If it is set to -1, then
** some client holds an EXCLUSIVE lock on the locking slot. If the aLock[]
** value is set to a positive value, then it is the number of shared
** locks currently held on the slot.
**
** aMutex[SQLITE_SHM_NLOCK]:
** Normally, when SQLITE_ENABLE_SETLK_TIMEOUT is not defined, mutex
** pShmMutex is used to protect the aLock[] array and the right to
** call fcntl() on unixShmNode.hShm to obtain or release locks.
**
** If SQLITE_ENABLE_SETLK_TIMEOUT is defined though, we use an array
** of mutexes - one for each locking slot. To read or write locking
** slot aLock[iSlot], the caller must hold the corresponding mutex
** aMutex[iSlot]. Similarly, to call fcntl() to obtain or release a
** lock corresponding to slot iSlot, mutex aMutex[iSlot] must be held.
*/
struct unixShmNode {
unixInodeInfo *pInode; /* unixInodeInfo that owns this SHM node */
sqlite3_mutex *pShmMutex; /* Mutex to access this object */
char *zFilename; /* Name of the mmapped file */
int hShm; /* Open file descriptor */
int szRegion; /* Size of shared-memory regions */
u16 nRegion; /* Size of array apRegion */
u8 isReadonly; /* True if read-only */
u8 isUnlocked; /* True if no DMS lock held */
char **apRegion; /* Array of mapped shared-memory regions */
int nRef; /* Number of unixShm objects pointing to this */
unixShm *pFirst; /* All unixShm objects pointing to this */
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
sqlite3_mutex *aMutex[SQLITE_SHM_NLOCK];
#endif
int aLock[SQLITE_SHM_NLOCK]; /* # shared locks on slot, -1==excl lock */
#ifdef SQLITE_DEBUG
u8 nextShmId; /* Next available unixShm.id value */
#endif
};
/*
** Structure used internally by this VFS to record the state of an
** open shared memory connection.
**
** The following fields are initialized when this object is created and
** are read-only thereafter:
**
** unixShm.pShmNode
** unixShm.id
**
** All other fields are read/write. The unixShm.pShmNode->pShmMutex must
** be held while accessing any read/write fields.
*/
struct unixShm {
unixShmNode *pShmNode; /* The underlying unixShmNode object */
unixShm *pNext; /* Next unixShm with the same unixShmNode */
u8 hasMutex; /* True if holding the unixShmNode->pShmMutex */
u8 id; /* Id of this connection within its unixShmNode */
u16 sharedMask; /* Mask of shared locks held */
u16 exclMask; /* Mask of exclusive locks held */
};
/*
** Constants used for locking
*/
#define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
#define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
/*
** Use F_GETLK to check whether or not there are any readers with open
** wal-mode transactions in other processes on database file pFile. If
** no error occurs, return SQLITE_OK and set (*piOut) to 1 if there are
** such transactions, or 0 otherwise. If an error occurs, return an
** SQLite error code. The final value of *piOut is undefined in this
** case.
*/
static int unixFcntlExternalReader(unixFile *pFile, int *piOut){
int rc = SQLITE_OK;
*piOut = 0;
if( pFile->pShm){
unixShmNode *pShmNode = pFile->pShm->pShmNode;
struct flock f;
memset(&f, 0, sizeof(f));
f.l_type = F_WRLCK;
f.l_whence = SEEK_SET;
f.l_start = UNIX_SHM_BASE + 3;
f.l_len = SQLITE_SHM_NLOCK - 3;
sqlite3_mutex_enter(pShmNode->pShmMutex);
if( osFcntl(pShmNode->hShm, F_GETLK, &f)<0 ){
rc = SQLITE_IOERR_LOCK;
}else{
*piOut = (f.l_type!=F_UNLCK);
}
sqlite3_mutex_leave(pShmNode->pShmMutex);
}
return rc;
}
/*
** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
**
** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
** otherwise.
*/
static int unixShmSystemLock(
unixFile *pFile, /* Open connection to the WAL file */
int lockType, /* F_UNLCK, F_RDLCK, or F_WRLCK */
int ofst, /* First byte of the locking range */
int n /* Number of bytes to lock */
){
unixShmNode *pShmNode; /* Apply locks to this open shared-memory segment */
struct flock f; /* The posix advisory locking structure */
int rc = SQLITE_OK; /* Result code form fcntl() */
pShmNode = pFile->pInode->pShmNode;
/* Assert that the parameters are within expected range and that the
** correct mutex or mutexes are held. */
assert( pShmNode->nRef>=0 );
assert( (ofst==UNIX_SHM_DMS && n==1)
|| (ofst>=UNIX_SHM_BASE && ofst+n<=(UNIX_SHM_BASE+SQLITE_SHM_NLOCK))
);
if( ofst==UNIX_SHM_DMS ){
assert( pShmNode->nRef>0 || unixMutexHeld() );
assert( pShmNode->nRef==0 || sqlite3_mutex_held(pShmNode->pShmMutex) );
}else{
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
int ii;
for(ii=ofst-UNIX_SHM_BASE; ii<ofst-UNIX_SHM_BASE+n; ii++){
assert( sqlite3_mutex_held(pShmNode->aMutex[ii]) );
}
#else
assert( sqlite3_mutex_held(pShmNode->pShmMutex) );
assert( pShmNode->nRef>0 );
#endif
}
/* Shared locks never span more than one byte */
assert( n==1 || lockType!=F_RDLCK );
/* Locks are within range */
assert( n>=1 && n<=SQLITE_SHM_NLOCK );
assert( ofst>=UNIX_SHM_BASE && ofst<=(UNIX_SHM_DMS+SQLITE_SHM_NLOCK) );
if( pShmNode->hShm>=0 ){
int res;
/* Initialize the locking parameters */
f.l_type = lockType;
f.l_whence = SEEK_SET;
f.l_start = ofst;
f.l_len = n;
res = osSetPosixAdvisoryLock(pShmNode->hShm, &f, pFile);
if( res==-1 ){
#if defined(SQLITE_ENABLE_SETLK_TIMEOUT) && SQLITE_ENABLE_SETLK_TIMEOUT==1
rc = (pFile->iBusyTimeout ? SQLITE_BUSY_TIMEOUT : SQLITE_BUSY);
#else
rc = SQLITE_BUSY;
#endif
}
}
/* Do debug tracing */
#ifdef SQLITE_DEBUG
OSTRACE(("SHM-LOCK "));
if( rc==SQLITE_OK ){
if( lockType==F_UNLCK ){
OSTRACE(("unlock %d..%d ok\n", ofst, ofst+n-1));
}else if( lockType==F_RDLCK ){
OSTRACE(("read-lock %d..%d ok\n", ofst, ofst+n-1));
}else{
assert( lockType==F_WRLCK );
OSTRACE(("write-lock %d..%d ok\n", ofst, ofst+n-1));
}
}else{
if( lockType==F_UNLCK ){
OSTRACE(("unlock %d..%d failed\n", ofst, ofst+n-1));
}else if( lockType==F_RDLCK ){
OSTRACE(("read-lock %d..%d failed\n", ofst, ofst+n-1));
}else{
assert( lockType==F_WRLCK );
OSTRACE(("write-lock %d..%d failed\n", ofst, ofst+n-1));
}
}
#endif
return rc;
}
/*
** Return the minimum number of 32KB shm regions that should be mapped at
** a time, assuming that each mapping must be an integer multiple of the
** current system page-size.
**
** Usually, this is 1. The exception seems to be systems that are configured
** to use 64KB pages - in this case each mapping must cover at least two
** shm regions.
*/
static int unixShmRegionPerMap(void){
int shmsz = 32*1024; /* SHM region size */
int pgsz = osGetpagesize(); /* System page size */
assert( ((pgsz-1)&pgsz)==0 ); /* Page size must be a power of 2 */
if( pgsz<shmsz ) return 1;
return pgsz/shmsz;
}
/*
** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
**
** This is not a VFS shared-memory method; it is a utility function called
** by VFS shared-memory methods.
*/
static void unixShmPurge(unixFile *pFd){
unixShmNode *p = pFd->pInode->pShmNode;
assert( unixMutexHeld() );
if( p && ALWAYS(p->nRef==0) ){
int nShmPerMap = unixShmRegionPerMap();
int i;
assert( p->pInode==pFd->pInode );
sqlite3_mutex_free(p->pShmMutex);
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
for(i=0; i<SQLITE_SHM_NLOCK; i++){
sqlite3_mutex_free(p->aMutex[i]);
}
#endif
for(i=0; i<p->nRegion; i+=nShmPerMap){
if( p->hShm>=0 ){
osMunmap(p->apRegion[i], p->szRegion);
}else{
sqlite3_free(p->apRegion[i]);
}
}
sqlite3_free(p->apRegion);
if( p->hShm>=0 ){
robust_close(pFd, p->hShm, __LINE__);
p->hShm = -1;
}
p->pInode->pShmNode = 0;
sqlite3_free(p);
}
}
/*
** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
** take it now. Return SQLITE_OK if successful, or an SQLite error
** code otherwise.
**
** If the DMS cannot be locked because this is a readonly_shm=1
** connection and no other process already holds a lock, return
** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
*/
static int unixLockSharedMemory(unixFile *pDbFd, unixShmNode *pShmNode){
struct flock lock;
int rc = SQLITE_OK;
/* Use F_GETLK to determine the locks other processes are holding
** on the DMS byte. If it indicates that another process is holding
** a SHARED lock, then this process may also take a SHARED lock
** and proceed with opening the *-shm file.
**
** Or, if no other process is holding any lock, then this process
** is the first to open it. In this case take an EXCLUSIVE lock on the
** DMS byte and truncate the *-shm file to zero bytes in size. Then
** downgrade to a SHARED lock on the DMS byte.
**
** If another process is holding an EXCLUSIVE lock on the DMS byte,
** return SQLITE_BUSY to the caller (it will try again). An earlier
** version of this code attempted the SHARED lock at this point. But
** this introduced a subtle race condition: if the process holding
** EXCLUSIVE failed just before truncating the *-shm file, then this
** process might open and use the *-shm file without truncating it.
** And if the *-shm file has been corrupted by a power failure or
** system crash, the database itself may also become corrupt. */
lock.l_whence = SEEK_SET;
lock.l_start = UNIX_SHM_DMS;
lock.l_len = 1;
lock.l_type = F_WRLCK;
if( osFcntl(pShmNode->hShm, F_GETLK, &lock)!=0 ) {
rc = SQLITE_IOERR_LOCK;
}else if( lock.l_type==F_UNLCK ){
if( pShmNode->isReadonly ){
pShmNode->isUnlocked = 1;
rc = SQLITE_READONLY_CANTINIT;
}else{
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
/* Do not use a blocking lock here. If the lock cannot be obtained
** immediately, it means some other connection is truncating the
** *-shm file. And after it has done so, it will not release its
** lock, but only downgrade it to a shared lock. So no point in
** blocking here. The call below to obtain the shared DMS lock may
** use a blocking lock. */
int iSaveTimeout = pDbFd->iBusyTimeout;
pDbFd->iBusyTimeout = 0;
#endif
rc = unixShmSystemLock(pDbFd, F_WRLCK, UNIX_SHM_DMS, 1);
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
pDbFd->iBusyTimeout = iSaveTimeout;
#endif
/* The first connection to attach must truncate the -shm file. We
** truncate to 3 bytes (an arbitrary small number, less than the
** -shm header size) rather than 0 as a system debugging aid, to
** help detect if a -shm file truncation is legitimate or is the work
** or a rogue process. */
if( rc==SQLITE_OK && robust_ftruncate(pShmNode->hShm, 3) ){
rc = unixLogError(SQLITE_IOERR_SHMOPEN,"ftruncate",pShmNode->zFilename);
}
}
}else if( lock.l_type==F_WRLCK ){
rc = SQLITE_BUSY;
}
if( rc==SQLITE_OK ){
assert( lock.l_type==F_UNLCK || lock.l_type==F_RDLCK );
rc = unixShmSystemLock(pDbFd, F_RDLCK, UNIX_SHM_DMS, 1);
}
return rc;
}
/*
** Open a shared-memory area associated with open database file pDbFd.
** This particular implementation uses mmapped files.
**
** The file used to implement shared-memory is in the same directory
** as the open database file and has the same name as the open database
** file with the "-shm" suffix added. For example, if the database file
** is "/home/user1/config.db" then the file that is created and mmapped
** for shared memory will be called "/home/user1/config.db-shm".
**
** Another approach to is to use files in /dev/shm or /dev/tmp or an
** some other tmpfs mount. But if a file in a different directory
** from the database file is used, then differing access permissions
** or a chroot() might cause two different processes on the same
** database to end up using different files for shared memory -
** meaning that their memory would not really be shared - resulting
** in database corruption. Nevertheless, this tmpfs file usage
** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
** option results in an incompatible build of SQLite; builds of SQLite
** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
** same database file at the same time, database corruption will likely
** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
** "unsupported" and may go away in a future SQLite release.
**
** When opening a new shared-memory file, if no other instances of that
** file are currently open, in this process or in other processes, then
** the file must be truncated to zero length or have its header cleared.
**
** If the original database file (pDbFd) is using the "unix-excl" VFS
** that means that an exclusive lock is held on the database file and
** that no other processes are able to read or write the database. In
** that case, we do not really need shared memory. No shared memory
** file is created. The shared memory will be simulated with heap memory.
*/
static int unixOpenSharedMemory(unixFile *pDbFd){
struct unixShm *p = 0; /* The connection to be opened */
struct unixShmNode *pShmNode; /* The underlying mmapped file */
int rc = SQLITE_OK; /* Result code */
unixInodeInfo *pInode; /* The inode of fd */
char *zShm; /* Name of the file used for SHM */
int nShmFilename; /* Size of the SHM filename in bytes */
/* Allocate space for the new unixShm object. */
p = sqlite3_malloc64( sizeof(*p) );
if( p==0 ) return SQLITE_NOMEM_BKPT;
memset(p, 0, sizeof(*p));
assert( pDbFd->pShm==0 );
/* Check to see if a unixShmNode object already exists. Reuse an existing
** one if present. Create a new one if necessary.
*/
assert( unixFileMutexNotheld(pDbFd) );
unixEnterMutex();
pInode = pDbFd->pInode;
pShmNode = pInode->pShmNode;
if( pShmNode==0 ){
struct stat sStat; /* fstat() info for database file */
#ifndef SQLITE_SHM_DIRECTORY
const char *zBasePath = pDbFd->zPath;
#endif
/* Call fstat() to figure out the permissions on the database file. If
** a new *-shm file is created, an attempt will be made to create it
** with the same permissions.
*/
if( osFstat(pDbFd->h, &sStat) ){
rc = SQLITE_IOERR_FSTAT;
goto shm_open_err;
}
#ifdef SQLITE_SHM_DIRECTORY
nShmFilename = sizeof(SQLITE_SHM_DIRECTORY) + 31;
#else
nShmFilename = 6 + (int)strlen(zBasePath);
#endif
pShmNode = sqlite3_malloc64( sizeof(*pShmNode) + nShmFilename );
if( pShmNode==0 ){
rc = SQLITE_NOMEM_BKPT;
goto shm_open_err;
}
memset(pShmNode, 0, sizeof(*pShmNode)+nShmFilename);
zShm = pShmNode->zFilename = (char*)&pShmNode[1];
#ifdef SQLITE_SHM_DIRECTORY
sqlite3_snprintf(nShmFilename, zShm,
SQLITE_SHM_DIRECTORY "/sqlite-shm-%x-%x",
(u32)sStat.st_ino, (u32)sStat.st_dev);
#else
sqlite3_snprintf(nShmFilename, zShm, "%s-shm", zBasePath);
sqlite3FileSuffix3(pDbFd->zPath, zShm);
#endif
pShmNode->hShm = -1;
pDbFd->pInode->pShmNode = pShmNode;
pShmNode->pInode = pDbFd->pInode;
if( sqlite3GlobalConfig.bCoreMutex ){
pShmNode->pShmMutex = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
if( pShmNode->pShmMutex==0 ){
rc = SQLITE_NOMEM_BKPT;
goto shm_open_err;
}
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
{
int ii;
for(ii=0; ii<SQLITE_SHM_NLOCK; ii++){
pShmNode->aMutex[ii] = sqlite3_mutex_alloc(SQLITE_MUTEX_FAST);
if( pShmNode->aMutex[ii]==0 ){
rc = SQLITE_NOMEM_BKPT;
goto shm_open_err;
}
}
}
#endif
}
if( pInode->bProcessLock==0 ){
if( 0==sqlite3_uri_boolean(pDbFd->zPath, "readonly_shm", 0) ){
pShmNode->hShm = robust_open(zShm, O_RDWR|O_CREAT|O_NOFOLLOW,
(sStat.st_mode&0777));
}
if( pShmNode->hShm<0 ){
pShmNode->hShm = robust_open(zShm, O_RDONLY|O_NOFOLLOW,
(sStat.st_mode&0777));
if( pShmNode->hShm<0 ){
rc = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zShm);
goto shm_open_err;
}
pShmNode->isReadonly = 1;
}
/* If this process is running as root, make sure that the SHM file
** is owned by the same user that owns the original database. Otherwise,
** the original owner will not be able to connect.
*/
robustFchown(pShmNode->hShm, sStat.st_uid, sStat.st_gid);
rc = unixLockSharedMemory(pDbFd, pShmNode);
if( rc!=SQLITE_OK && rc!=SQLITE_READONLY_CANTINIT ) goto shm_open_err;
}
}
/* Make the new connection a child of the unixShmNode */
p->pShmNode = pShmNode;
#ifdef SQLITE_DEBUG
p->id = pShmNode->nextShmId++;
#endif
pShmNode->nRef++;
pDbFd->pShm = p;
unixLeaveMutex();
/* The reference count on pShmNode has already been incremented under
** the cover of the unixEnterMutex() mutex and the pointer from the
** new (struct unixShm) object to the pShmNode has been set. All that is
** left to do is to link the new object into the linked list starting
** at pShmNode->pFirst. This must be done while holding the
** pShmNode->pShmMutex.
*/
sqlite3_mutex_enter(pShmNode->pShmMutex);
p->pNext = pShmNode->pFirst;
pShmNode->pFirst = p;
sqlite3_mutex_leave(pShmNode->pShmMutex);
return rc;
/* Jump here on any error */
shm_open_err:
unixShmPurge(pDbFd); /* This call frees pShmNode if required */
sqlite3_free(p);
unixLeaveMutex();
return rc;
}
/*
** This function is called to obtain a pointer to region iRegion of the
** shared-memory associated with the database file fd. Shared-memory regions
** are numbered starting from zero. Each shared-memory region is szRegion
** bytes in size.
**
** If an error occurs, an error code is returned and *pp is set to NULL.
**
** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
** region has not been allocated (by any client, including one running in a
** separate process), then *pp is set to NULL and SQLITE_OK returned. If
** bExtend is non-zero and the requested shared-memory region has not yet
** been allocated, it is allocated by this function.
**
** If the shared-memory region has already been allocated or is allocated by
** this call as described above, then it is mapped into this processes
** address space (if it is not already), *pp is set to point to the mapped
** memory and SQLITE_OK returned.
*/
static int unixShmMap(
sqlite3_file *fd, /* Handle open on database file */
int iRegion, /* Region to retrieve */
int szRegion, /* Size of regions */
int bExtend, /* True to extend file if necessary */
void volatile **pp /* OUT: Mapped memory */
){
unixFile *pDbFd = (unixFile*)fd;
unixShm *p;
unixShmNode *pShmNode;
int rc = SQLITE_OK;
int nShmPerMap = unixShmRegionPerMap();
int nReqRegion;
/* If the shared-memory file has not yet been opened, open it now. */
if( pDbFd->pShm==0 ){
rc = unixOpenSharedMemory(pDbFd);
if( rc!=SQLITE_OK ) return rc;
}
p = pDbFd->pShm;
pShmNode = p->pShmNode;
sqlite3_mutex_enter(pShmNode->pShmMutex);
if( pShmNode->isUnlocked ){
rc = unixLockSharedMemory(pDbFd, pShmNode);
if( rc!=SQLITE_OK ) goto shmpage_out;
pShmNode->isUnlocked = 0;
}
assert( szRegion==pShmNode->szRegion || pShmNode->nRegion==0 );
assert( pShmNode->pInode==pDbFd->pInode );
assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );
/* Minimum number of regions required to be mapped. */
nReqRegion = ((iRegion+nShmPerMap) / nShmPerMap) * nShmPerMap;
if( pShmNode->nRegion<nReqRegion ){
char **apNew; /* New apRegion[] array */
int nByte = nReqRegion*szRegion; /* Minimum required file size */
struct stat sStat; /* Used by fstat() */
pShmNode->szRegion = szRegion;
if( pShmNode->hShm>=0 ){
/* The requested region is not mapped into this processes address space.
** Check to see if it has been allocated (i.e. if the wal-index file is
** large enough to contain the requested region).
*/
if( osFstat(pShmNode->hShm, &sStat) ){
rc = SQLITE_IOERR_SHMSIZE;
goto shmpage_out;
}
if( sStat.st_size<nByte ){
/* The requested memory region does not exist. If bExtend is set to
** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
*/
if( !bExtend ){
goto shmpage_out;
}
/* Alternatively, if bExtend is true, extend the file. Do this by
** writing a single byte to the end of each (OS) page being
** allocated or extended. Technically, we need only write to the
** last page in order to extend the file. But writing to all new
** pages forces the OS to allocate them immediately, which reduces
** the chances of SIGBUS while accessing the mapped region later on.
*/
else{
static const int pgsz = 4096;
int iPg;
/* Write to the last byte of each newly allocated or extended page */
assert( (nByte % pgsz)==0 );
for(iPg=(sStat.st_size/pgsz); iPg<(nByte/pgsz); iPg++){
int x = 0;
if( seekAndWriteFd(pShmNode->hShm, iPg*pgsz + pgsz-1,"",1,&x)!=1 ){
const char *zFile = pShmNode->zFilename;
rc = unixLogError(SQLITE_IOERR_SHMSIZE, "write", zFile);
goto shmpage_out;
}
}
}
}
}
/* Map the requested memory region into this processes address space. */
apNew = (char **)sqlite3_realloc(
pShmNode->apRegion, nReqRegion*sizeof(char *)
);
if( !apNew ){
rc = SQLITE_IOERR_NOMEM_BKPT;
goto shmpage_out;
}
pShmNode->apRegion = apNew;
while( pShmNode->nRegion<nReqRegion ){
int nMap = szRegion*nShmPerMap;
int i;
void *pMem;
if( pShmNode->hShm>=0 ){
pMem = osMmap(0, nMap,
pShmNode->isReadonly ? PROT_READ : PROT_READ|PROT_WRITE,
MAP_SHARED, pShmNode->hShm, szRegion*(i64)pShmNode->nRegion
);
if( pMem==MAP_FAILED ){
rc = unixLogError(SQLITE_IOERR_SHMMAP, "mmap", pShmNode->zFilename);
goto shmpage_out;
}
}else{
pMem = sqlite3_malloc64(nMap);
if( pMem==0 ){
rc = SQLITE_NOMEM_BKPT;
goto shmpage_out;
}
memset(pMem, 0, nMap);
}
for(i=0; i<nShmPerMap; i++){
pShmNode->apRegion[pShmNode->nRegion+i] = &((char*)pMem)[szRegion*i];
}
pShmNode->nRegion += nShmPerMap;
}
}
shmpage_out:
if( pShmNode->nRegion>iRegion ){
*pp = pShmNode->apRegion[iRegion];
}else{
*pp = 0;
}
if( pShmNode->isReadonly && rc==SQLITE_OK ) rc = SQLITE_READONLY;
sqlite3_mutex_leave(pShmNode->pShmMutex);
return rc;
}
/*
** Check that the pShmNode->aLock[] array comports with the locking bitmasks
** held by each client. Return true if it does, or false otherwise. This
** is to be used in an assert(). e.g.
**
** assert( assertLockingArrayOk(pShmNode) );
*/
#ifdef SQLITE_DEBUG
static int assertLockingArrayOk(unixShmNode *pShmNode){
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
return 1;
#else
unixShm *pX;
int aLock[SQLITE_SHM_NLOCK];
memset(aLock, 0, sizeof(aLock));
for(pX=pShmNode->pFirst; pX; pX=pX->pNext){
int i;
for(i=0; i<SQLITE_SHM_NLOCK; i++){
if( pX->exclMask & (1<<i) ){
assert( aLock[i]==0 );
aLock[i] = -1;
}else if( pX->sharedMask & (1<<i) ){
assert( aLock[i]>=0 );
aLock[i]++;
}
}
}
assert( 0==memcmp(pShmNode->aLock, aLock, sizeof(aLock)) );
return (memcmp(pShmNode->aLock, aLock, sizeof(aLock))==0);
#endif
}
#endif
/*
** Change the lock state for a shared-memory segment.
**
** Note that the relationship between SHARED and EXCLUSIVE locks is a little
** different here than in posix. In xShmLock(), one can go from unlocked
** to shared and back or from unlocked to exclusive and back. But one may
** not go from shared to exclusive or from exclusive to shared.
*/
static int unixShmLock(
sqlite3_file *fd, /* Database file holding the shared memory */
int ofst, /* First lock to acquire or release */
int n, /* Number of locks to acquire or release */
int flags /* What to do with the lock */
){
unixFile *pDbFd = (unixFile*)fd; /* Connection holding shared memory */
unixShm *p; /* The shared memory being locked */
unixShmNode *pShmNode; /* The underlying file iNode */
int rc = SQLITE_OK; /* Result code */
u16 mask = (1<<(ofst+n)) - (1<<ofst); /* Mask of locks to take or release */
int *aLock;
p = pDbFd->pShm;
if( p==0 ) return SQLITE_IOERR_SHMLOCK;
pShmNode = p->pShmNode;
if( NEVER(pShmNode==0) ) return SQLITE_IOERR_SHMLOCK;
aLock = pShmNode->aLock;
assert( pShmNode==pDbFd->pInode->pShmNode );
assert( pShmNode->pInode==pDbFd->pInode );
assert( ofst>=0 && ofst+n<=SQLITE_SHM_NLOCK );
assert( n>=1 );
assert( flags==(SQLITE_SHM_LOCK | SQLITE_SHM_SHARED)
|| flags==(SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE)
|| flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED)
|| flags==(SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE) );
assert( n==1 || (flags & SQLITE_SHM_EXCLUSIVE)!=0 );
assert( pShmNode->hShm>=0 || pDbFd->pInode->bProcessLock==1 );
assert( pShmNode->hShm<0 || pDbFd->pInode->bProcessLock==0 );
/* Check that, if this to be a blocking lock, no locks that occur later
** in the following list than the lock being obtained are already held:
**
** 1. Checkpointer lock (ofst==1).
** 2. Write lock (ofst==0).
** 3. Read locks (ofst>=3 && ofst<SQLITE_SHM_NLOCK).
**
** In other words, if this is a blocking lock, none of the locks that
** occur later in the above list than the lock being obtained may be
** held.
**
** It is not permitted to block on the RECOVER lock.
*/
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
{
u16 lockMask = (p->exclMask|p->sharedMask);
assert( (flags & SQLITE_SHM_UNLOCK) || pDbFd->iBusyTimeout==0 || (
(ofst!=2) /* not RECOVER */
&& (ofst!=1 || lockMask==0 || lockMask==2)
&& (ofst!=0 || lockMask<3)
&& (ofst<3 || lockMask<(1<<ofst))
));
}
#endif
/* Check if there is any work to do. There are three cases:
**
** a) An unlock operation where there are locks to unlock,
** b) An shared lock where the requested lock is not already held
** c) An exclusive lock where the requested lock is not already held
**
** The SQLite core never requests an exclusive lock that it already holds.
** This is assert()ed below.
*/
assert( flags!=(SQLITE_SHM_EXCLUSIVE|SQLITE_SHM_LOCK)
|| 0==(p->exclMask & mask)
);
if( ((flags & SQLITE_SHM_UNLOCK) && ((p->exclMask|p->sharedMask) & mask))
|| (flags==(SQLITE_SHM_SHARED|SQLITE_SHM_LOCK) && 0==(p->sharedMask & mask))
|| (flags==(SQLITE_SHM_EXCLUSIVE|SQLITE_SHM_LOCK))
){
/* Take the required mutexes. In SETLK_TIMEOUT mode (blocking locks), if
** this is an attempt on an exclusive lock use sqlite3_mutex_try(). If any
** other thread is holding this mutex, then it is either holding or about
** to hold a lock exclusive to the one being requested, and we may
** therefore return SQLITE_BUSY to the caller.
**
** Doing this prevents some deadlock scenarios. For example, thread 1 may
** be a checkpointer blocked waiting on the WRITER lock. And thread 2
** may be a normal SQL client upgrading to a write transaction. In this
** case thread 2 does a non-blocking request for the WRITER lock. But -
** if it were to use sqlite3_mutex_enter() then it would effectively
** become a (doomed) blocking request, as thread 2 would block until thread
** 1 obtained WRITER and released the mutex. Since thread 2 already holds
** a lock on a read-locking slot at this point, this breaks the
** anti-deadlock rules (see above). */
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
int iMutex;
for(iMutex=ofst; iMutex<ofst+n; iMutex++){
if( flags==(SQLITE_SHM_LOCK|SQLITE_SHM_EXCLUSIVE) ){
rc = sqlite3_mutex_try(pShmNode->aMutex[iMutex]);
if( rc!=SQLITE_OK ) goto leave_shmnode_mutexes;
}else{
sqlite3_mutex_enter(pShmNode->aMutex[iMutex]);
}
}
#else
sqlite3_mutex_enter(pShmNode->pShmMutex);
#endif
if( ALWAYS(rc==SQLITE_OK) ){
if( flags & SQLITE_SHM_UNLOCK ){
/* Case (a) - unlock. */
int bUnlock = 1;
assert( (p->exclMask & p->sharedMask)==0 );
assert( !(flags & SQLITE_SHM_EXCLUSIVE) || (p->exclMask & mask)==mask );
assert( !(flags & SQLITE_SHM_SHARED) || (p->sharedMask & mask)==mask );
/* If this is a SHARED lock being unlocked, it is possible that other
** clients within this process are holding the same SHARED lock. In
** this case, set bUnlock to 0 so that the posix lock is not removed
** from the file-descriptor below. */
if( flags & SQLITE_SHM_SHARED ){
assert( n==1 );
assert( aLock[ofst]>=1 );
if( aLock[ofst]>1 ){
bUnlock = 0;
aLock[ofst]--;
p->sharedMask &= ~mask;
}
}
if( bUnlock ){
rc = unixShmSystemLock(pDbFd, F_UNLCK, ofst+UNIX_SHM_BASE, n);
if( rc==SQLITE_OK ){
memset(&aLock[ofst], 0, sizeof(int)*n);
p->sharedMask &= ~mask;
p->exclMask &= ~mask;
}
}
}else if( flags & SQLITE_SHM_SHARED ){
/* Case (b) - a shared lock. */
if( aLock[ofst]<0 ){
/* An exclusive lock is held by some other connection. BUSY. */
rc = SQLITE_BUSY;
}else if( aLock[ofst]==0 ){
rc = unixShmSystemLock(pDbFd, F_RDLCK, ofst+UNIX_SHM_BASE, n);
}
/* Get the local shared locks */
if( rc==SQLITE_OK ){
p->sharedMask |= mask;
aLock[ofst]++;
}
}else{
/* Case (c) - an exclusive lock. */
int ii;
assert( flags==(SQLITE_SHM_LOCK|SQLITE_SHM_EXCLUSIVE) );
assert( (p->sharedMask & mask)==0 );
assert( (p->exclMask & mask)==0 );
/* Make sure no sibling connections hold locks that will block this
** lock. If any do, return SQLITE_BUSY right away. */
for(ii=ofst; ii<ofst+n; ii++){
if( aLock[ii] ){
rc = SQLITE_BUSY;
break;
}
}
/* Get the exclusive locks at the system level. Then if successful
** also update the in-memory values. */
if( rc==SQLITE_OK ){
rc = unixShmSystemLock(pDbFd, F_WRLCK, ofst+UNIX_SHM_BASE, n);
if( rc==SQLITE_OK ){
p->exclMask |= mask;
for(ii=ofst; ii<ofst+n; ii++){
aLock[ii] = -1;
}
}
}
}
assert( assertLockingArrayOk(pShmNode) );
}
/* Drop the mutexes acquired above. */
#ifdef SQLITE_ENABLE_SETLK_TIMEOUT
leave_shmnode_mutexes:
for(iMutex--; iMutex>=ofst; iMutex--){
sqlite3_mutex_leave(pShmNode->aMutex[iMutex]);
}
#else
sqlite3_mutex_leave(pShmNode->pShmMutex);
#endif
}
OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
p->id, osGetpid(0), p->sharedMask, p->exclMask));
return rc;
}
/*
** Implement a memory barrier or memory fence on shared memory.
**
** All loads and stores begun before the barrier must complete before
** any load or store begun after the barrier.
*/
static void unixShmBarrier(
sqlite3_file *fd /* Database file holding the shared memory */
){
UNUSED_PARAMETER(fd);
sqlite3MemoryBarrier(); /* compiler-defined memory barrier */
assert( fd->pMethods->xLock==nolockLock
|| unixFileMutexNotheld((unixFile*)fd)
);
unixEnterMutex(); /* Also mutex, for redundancy */
unixLeaveMutex();
}
/*
** Close a connection to shared-memory. Delete the underlying
** storage if deleteFlag is true.
**
** If there is no shared memory associated with the connection then this
** routine is a harmless no-op.
*/
static int unixShmUnmap(
sqlite3_file *fd, /* The underlying database file */
int deleteFlag /* Delete shared-memory if true */
){
unixShm *p; /* The connection to be closed */
unixShmNode *pShmNode; /* The underlying shared-memory file */
unixShm **pp; /* For looping over sibling connections */
unixFile *pDbFd; /* The underlying database file */
pDbFd = (unixFile*)fd;
p = pDbFd->pShm;
if( p==0 ) return SQLITE_OK;
pShmNode = p->pShmNode;
assert( pShmNode==pDbFd->pInode->pShmNode );
assert( pShmNode->pInode==pDbFd->pInode );
/* Remove connection p from the set of connections associated
** with pShmNode */
sqlite3_mutex_enter(pShmNode->pShmMutex);
for(pp=&pShmNode->pFirst; (*pp)!=p; pp = &(*pp)->pNext){}
*pp = p->pNext;
/* Free the connection p */
sqlite3_free(p);
pDbFd->pShm = 0;
sqlite3_mutex_leave(pShmNode->pShmMutex);
/* If pShmNode->nRef has reached 0, then close the underlying
** shared-memory file, too */
assert( unixFileMutexNotheld(pDbFd) );
unixEnterMutex();
assert( pShmNode->nRef>0 );
pShmNode->nRef--;
if( pShmNode->nRef==0 ){
if( deleteFlag && pShmNode->hShm>=0 ){
osUnlink(pShmNode->zFilename);
}
unixShmPurge(pDbFd);
}
unixLeaveMutex();
return SQLITE_OK;
}
#else
# define unixShmMap 0
# define unixShmLock 0
# define unixShmBarrier 0
# define unixShmUnmap 0
#endif /* #ifndef SQLITE_OMIT_SHARED_MEM */
#if SQLITE_MAX_MMAP_SIZE>0
/*
** If it is currently memory mapped, unmap file pFd.
*/
static void unixUnmapfile(unixFile *pFd){
assert( pFd->nFetchOut==0 );
if( pFd->pMapRegion ){
osMunmap(pFd->pMapRegion, pFd->mmapSizeActual);
pFd->pMapRegion = 0;
pFd->mmapSize = 0;
pFd->mmapSizeActual = 0;
}
}
/*
** Attempt to set the size of the memory mapping maintained by file
** descriptor pFd to nNew bytes. Any existing mapping is discarded.
**
** If successful, this function sets the following variables:
**
** unixFile.pMapRegion
** unixFile.mmapSize
** unixFile.mmapSizeActual
**
** If unsuccessful, an error message is logged via sqlite3_log() and
** the three variables above are zeroed. In this case SQLite should
** continue accessing the database using the xRead() and xWrite()
** methods.
*/
static void unixRemapfile(
unixFile *pFd, /* File descriptor object */
i64 nNew /* Required mapping size */
){
const char *zErr = "mmap";
int h = pFd->h; /* File descriptor open on db file */
u8 *pOrig = (u8 *)pFd->pMapRegion; /* Pointer to current file mapping */
i64 nOrig = pFd->mmapSizeActual; /* Size of pOrig region in bytes */
u8 *pNew = 0; /* Location of new mapping */
int flags = PROT_READ; /* Flags to pass to mmap() */
assert( pFd->nFetchOut==0 );
assert( nNew>pFd->mmapSize );
assert( nNew<=pFd->mmapSizeMax );
assert( nNew>0 );
assert( pFd->mmapSizeActual>=pFd->mmapSize );
assert( MAP_FAILED!=0 );
#ifdef SQLITE_MMAP_READWRITE
if( (pFd->ctrlFlags & UNIXFILE_RDONLY)==0 ) flags |= PROT_WRITE;
#endif
if( pOrig ){
#if HAVE_MREMAP
i64 nReuse = pFd->mmapSize;
#else
const int szSyspage = osGetpagesize();
i64 nReuse = (pFd->mmapSize & ~(szSyspage-1));
#endif
u8 *pReq = &pOrig[nReuse];
/* Unmap any pages of the existing mapping that cannot be reused. */
if( nReuse!=nOrig ){
osMunmap(pReq, nOrig-nReuse);
}
#if HAVE_MREMAP
pNew = osMremap(pOrig, nReuse, nNew, MREMAP_MAYMOVE);
zErr = "mremap";
#else
pNew = osMmap(pReq, nNew-nReuse, flags, MAP_SHARED, h, nReuse);
if( pNew!=MAP_FAILED ){
if( pNew!=pReq ){
osMunmap(pNew, nNew - nReuse);
pNew = 0;
}else{
pNew = pOrig;
}
}
#endif
/* The attempt to extend the existing mapping failed. Free it. */
if( pNew==MAP_FAILED || pNew==0 ){
osMunmap(pOrig, nReuse);
}
}
/* If pNew is still NULL, try to create an entirely new mapping. */
if( pNew==0 ){
pNew = osMmap(0, nNew, flags, MAP_SHARED, h, 0);
}
if( pNew==MAP_FAILED ){
pNew = 0;
nNew = 0;
unixLogError(SQLITE_OK, zErr, pFd->zPath);
/* If the mmap() above failed, assume that all subsequent mmap() calls
** will probably fail too. Fall back to using xRead/xWrite exclusively
** in this case. */
pFd->mmapSizeMax = 0;
}
pFd->pMapRegion = (void *)pNew;
pFd->mmapSize = pFd->mmapSizeActual = nNew;
}
/*
** Memory map or remap the file opened by file-descriptor pFd (if the file
** is already mapped, the existing mapping is replaced by the new). Or, if
** there already exists a mapping for this file, and there are still
** outstanding xFetch() references to it, this function is a no-op.
**
** If parameter nByte is non-negative, then it is the requested size of
** the mapping to create. Otherwise, if nByte is less than zero, then the
** requested size is the size of the file on disk. The actual size of the
** created mapping is either the requested size or the value configured
** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
**
** SQLITE_OK is returned if no error occurs (even if the mapping is not
** recreated as a result of outstanding references) or an SQLite error
** code otherwise.
*/
static int unixMapfile(unixFile *pFd, i64 nMap){
assert( nMap>=0 || pFd->nFetchOut==0 );
assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
if( pFd->nFetchOut>0 ) return SQLITE_OK;
if( nMap<0 ){
struct stat statbuf; /* Low-level file information */
if( osFstat(pFd->h, &statbuf) ){
return SQLITE_IOERR_FSTAT;
}
nMap = statbuf.st_size;
}
if( nMap>pFd->mmapSizeMax ){
nMap = pFd->mmapSizeMax;
}
assert( nMap>0 || (pFd->mmapSize==0 && pFd->pMapRegion==0) );
if( nMap!=pFd->mmapSize ){
unixRemapfile(pFd, nMap);
}
return SQLITE_OK;
}
#endif /* SQLITE_MAX_MMAP_SIZE>0 */
/*
** If possible, return a pointer to a mapping of file fd starting at offset
** iOff. The mapping must be valid for at least nAmt bytes.
**
** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
** Finally, if an error does occur, return an SQLite error code. The final
** value of *pp is undefined in this case.
**
** If this function does return a pointer, the caller must eventually
** release the reference by calling unixUnfetch().
*/
static int unixFetch(sqlite3_file *fd, i64 iOff, int nAmt, void **pp){
#if SQLITE_MAX_MMAP_SIZE>0
unixFile *pFd = (unixFile *)fd; /* The underlying database file */
#endif
*pp = 0;
#if SQLITE_MAX_MMAP_SIZE>0
if( pFd->mmapSizeMax>0 ){
/* Ensure that there is always at least a 256 byte buffer of addressable
** memory following the returned page. If the database is corrupt,
** SQLite may overread the page slightly (in practice only a few bytes,
** but 256 is safe, round, number). */
const int nEofBuffer = 256;
if( pFd->pMapRegion==0 ){
int rc = unixMapfile(pFd, -1);
if( rc!=SQLITE_OK ) return rc;
}
if( pFd->mmapSize >= (iOff+nAmt+nEofBuffer) ){
*pp = &((u8 *)pFd->pMapRegion)[iOff];
pFd->nFetchOut++;
}
}
#endif
return SQLITE_OK;
}
/*
** If the third argument is non-NULL, then this function releases a
** reference obtained by an earlier call to unixFetch(). The second
** argument passed to this function must be the same as the corresponding
** argument that was passed to the unixFetch() invocation.
**
** Or, if the third argument is NULL, then this function is being called
** to inform the VFS layer that, according to POSIX, any existing mapping
** may now be invalid and should be unmapped.
*/
static int unixUnfetch(sqlite3_file *fd, i64 iOff, void *p){
#if SQLITE_MAX_MMAP_SIZE>0
unixFile *pFd = (unixFile *)fd; /* The underlying database file */
UNUSED_PARAMETER(iOff);
/* If p==0 (unmap the entire file) then there must be no outstanding
** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
** then there must be at least one outstanding. */
assert( (p==0)==(pFd->nFetchOut==0) );
/* If p!=0, it must match the iOff value. */
assert( p==0 || p==&((u8 *)pFd->pMapRegion)[iOff] );
if( p ){
pFd->nFetchOut--;
}else{
unixUnmapfile(pFd);
}
assert( pFd->nFetchOut>=0 );
#else
UNUSED_PARAMETER(fd);
UNUSED_PARAMETER(p);
UNUSED_PARAMETER(iOff);
#endif
return SQLITE_OK;
}
/*
** Here ends the implementation of all sqlite3_file methods.
**
********************** End sqlite3_file Methods *******************************
******************************************************************************/
/*
** This division contains definitions of sqlite3_io_methods objects that
** implement various file locking strategies. It also contains definitions
** of "finder" functions. A finder-function is used to locate the appropriate
** sqlite3_io_methods object for a particular database file. The pAppData
** field of the sqlite3_vfs VFS objects are initialized to be pointers to
** the correct finder-function for that VFS.
**
** Most finder functions return a pointer to a fixed sqlite3_io_methods
** object. The only interesting finder-function is autolockIoFinder, which
** looks at the filesystem type and tries to guess the best locking
** strategy from that.
**
** For finder-function F, two objects are created:
**
** (1) The real finder-function named "FImpt()".
**
** (2) A constant pointer to this function named just "F".
**
**
** A pointer to the F pointer is used as the pAppData value for VFS
** objects. We have to do this instead of letting pAppData point
** directly at the finder-function since C90 rules prevent a void*
** from be cast into a function pointer.
**
**
** Each instance of this macro generates two objects:
**
** * A constant sqlite3_io_methods object call METHOD that has locking
** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
**
** * An I/O method finder function called FINDER that returns a pointer
** to the METHOD object in the previous bullet.
*/
#define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \
static const sqlite3_io_methods METHOD = { \
VERSION, /* iVersion */ \
CLOSE, /* xClose */ \
unixRead, /* xRead */ \
unixWrite, /* xWrite */ \
unixTruncate, /* xTruncate */ \
unixSync, /* xSync */ \
unixFileSize, /* xFileSize */ \
LOCK, /* xLock */ \
UNLOCK, /* xUnlock */ \
CKLOCK, /* xCheckReservedLock */ \
unixFileControl, /* xFileControl */ \
unixSectorSize, /* xSectorSize */ \
unixDeviceCharacteristics, /* xDeviceCapabilities */ \
SHMMAP, /* xShmMap */ \
unixShmLock, /* xShmLock */ \
unixShmBarrier, /* xShmBarrier */ \
unixShmUnmap, /* xShmUnmap */ \
unixFetch, /* xFetch */ \
unixUnfetch, /* xUnfetch */ \
}; \
static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
return &METHOD; \
} \
static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
= FINDER##Impl;
/*
** Here are all of the sqlite3_io_methods objects for each of the
** locking strategies. Functions that return pointers to these methods
** are also created.
*/
IOMETHODS(
posixIoFinder, /* Finder function name */
posixIoMethods, /* sqlite3_io_methods object name */
3, /* shared memory and mmap are enabled */
unixClose, /* xClose method */
unixLock, /* xLock method */
unixUnlock, /* xUnlock method */
unixCheckReservedLock, /* xCheckReservedLock method */
unixShmMap /* xShmMap method */
)
IOMETHODS(
nolockIoFinder, /* Finder function name */
nolockIoMethods, /* sqlite3_io_methods object name */
3, /* shared memory and mmap are enabled */
nolockClose, /* xClose method */
nolockLock, /* xLock method */
nolockUnlock, /* xUnlock method */
nolockCheckReservedLock, /* xCheckReservedLock method */
0 /* xShmMap method */
)
IOMETHODS(
dotlockIoFinder, /* Finder function name */
dotlockIoMethods, /* sqlite3_io_methods object name */
1, /* shared memory is disabled */
dotlockClose, /* xClose method */
dotlockLock, /* xLock method */
dotlockUnlock, /* xUnlock method */
dotlockCheckReservedLock, /* xCheckReservedLock method */
0 /* xShmMap method */
)
#if SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
flockIoFinder, /* Finder function name */
flockIoMethods, /* sqlite3_io_methods object name */
1, /* shared memory is disabled */
flockClose, /* xClose method */
flockLock, /* xLock method */
flockUnlock, /* xUnlock method */
flockCheckReservedLock, /* xCheckReservedLock method */
0 /* xShmMap method */
)
#endif
#if OS_VXWORKS
IOMETHODS(
semIoFinder, /* Finder function name */
semIoMethods, /* sqlite3_io_methods object name */
1, /* shared memory is disabled */
semXClose, /* xClose method */
semXLock, /* xLock method */
semXUnlock, /* xUnlock method */
semXCheckReservedLock, /* xCheckReservedLock method */
0 /* xShmMap method */
)
#endif
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
afpIoFinder, /* Finder function name */
afpIoMethods, /* sqlite3_io_methods object name */
1, /* shared memory is disabled */
afpClose, /* xClose method */
afpLock, /* xLock method */
afpUnlock, /* xUnlock method */
afpCheckReservedLock, /* xCheckReservedLock method */
0 /* xShmMap method */
)
#endif
/*
** The proxy locking method is a "super-method" in the sense that it
** opens secondary file descriptors for the conch and lock files and
** it uses proxy, dot-file, AFP, and flock() locking methods on those
** secondary files. For this reason, the division that implements
** proxy locking is located much further down in the file. But we need
** to go ahead and define the sqlite3_io_methods and finder function
** for proxy locking here. So we forward declare the I/O methods.
*/
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
static int proxyClose(sqlite3_file*);
static int proxyLock(sqlite3_file*, int);
static int proxyUnlock(sqlite3_file*, int);
static int proxyCheckReservedLock(sqlite3_file*, int*);
IOMETHODS(
proxyIoFinder, /* Finder function name */
proxyIoMethods, /* sqlite3_io_methods object name */
1, /* shared memory is disabled */
proxyClose, /* xClose method */
proxyLock, /* xLock method */
proxyUnlock, /* xUnlock method */
proxyCheckReservedLock, /* xCheckReservedLock method */
0 /* xShmMap method */
)
#endif
/* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
IOMETHODS(
nfsIoFinder, /* Finder function name */
nfsIoMethods, /* sqlite3_io_methods object name */
1, /* shared memory is disabled */
unixClose, /* xClose method */
unixLock, /* xLock method */
nfsUnlock, /* xUnlock method */
unixCheckReservedLock, /* xCheckReservedLock method */
0 /* xShmMap method */
)
#endif
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
/*
** This "finder" function attempts to determine the best locking strategy
** for the database file "filePath". It then returns the sqlite3_io_methods
** object that implements that strategy.
**
** This is for MacOSX only.
*/
static const sqlite3_io_methods *autolockIoFinderImpl(
const char *filePath, /* name of the database file */
unixFile *pNew /* open file object for the database file */
){
static const struct Mapping {
const char *zFilesystem; /* Filesystem type name */
const sqlite3_io_methods *pMethods; /* Appropriate locking method */
} aMap[] = {
{ "hfs", &posixIoMethods },
{ "ufs", &posixIoMethods },
{ "afpfs", &afpIoMethods },
{ "smbfs", &afpIoMethods },
{ "webdav", &nolockIoMethods },
{ 0, 0 }
};
int i;
struct statfs fsInfo;
struct flock lockInfo;
if( !filePath ){
/* If filePath==NULL that means we are dealing with a transient file
** that does not need to be locked. */
return &nolockIoMethods;
}
if( statfs(filePath, &fsInfo) != -1 ){
if( fsInfo.f_flags & MNT_RDONLY ){
return &nolockIoMethods;
}
for(i=0; aMap[i].zFilesystem; i++){
if( strcmp(fsInfo.f_fstypename, aMap[i].zFilesystem)==0 ){
return aMap[i].pMethods;
}
}
}
/* Default case. Handles, amongst others, "nfs".
** Test byte-range lock using fcntl(). If the call succeeds,
** assume that the file-system supports POSIX style locks.
*/
lockInfo.l_len = 1;
lockInfo.l_start = 0;
lockInfo.l_whence = SEEK_SET;
lockInfo.l_type = F_RDLCK;
if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
if( strcmp(fsInfo.f_fstypename, "nfs")==0 ){
return &nfsIoMethods;
} else {
return &posixIoMethods;
}
}else{
return &dotlockIoMethods;
}
}
static const sqlite3_io_methods
*(*const autolockIoFinder)(const char*,unixFile*) = autolockIoFinderImpl;
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
#if OS_VXWORKS
/*
** This "finder" function for VxWorks checks to see if posix advisory
** locking works. If it does, then that is what is used. If it does not
** work, then fallback to named semaphore locking.
*/
static const sqlite3_io_methods *vxworksIoFinderImpl(
const char *filePath, /* name of the database file */
unixFile *pNew /* the open file object */
){
struct flock lockInfo;
if( !filePath ){
/* If filePath==NULL that means we are dealing with a transient file
** that does not need to be locked. */
return &nolockIoMethods;
}
/* Test if fcntl() is supported and use POSIX style locks.
** Otherwise fall back to the named semaphore method.
*/
lockInfo.l_len = 1;
lockInfo.l_start = 0;
lockInfo.l_whence = SEEK_SET;
lockInfo.l_type = F_RDLCK;
if( osFcntl(pNew->h, F_GETLK, &lockInfo)!=-1 ) {
return &posixIoMethods;
}else{
return &semIoMethods;
}
}
static const sqlite3_io_methods
*(*const vxworksIoFinder)(const char*,unixFile*) = vxworksIoFinderImpl;
#endif /* OS_VXWORKS */
/*
** An abstract type for a pointer to an IO method finder function:
*/
typedef const sqlite3_io_methods *(*finder_type)(const char*,unixFile*);
/****************************************************************************
**************************** sqlite3_vfs methods ****************************
**
** This division contains the implementation of methods on the
** sqlite3_vfs object.
*/
/*
** Initialize the contents of the unixFile structure pointed to by pId.
*/
static int fillInUnixFile(
sqlite3_vfs *pVfs, /* Pointer to vfs object */
int h, /* Open file descriptor of file being opened */
sqlite3_file *pId, /* Write to the unixFile structure here */
const char *zFilename, /* Name of the file being opened */
int ctrlFlags /* Zero or more UNIXFILE_* values */
){
const sqlite3_io_methods *pLockingStyle;
unixFile *pNew = (unixFile *)pId;
int rc = SQLITE_OK;
assert( pNew->pInode==NULL );
/* No locking occurs in temporary files */
assert( zFilename!=0 || (ctrlFlags & UNIXFILE_NOLOCK)!=0 );
OSTRACE(("OPEN %-3d %s\n", h, zFilename));
pNew->h = h;
pNew->pVfs = pVfs;
pNew->zPath = zFilename;
pNew->ctrlFlags = (u8)ctrlFlags;
#if SQLITE_MAX_MMAP_SIZE>0
pNew->mmapSizeMax = sqlite3GlobalConfig.szMmap;
#endif
if( sqlite3_uri_boolean(((ctrlFlags & UNIXFILE_URI) ? zFilename : 0),
"psow", SQLITE_POWERSAFE_OVERWRITE) ){
pNew->ctrlFlags |= UNIXFILE_PSOW;
}
if( strcmp(pVfs->zName,"unix-excl")==0 ){
pNew->ctrlFlags |= UNIXFILE_EXCL;
}
#if OS_VXWORKS
pNew->pId = vxworksFindFileId(zFilename);
if( pNew->pId==0 ){
ctrlFlags |= UNIXFILE_NOLOCK;
rc = SQLITE_NOMEM_BKPT;
}
#endif
if( ctrlFlags & UNIXFILE_NOLOCK ){
pLockingStyle = &nolockIoMethods;
}else{
pLockingStyle = (**(finder_type*)pVfs->pAppData)(zFilename, pNew);
#if SQLITE_ENABLE_LOCKING_STYLE
/* Cache zFilename in the locking context (AFP and dotlock override) for
** proxyLock activation is possible (remote proxy is based on db name)
** zFilename remains valid until file is closed, to support */
pNew->lockingContext = (void*)zFilename;
#endif
}
if( pLockingStyle == &posixIoMethods
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
|| pLockingStyle == &nfsIoMethods
#endif
){
unixEnterMutex();
rc = findInodeInfo(pNew, &pNew->pInode);
if( rc!=SQLITE_OK ){
/* If an error occurred in findInodeInfo(), close the file descriptor
** immediately, before releasing the mutex. findInodeInfo() may fail
** in two scenarios:
**
** (a) A call to fstat() failed.
** (b) A malloc failed.
**
** Scenario (b) may only occur if the process is holding no other
** file descriptors open on the same file. If there were other file
** descriptors on this file, then no malloc would be required by
** findInodeInfo(). If this is the case, it is quite safe to close
** handle h - as it is guaranteed that no posix locks will be released
** by doing so.
**
** If scenario (a) caused the error then things are not so safe. The
** implicit assumption here is that if fstat() fails, things are in
** such bad shape that dropping a lock or two doesn't matter much.
*/
robust_close(pNew, h, __LINE__);
h = -1;
}
unixLeaveMutex();
}
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
else if( pLockingStyle == &afpIoMethods ){
/* AFP locking uses the file path so it needs to be included in
** the afpLockingContext.
*/
afpLockingContext *pCtx;
pNew->lockingContext = pCtx = sqlite3_malloc64( sizeof(*pCtx) );
if( pCtx==0 ){
rc = SQLITE_NOMEM_BKPT;
}else{
/* NB: zFilename exists and remains valid until the file is closed
** according to requirement F11141. So we do not need to make a
** copy of the filename. */
pCtx->dbPath = zFilename;
pCtx->reserved = 0;
srandomdev();
unixEnterMutex();
rc = findInodeInfo(pNew, &pNew->pInode);
if( rc!=SQLITE_OK ){
sqlite3_free(pNew->lockingContext);
robust_close(pNew, h, __LINE__);
h = -1;
}
unixLeaveMutex();
}
}
#endif
else if( pLockingStyle == &dotlockIoMethods ){
/* Dotfile locking uses the file path so it needs to be included in
** the dotlockLockingContext
*/
char *zLockFile;
int nFilename;
assert( zFilename!=0 );
nFilename = (int)strlen(zFilename) + 6;
zLockFile = (char *)sqlite3_malloc64(nFilename);
if( zLockFile==0 ){
rc = SQLITE_NOMEM_BKPT;
}else{
sqlite3_snprintf(nFilename, zLockFile, "%s" DOTLOCK_SUFFIX, zFilename);
}
pNew->lockingContext = zLockFile;
}
#if OS_VXWORKS
else if( pLockingStyle == &semIoMethods ){
/* Named semaphore locking uses the file path so it needs to be
** included in the semLockingContext
*/
unixEnterMutex();
rc = findInodeInfo(pNew, &pNew->pInode);
if( (rc==SQLITE_OK) && (pNew->pInode->pSem==NULL) ){
char *zSemName = pNew->pInode->aSemName;
int n;
sqlite3_snprintf(MAX_PATHNAME, zSemName, "/%s.sem",
pNew->pId->zCanonicalName);
for( n=1; zSemName[n]; n++ )
if( zSemName[n]=='/' ) zSemName[n] = '_';
pNew->pInode->pSem = sem_open(zSemName, O_CREAT, 0666, 1);
if( pNew->pInode->pSem == SEM_FAILED ){
rc = SQLITE_NOMEM_BKPT;
pNew->pInode->aSemName[0] = '\0';
}
}
unixLeaveMutex();
}
#endif
storeLastErrno(pNew, 0);
#if OS_VXWORKS
if( rc!=SQLITE_OK ){
if( h>=0 ) robust_close(pNew, h, __LINE__);
h = -1;
osUnlink(zFilename);
pNew->ctrlFlags |= UNIXFILE_DELETE;
}
#endif
if( rc!=SQLITE_OK ){
if( h>=0 ) robust_close(pNew, h, __LINE__);
}else{
pId->pMethods = pLockingStyle;
OpenCounter(+1);
verifyDbFile(pNew);
}
return rc;
}
/*
** Directories to consider for temp files.
*/
static const char *azTempDirs[] = {
0,
0,
"/var/tmp",
"/usr/tmp",
"/tmp",
"."
};
/*
** Initialize first two members of azTempDirs[] array.
*/
static void unixTempFileInit(void){
azTempDirs[0] = getenv("SQLITE_TMPDIR");
azTempDirs[1] = getenv("TMPDIR");
}
/*
** Return the name of a directory in which to put temporary files.
** If no suitable temporary file directory can be found, return NULL.
*/
static const char *unixTempFileDir(void){
unsigned int i = 0;
struct stat buf;
const char *zDir = sqlite3_temp_directory;
while(1){
if( zDir!=0
&& osStat(zDir, &buf)==0
&& S_ISDIR(buf.st_mode)
&& osAccess(zDir, 03)==0
){
return zDir;
}
if( i>=sizeof(azTempDirs)/sizeof(azTempDirs[0]) ) break;
zDir = azTempDirs[i++];
}
return 0;
}
/*
** Create a temporary file name in zBuf. zBuf must be allocated
** by the calling process and must be big enough to hold at least
** pVfs->mxPathname bytes.
*/
static int unixGetTempname(int nBuf, char *zBuf){
const char *zDir;
int iLimit = 0;
int rc = SQLITE_OK;
/* It's odd to simulate an io-error here, but really this is just
** using the io-error infrastructure to test that SQLite handles this
** function failing.
*/
zBuf[0] = 0;
SimulateIOError( return SQLITE_IOERR );
sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
zDir = unixTempFileDir();
if( zDir==0 ){
rc = SQLITE_IOERR_GETTEMPPATH;
}else{
do{
u64 r;
sqlite3_randomness(sizeof(r), &r);
assert( nBuf>2 );
zBuf[nBuf-2] = 0;
sqlite3_snprintf(nBuf, zBuf, "%s/"SQLITE_TEMP_FILE_PREFIX"%llx%c",
zDir, r, 0);
if( zBuf[nBuf-2]!=0 || (iLimit++)>10 ){
rc = SQLITE_ERROR;
break;
}
}while( osAccess(zBuf,0)==0 );
}
sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_TEMPDIR));
return rc;
}
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
/*
** Routine to transform a unixFile into a proxy-locking unixFile.
** Implementation in the proxy-lock division, but used by unixOpen()
** if SQLITE_PREFER_PROXY_LOCKING is defined.
*/
static int proxyTransformUnixFile(unixFile*, const char*);
#endif
/*
** Search for an unused file descriptor that was opened on the database
** file (not a journal or super-journal file) identified by pathname
** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
** argument to this function.
**
** Such a file descriptor may exist if a database connection was closed
** but the associated file descriptor could not be closed because some
** other file descriptor open on the same file is holding a file-lock.
** Refer to comments in the unixClose() function and the lengthy comment
** describing "Posix Advisory Locking" at the start of this file for
** further details. Also, ticket #4018.
**
** If a suitable file descriptor is found, then it is returned. If no
** such file descriptor is located, -1 is returned.
*/
static UnixUnusedFd *findReusableFd(const char *zPath, int flags){
UnixUnusedFd *pUnused = 0;
/* Do not search for an unused file descriptor on vxworks. Not because
** vxworks would not benefit from the change (it might, we're not sure),
** but because no way to test it is currently available. It is better
** not to risk breaking vxworks support for the sake of such an obscure
** feature. */
#if !OS_VXWORKS
struct stat sStat; /* Results of stat() call */
unixEnterMutex();
/* A stat() call may fail for various reasons. If this happens, it is
** almost certain that an open() call on the same path will also fail.
** For this reason, if an error occurs in the stat() call here, it is
** ignored and -1 is returned. The caller will try to open a new file
** descriptor on the same path, fail, and return an error to SQLite.
**
** Even if a subsequent open() call does succeed, the consequences of
** not searching for a reusable file descriptor are not dire. */
if( inodeList!=0 && 0==osStat(zPath, &sStat) ){
unixInodeInfo *pInode;
pInode = inodeList;
while( pInode && (pInode->fileId.dev!=sStat.st_dev
|| pInode->fileId.ino!=(u64)sStat.st_ino) ){
pInode = pInode->pNext;
}
if( pInode ){
UnixUnusedFd **pp;
assert( sqlite3_mutex_notheld(pInode->pLockMutex) );
sqlite3_mutex_enter(pInode->pLockMutex);
flags &= (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE);
for(pp=&pInode->pUnused; *pp && (*pp)->flags!=flags; pp=&((*pp)->pNext));
pUnused = *pp;
if( pUnused ){
*pp = pUnused->pNext;
}
sqlite3_mutex_leave(pInode->pLockMutex);
}
}
unixLeaveMutex();
#endif /* if !OS_VXWORKS */
return pUnused;
}
/*
** Find the mode, uid and gid of file zFile.
*/
static int getFileMode(
const char *zFile, /* File name */
mode_t *pMode, /* OUT: Permissions of zFile */
uid_t *pUid, /* OUT: uid of zFile. */
gid_t *pGid /* OUT: gid of zFile. */
){
struct stat sStat; /* Output of stat() on database file */
int rc = SQLITE_OK;
if( 0==osStat(zFile, &sStat) ){
*pMode = sStat.st_mode & 0777;
*pUid = sStat.st_uid;
*pGid = sStat.st_gid;
}else{
rc = SQLITE_IOERR_FSTAT;
}
return rc;
}
/*
** This function is called by unixOpen() to determine the unix permissions
** to create new files with. If no error occurs, then SQLITE_OK is returned
** and a value suitable for passing as the third argument to open(2) is
** written to *pMode. If an IO error occurs, an SQLite error code is
** returned and the value of *pMode is not modified.
**
** In most cases, this routine sets *pMode to 0, which will become
** an indication to robust_open() to create the file using
** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
** But if the file being opened is a WAL or regular journal file, then
** this function queries the file-system for the permissions on the
** corresponding database file and sets *pMode to this value. Whenever
** possible, WAL and journal files are created using the same permissions
** as the associated database file.
**
** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
** original filename is unavailable. But 8_3_NAMES is only used for
** FAT filesystems and permissions do not matter there, so just use
** the default permissions. In 8_3_NAMES mode, leave *pMode set to zero.
*/
static int findCreateFileMode(
const char *zPath, /* Path of file (possibly) being created */
int flags, /* Flags passed as 4th argument to xOpen() */
mode_t *pMode, /* OUT: Permissions to open file with */
uid_t *pUid, /* OUT: uid to set on the file */
gid_t *pGid /* OUT: gid to set on the file */
){
int rc = SQLITE_OK; /* Return Code */
*pMode = 0;
*pUid = 0;
*pGid = 0;
if( flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL) ){
char zDb[MAX_PATHNAME+1]; /* Database file path */
int nDb; /* Number of valid bytes in zDb */
/* zPath is a path to a WAL or journal file. The following block derives
** the path to the associated database file from zPath. This block handles
** the following naming conventions:
**
** "<path to db>-journal"
** "<path to db>-wal"
** "<path to db>-journalNN"
** "<path to db>-walNN"
**
** where NN is a decimal number. The NN naming schemes are
** used by the test_multiplex.c module.
**
** In normal operation, the journal file name will always contain
** a '-' character. However in 8+3 filename mode, or if a corrupt
** rollback journal specifies a super-journal with a goofy name, then
** the '-' might be missing or the '-' might be the first character in
** the filename. In that case, just return SQLITE_OK with *pMode==0.
*/
nDb = sqlite3Strlen30(zPath) - 1;
while( nDb>0 && zPath[nDb]!='.' ){
if( zPath[nDb]=='-' ){
memcpy(zDb, zPath, nDb);
zDb[nDb] = '\0';
rc = getFileMode(zDb, pMode, pUid, pGid);
break;
}
nDb--;
}
}else if( flags & SQLITE_OPEN_DELETEONCLOSE ){
*pMode = 0600;
}else if( flags & SQLITE_OPEN_URI ){
/* If this is a main database file and the file was opened using a URI
** filename, check for the "modeof" parameter. If present, interpret
** its value as a filename and try to copy the mode, uid and gid from
** that file. */
const char *z = sqlite3_uri_parameter(zPath, "modeof");
if( z ){
rc = getFileMode(z, pMode, pUid, pGid);
}
}
return rc;
}
/*
** Open the file zPath.
**
** Previously, the SQLite OS layer used three functions in place of this
** one:
**
** sqlite3OsOpenReadWrite();
** sqlite3OsOpenReadOnly();
** sqlite3OsOpenExclusive();
**
** These calls correspond to the following combinations of flags:
**
** ReadWrite() -> (READWRITE | CREATE)
** ReadOnly() -> (READONLY)
** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
**
** The old OpenExclusive() accepted a boolean argument - "delFlag". If
** true, the file was configured to be automatically deleted when the
** file handle closed. To achieve the same effect using this new
** interface, add the DELETEONCLOSE flag to those specified above for
** OpenExclusive().
*/
static int unixOpen(
sqlite3_vfs *pVfs, /* The VFS for which this is the xOpen method */
const char *zPath, /* Pathname of file to be opened */
sqlite3_file *pFile, /* The file descriptor to be filled in */
int flags, /* Input flags to control the opening */
int *pOutFlags /* Output flags returned to SQLite core */
){
unixFile *p = (unixFile *)pFile;
int fd = -1; /* File descriptor returned by open() */
int openFlags = 0; /* Flags to pass to open() */
int eType = flags&0x0FFF00; /* Type of file to open */
int noLock; /* True to omit locking primitives */
int rc = SQLITE_OK; /* Function Return Code */
int ctrlFlags = 0; /* UNIXFILE_* flags */
int isExclusive = (flags & SQLITE_OPEN_EXCLUSIVE);
int isDelete = (flags & SQLITE_OPEN_DELETEONCLOSE);
int isCreate = (flags & SQLITE_OPEN_CREATE);
int isReadonly = (flags & SQLITE_OPEN_READONLY);
int isReadWrite = (flags & SQLITE_OPEN_READWRITE);
#if SQLITE_ENABLE_LOCKING_STYLE
int isAutoProxy = (flags & SQLITE_OPEN_AUTOPROXY);
#endif
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
struct statfs fsInfo;
#endif
/* If creating a super- or main-file journal, this function will open
** a file-descriptor on the directory too. The first time unixSync()
** is called the directory file descriptor will be fsync()ed and close()d.
*/
int isNewJrnl = (isCreate && (
eType==SQLITE_OPEN_SUPER_JOURNAL
|| eType==SQLITE_OPEN_MAIN_JOURNAL
|| eType==SQLITE_OPEN_WAL
));
/* If argument zPath is a NULL pointer, this function is required to open
** a temporary file. Use this buffer to store the file name in.
*/
char zTmpname[MAX_PATHNAME+2];
const char *zName = zPath;
/* Check the following statements are true:
**
** (a) Exactly one of the READWRITE and READONLY flags must be set, and
** (b) if CREATE is set, then READWRITE must also be set, and
** (c) if EXCLUSIVE is set, then CREATE must also be set.
** (d) if DELETEONCLOSE is set, then CREATE must also be set.
*/
assert((isReadonly==0 || isReadWrite==0) && (isReadWrite || isReadonly));
assert(isCreate==0 || isReadWrite);
assert(isExclusive==0 || isCreate);
assert(isDelete==0 || isCreate);
/* The main DB, main journal, WAL file and super-journal are never
** automatically deleted. Nor are they ever temporary files. */
assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_DB );
assert( (!isDelete && zName) || eType!=SQLITE_OPEN_MAIN_JOURNAL );
assert( (!isDelete && zName) || eType!=SQLITE_OPEN_SUPER_JOURNAL );
assert( (!isDelete && zName) || eType!=SQLITE_OPEN_WAL );
/* Assert that the upper layer has set one of the "file-type" flags. */
assert( eType==SQLITE_OPEN_MAIN_DB || eType==SQLITE_OPEN_TEMP_DB
|| eType==SQLITE_OPEN_MAIN_JOURNAL || eType==SQLITE_OPEN_TEMP_JOURNAL
|| eType==SQLITE_OPEN_SUBJOURNAL || eType==SQLITE_OPEN_SUPER_JOURNAL
|| eType==SQLITE_OPEN_TRANSIENT_DB || eType==SQLITE_OPEN_WAL
);
/* Detect a pid change and reset the PRNG. There is a race condition
** here such that two or more threads all trying to open databases at
** the same instant might all reset the PRNG. But multiple resets
** are harmless.
*/
if( randomnessPid!=osGetpid(0) ){
randomnessPid = osGetpid(0);
sqlite3_randomness(0,0);
}
memset(p, 0, sizeof(unixFile));
#ifdef SQLITE_ASSERT_NO_FILES
/* Applications that never read or write a persistent disk files */
assert( zName==0 );
#endif
if( eType==SQLITE_OPEN_MAIN_DB ){
UnixUnusedFd *pUnused;
pUnused = findReusableFd(zName, flags);
if( pUnused ){
fd = pUnused->fd;
}else{
pUnused = sqlite3_malloc64(sizeof(*pUnused));
if( !pUnused ){
return SQLITE_NOMEM_BKPT;
}
}
p->pPreallocatedUnused = pUnused;
/* Database filenames are double-zero terminated if they are not
** URIs with parameters. Hence, they can always be passed into
** sqlite3_uri_parameter(). */
assert( (flags & SQLITE_OPEN_URI) || zName[strlen(zName)+1]==0 );
}else if( !zName ){
/* If zName is NULL, the upper layer is requesting a temp file. */
assert(isDelete && !isNewJrnl);
rc = unixGetTempname(pVfs->mxPathname, zTmpname);
if( rc!=SQLITE_OK ){
return rc;
}
zName = zTmpname;
/* Generated temporary filenames are always double-zero terminated
** for use by sqlite3_uri_parameter(). */
assert( zName[strlen(zName)+1]==0 );
}
/* Determine the value of the flags parameter passed to POSIX function
** open(). These must be calculated even if open() is not called, as
** they may be stored as part of the file handle and used by the
** 'conch file' locking functions later on. */
if( isReadonly ) openFlags |= O_RDONLY;
if( isReadWrite ) openFlags |= O_RDWR;
if( isCreate ) openFlags |= O_CREAT;
if( isExclusive ) openFlags |= (O_EXCL|O_NOFOLLOW);
openFlags |= (O_LARGEFILE|O_BINARY|O_NOFOLLOW);
if( fd<0 ){
mode_t openMode; /* Permissions to create file with */
uid_t uid; /* Userid for the file */
gid_t gid; /* Groupid for the file */
rc = findCreateFileMode(zName, flags, &openMode, &uid, &gid);
if( rc!=SQLITE_OK ){
assert( !p->pPreallocatedUnused );
assert( eType==SQLITE_OPEN_WAL || eType==SQLITE_OPEN_MAIN_JOURNAL );
return rc;
}
fd = robust_open(zName, openFlags, openMode);
OSTRACE(("OPENX %-3d %s 0%o\n", fd, zName, openFlags));
assert( !isExclusive || (openFlags & O_CREAT)!=0 );
if( fd<0 ){
if( isNewJrnl && errno==EACCES && osAccess(zName, F_OK) ){
/* If unable to create a journal because the directory is not
** writable, change the error code to indicate that. */
rc = SQLITE_READONLY_DIRECTORY;
}else if( errno!=EISDIR && isReadWrite ){
/* Failed to open the file for read/write access. Try read-only. */
flags &= ~(SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE);
openFlags &= ~(O_RDWR|O_CREAT);
flags |= SQLITE_OPEN_READONLY;
openFlags |= O_RDONLY;
isReadonly = 1;
fd = robust_open(zName, openFlags, openMode);
}
}
if( fd<0 ){
int rc2 = unixLogError(SQLITE_CANTOPEN_BKPT, "open", zName);
if( rc==SQLITE_OK ) rc = rc2;
goto open_finished;
}
/* The owner of the rollback journal or WAL file should always be the
** same as the owner of the database file. Try to ensure that this is
** the case. The chown() system call will be a no-op if the current
** process lacks root privileges, be we should at least try. Without
** this step, if a root process opens a database file, it can leave
** behinds a journal/WAL that is owned by root and hence make the
** database inaccessible to unprivileged processes.
**
** If openMode==0, then that means uid and gid are not set correctly
** (probably because SQLite is configured to use 8+3 filename mode) and
** in that case we do not want to attempt the chown().
*/
if( openMode && (flags & (SQLITE_OPEN_WAL|SQLITE_OPEN_MAIN_JOURNAL))!=0 ){
robustFchown(fd, uid, gid);
}
}
assert( fd>=0 );
if( pOutFlags ){
*pOutFlags = flags;
}
if( p->pPreallocatedUnused ){
p->pPreallocatedUnused->fd = fd;
p->pPreallocatedUnused->flags =
flags & (SQLITE_OPEN_READONLY|SQLITE_OPEN_READWRITE);
}
if( isDelete ){
#if OS_VXWORKS
zPath = zName;
#elif defined(SQLITE_UNLINK_AFTER_CLOSE)
zPath = sqlite3_mprintf("%s", zName);
if( zPath==0 ){
robust_close(p, fd, __LINE__);
return SQLITE_NOMEM_BKPT;
}
#else
osUnlink(zName);
#endif
}
#if SQLITE_ENABLE_LOCKING_STYLE
else{
p->openFlags = openFlags;
}
#endif
#if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
if( fstatfs(fd, &fsInfo) == -1 ){
storeLastErrno(p, errno);
robust_close(p, fd, __LINE__);
return SQLITE_IOERR_ACCESS;
}
if (0 == strncmp("msdos", fsInfo.f_fstypename, 5)) {
((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
}
if (0 == strncmp("exfat", fsInfo.f_fstypename, 5)) {
((unixFile*)pFile)->fsFlags |= SQLITE_FSFLAGS_IS_MSDOS;
}
#endif
/* Set up appropriate ctrlFlags */
if( isDelete ) ctrlFlags |= UNIXFILE_DELETE;
if( isReadonly ) ctrlFlags |= UNIXFILE_RDONLY;
noLock = eType!=SQLITE_OPEN_MAIN_DB;
if( noLock ) ctrlFlags |= UNIXFILE_NOLOCK;
if( isNewJrnl ) ctrlFlags |= UNIXFILE_DIRSYNC;
if( flags & SQLITE_OPEN_URI ) ctrlFlags |= UNIXFILE_URI;
#if SQLITE_ENABLE_LOCKING_STYLE
#if SQLITE_PREFER_PROXY_LOCKING
isAutoProxy = 1;
#endif
if( isAutoProxy && (zPath!=NULL) && (!noLock) && pVfs->xOpen ){
char *envforce = getenv("SQLITE_FORCE_PROXY_LOCKING");
int useProxy = 0;
/* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
** never use proxy, NULL means use proxy for non-local files only. */
if( envforce!=NULL ){
useProxy = atoi(envforce)>0;
}else{
useProxy = !(fsInfo.f_flags&MNT_LOCAL);
}
if( useProxy ){
rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
if( rc==SQLITE_OK ){
rc = proxyTransformUnixFile((unixFile*)pFile, ":auto:");
if( rc!=SQLITE_OK ){
/* Use unixClose to clean up the resources added in fillInUnixFile
** and clear all the structure's references. Specifically,
** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
*/
unixClose(pFile);
return rc;
}
}
goto open_finished;
}
}
#endif
assert( zPath==0 || zPath[0]=='/'
|| eType==SQLITE_OPEN_SUPER_JOURNAL || eType==SQLITE_OPEN_MAIN_JOURNAL
);
rc = fillInUnixFile(pVfs, fd, pFile, zPath, ctrlFlags);
open_finished:
if( rc!=SQLITE_OK ){
sqlite3_free(p->pPreallocatedUnused);
}
return rc;
}
/*
** Delete the file at zPath. If the dirSync argument is true, fsync()
** the directory after deleting the file.
*/
static int unixDelete(
sqlite3_vfs *NotUsed, /* VFS containing this as the xDelete method */
const char *zPath, /* Name of file to be deleted */
int dirSync /* If true, fsync() directory after deleting file */
){
int rc = SQLITE_OK;
UNUSED_PARAMETER(NotUsed);
SimulateIOError(return SQLITE_IOERR_DELETE);
if( osUnlink(zPath)==(-1) ){
if( errno==ENOENT
#if OS_VXWORKS
|| osAccess(zPath,0)!=0
#endif
){
rc = SQLITE_IOERR_DELETE_NOENT;
}else{
rc = unixLogError(SQLITE_IOERR_DELETE, "unlink", zPath);
}
return rc;
}
#ifndef SQLITE_DISABLE_DIRSYNC
if( (dirSync & 1)!=0 ){
int fd;
rc = osOpenDirectory(zPath, &fd);
if( rc==SQLITE_OK ){
if( full_fsync(fd,0,0) ){
rc = unixLogError(SQLITE_IOERR_DIR_FSYNC, "fsync", zPath);
}
robust_close(0, fd, __LINE__);
}else{
assert( rc==SQLITE_CANTOPEN );
rc = SQLITE_OK;
}
}
#endif
return rc;
}
/*
** Test the existence of or access permissions of file zPath. The
** test performed depends on the value of flags:
**
** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
**
** Otherwise return 0.
*/
static int unixAccess(
sqlite3_vfs *NotUsed, /* The VFS containing this xAccess method */
const char *zPath, /* Path of the file to examine */
int flags, /* What do we want to learn about the zPath file? */
int *pResOut /* Write result boolean here */
){
UNUSED_PARAMETER(NotUsed);
SimulateIOError( return SQLITE_IOERR_ACCESS; );
assert( pResOut!=0 );
/* The spec says there are three possible values for flags. But only
** two of them are actually used */
assert( flags==SQLITE_ACCESS_EXISTS || flags==SQLITE_ACCESS_READWRITE );
if( flags==SQLITE_ACCESS_EXISTS ){
struct stat buf;
*pResOut = 0==osStat(zPath, &buf) &&
(!S_ISREG(buf.st_mode) || buf.st_size>0);
}else{
*pResOut = osAccess(zPath, W_OK|R_OK)==0;
}
return SQLITE_OK;
}
/*
** A pathname under construction
*/
typedef struct DbPath DbPath;
struct DbPath {
int rc; /* Non-zero following any error */
int nSymlink; /* Number of symlinks resolved */
char *zOut; /* Write the pathname here */
int nOut; /* Bytes of space available to zOut[] */
int nUsed; /* Bytes of zOut[] currently being used */
};
/* Forward reference */
static void appendAllPathElements(DbPath*,const char*);
/*
** Append a single path element to the DbPath under construction
*/
static void appendOnePathElement(
DbPath *pPath, /* Path under construction, to which to append zName */
const char *zName, /* Name to append to pPath. Not zero-terminated */
int nName /* Number of significant bytes in zName */
){
assert( nName>0 );
assert( zName!=0 );
if( zName[0]=='.' ){
if( nName==1 ) return;
if( zName[1]=='.' && nName==2 ){
if( pPath->nUsed>1 ){
assert( pPath->zOut[0]=='/' );
while( pPath->zOut[--pPath->nUsed]!='/' ){}
}
return;
}
}
if( pPath->nUsed + nName + 2 >= pPath->nOut ){
pPath->rc = SQLITE_ERROR;
return;
}
pPath->zOut[pPath->nUsed++] = '/';
memcpy(&pPath->zOut[pPath->nUsed], zName, nName);
pPath->nUsed += nName;
#if defined(HAVE_READLINK) && defined(HAVE_LSTAT)
if( pPath->rc==SQLITE_OK ){
const char *zIn;
struct stat buf;
pPath->zOut[pPath->nUsed] = 0;
zIn = pPath->zOut;
if( osLstat(zIn, &buf)!=0 ){
if( errno!=ENOENT ){
pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "lstat", zIn);
}
}else if( S_ISLNK(buf.st_mode) ){
ssize_t got;
char zLnk[SQLITE_MAX_PATHLEN+2];
if( pPath->nSymlink++ > SQLITE_MAX_SYMLINK ){
pPath->rc = SQLITE_CANTOPEN_BKPT;
return;
}
got = osReadlink(zIn, zLnk, sizeof(zLnk)-2);
if( got<=0 || got>=(ssize_t)sizeof(zLnk)-2 ){
pPath->rc = unixLogError(SQLITE_CANTOPEN_BKPT, "readlink", zIn);
return;
}
zLnk[got] = 0;
if( zLnk[0]=='/' ){
pPath->nUsed = 0;
}else{
pPath->nUsed -= nName + 1;
}
appendAllPathElements(pPath, zLnk);
}
}
#endif
}
/*
** Append all path elements in zPath to the DbPath under construction.
*/
static void appendAllPathElements(
DbPath *pPath, /* Path under construction, to which to append zName */
const char *zPath /* Path to append to pPath. Is zero-terminated */
){
int i = 0;
int j = 0;
do{
while( zPath[i] && zPath[i]!='/' ){ i++; }
if( i>j ){
appendOnePathElement(pPath, &zPath[j], i-j);
}
j = i+1;
}while( zPath[i++] );
}
/*
** Turn a relative pathname into a full pathname. The relative path
** is stored as a nul-terminated string in the buffer pointed to by
** zPath.
**
** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
** (in this case, MAX_PATHNAME bytes). The full-path is written to
** this buffer before returning.
*/
static int unixFullPathname(
sqlite3_vfs *pVfs, /* Pointer to vfs object */
const char *zPath, /* Possibly relative input path */
int nOut, /* Size of output buffer in bytes */
char *zOut /* Output buffer */
){
DbPath path;
UNUSED_PARAMETER(pVfs);
path.rc = 0;
path.nUsed = 0;
path.nSymlink = 0;
path.nOut = nOut;
path.zOut = zOut;
if( zPath[0]!='/' ){
char zPwd[SQLITE_MAX_PATHLEN+2];
if( osGetcwd(zPwd, sizeof(zPwd)-2)==0 ){
return unixLogError(SQLITE_CANTOPEN_BKPT, "getcwd", zPath);
}
appendAllPathElements(&path, zPwd);
}
appendAllPathElements(&path, zPath);
zOut[path.nUsed] = 0;
if( path.rc || path.nUsed<2 ) return SQLITE_CANTOPEN_BKPT;
if( path.nSymlink ) return SQLITE_OK_SYMLINK;
return SQLITE_OK;
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
/*
** Interfaces for opening a shared library, finding entry points
** within the shared library, and closing the shared library.
*/
#include <dlfcn.h>
static void *unixDlOpen(sqlite3_vfs *NotUsed, const char *zFilename){
UNUSED_PARAMETER(NotUsed);
return dlopen(zFilename, RTLD_NOW | RTLD_GLOBAL);
}
/*
** SQLite calls this function immediately after a call to unixDlSym() or
** unixDlOpen() fails (returns a null pointer). If a more detailed error
** message is available, it is written to zBufOut. If no error message
** is available, zBufOut is left unmodified and SQLite uses a default
** error message.
*/
static void unixDlError(sqlite3_vfs *NotUsed, int nBuf, char *zBufOut){
const char *zErr;
UNUSED_PARAMETER(NotUsed);
unixEnterMutex();
zErr = dlerror();
if( zErr ){
sqlite3_snprintf(nBuf, zBufOut, "%s", zErr);
}
unixLeaveMutex();
}
static void (*unixDlSym(sqlite3_vfs *NotUsed, void *p, const char*zSym))(void){
/*
** GCC with -pedantic-errors says that C90 does not allow a void* to be
** cast into a pointer to a function. And yet the library dlsym() routine
** returns a void* which is really a pointer to a function. So how do we
** use dlsym() with -pedantic-errors?
**
** Variable x below is defined to be a pointer to a function taking
** parameters void* and const char* and returning a pointer to a function.
** We initialize x by assigning it a pointer to the dlsym() function.
** (That assignment requires a cast.) Then we call the function that
** x points to.
**
** This work-around is unlikely to work correctly on any system where
** you really cannot cast a function pointer into void*. But then, on the
** other hand, dlsym() will not work on such a system either, so we have
** not really lost anything.
*/
void (*(*x)(void*,const char*))(void);
UNUSED_PARAMETER(NotUsed);
x = (void(*(*)(void*,const char*))(void))dlsym;
return (*x)(p, zSym);
}
static void unixDlClose(sqlite3_vfs *NotUsed, void *pHandle){
UNUSED_PARAMETER(NotUsed);
dlclose(pHandle);
}
#else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
#define unixDlOpen 0
#define unixDlError 0
#define unixDlSym 0
#define unixDlClose 0
#endif
/*
** Write nBuf bytes of random data to the supplied buffer zBuf.
*/
static int unixRandomness(sqlite3_vfs *NotUsed, int nBuf, char *zBuf){
UNUSED_PARAMETER(NotUsed);
assert((size_t)nBuf>=(sizeof(time_t)+sizeof(int)));
/* We have to initialize zBuf to prevent valgrind from reporting
** errors. The reports issued by valgrind are incorrect - we would
** prefer that the randomness be increased by making use of the
** uninitialized space in zBuf - but valgrind errors tend to worry
** some users. Rather than argue, it seems easier just to initialize
** the whole array and silence valgrind, even if that means less randomness
** in the random seed.
**
** When testing, initializing zBuf[] to zero is all we do. That means
** that we always use the same random number sequence. This makes the
** tests repeatable.
*/
memset(zBuf, 0, nBuf);
randomnessPid = osGetpid(0);
#if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
{
int fd, got;
fd = robust_open("/dev/urandom", O_RDONLY, 0);
if( fd<0 ){
time_t t;
time(&t);
memcpy(zBuf, &t, sizeof(t));
memcpy(&zBuf[sizeof(t)], &randomnessPid, sizeof(randomnessPid));
assert( sizeof(t)+sizeof(randomnessPid)<=(size_t)nBuf );
nBuf = sizeof(t) + sizeof(randomnessPid);
}else{
do{ got = osRead(fd, zBuf, nBuf); }while( got<0 && errno==EINTR );
robust_close(0, fd, __LINE__);
}
}
#endif
return nBuf;
}
/*
** Sleep for a little while. Return the amount of time slept.
** The argument is the number of microseconds we want to sleep.
** The return value is the number of microseconds of sleep actually
** requested from the underlying operating system, a number which
** might be greater than or equal to the argument, but not less
** than the argument.
*/
static int unixSleep(sqlite3_vfs *NotUsed, int microseconds){
#if !defined(HAVE_NANOSLEEP) || HAVE_NANOSLEEP+0
struct timespec sp;
sp.tv_sec = microseconds / 1000000;
sp.tv_nsec = (microseconds % 1000000) * 1000;
/* Almost all modern unix systems support nanosleep(). But if you are
** compiling for one of the rare exceptions, you can use
** -DHAVE_NANOSLEEP=0 (perhaps in conjuction with -DHAVE_USLEEP if
** usleep() is available) in order to bypass the use of nanosleep() */
nanosleep(&sp, NULL);
UNUSED_PARAMETER(NotUsed);
return microseconds;
#elif defined(HAVE_USLEEP) && HAVE_USLEEP
if( microseconds>=1000000 ) sleep(microseconds/1000000);
if( microseconds%1000000 ) usleep(microseconds%1000000);
UNUSED_PARAMETER(NotUsed);
return microseconds;
#else
int seconds = (microseconds+999999)/1000000;
sleep(seconds);
UNUSED_PARAMETER(NotUsed);
return seconds*1000000;
#endif
}
/*
** The following variable, if set to a non-zero value, is interpreted as
** the number of seconds since 1970 and is used to set the result of
** sqlite3OsCurrentTime() during testing.
*/
#ifdef SQLITE_TEST
int sqlite3_current_time = 0; /* Fake system time in seconds since 1970. */
#endif
/*
** Find the current time (in Universal Coordinated Time). Write into *piNow
** the current time and date as a Julian Day number times 86_400_000. In
** other words, write into *piNow the number of milliseconds since the Julian
** epoch of noon in Greenwich on November 24, 4714 B.C according to the
** proleptic Gregorian calendar.
**
** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
** cannot be found.
*/
static int unixCurrentTimeInt64(sqlite3_vfs *NotUsed, sqlite3_int64 *piNow){
static const sqlite3_int64 unixEpoch = 24405875*(sqlite3_int64)8640000;
int rc = SQLITE_OK;
#if defined(NO_GETTOD)
time_t t;
time(&t);
*piNow = ((sqlite3_int64)t)*1000 + unixEpoch;
#elif OS_VXWORKS
struct timespec sNow;
clock_gettime(CLOCK_REALTIME, &sNow);
*piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_nsec/1000000;
#else
struct timeval sNow;
(void)gettimeofday(&sNow, 0); /* Cannot fail given valid arguments */
*piNow = unixEpoch + 1000*(sqlite3_int64)sNow.tv_sec + sNow.tv_usec/1000;
#endif
#ifdef SQLITE_TEST
if( sqlite3_current_time ){
*piNow = 1000*(sqlite3_int64)sqlite3_current_time + unixEpoch;
}
#endif
UNUSED_PARAMETER(NotUsed);
return rc;
}
#ifndef SQLITE_OMIT_DEPRECATED
/*
** Find the current time (in Universal Coordinated Time). Write the
** current time and date as a Julian Day number into *prNow and
** return 0. Return 1 if the time and date cannot be found.
*/
static int unixCurrentTime(sqlite3_vfs *NotUsed, double *prNow){
sqlite3_int64 i = 0;
int rc;
UNUSED_PARAMETER(NotUsed);
rc = unixCurrentTimeInt64(0, &i);
*prNow = i/86400000.0;
return rc;
}
#else
# define unixCurrentTime 0
#endif
/*
** The xGetLastError() method is designed to return a better
** low-level error message when operating-system problems come up
** during SQLite operation. Only the integer return code is currently
** used.
*/
static int unixGetLastError(sqlite3_vfs *NotUsed, int NotUsed2, char *NotUsed3){
UNUSED_PARAMETER(NotUsed);
UNUSED_PARAMETER(NotUsed2);
UNUSED_PARAMETER(NotUsed3);
return errno;
}
/*
************************ End of sqlite3_vfs methods ***************************
******************************************************************************/
/******************************************************************************
************************** Begin Proxy Locking ********************************
**
** Proxy locking is a "uber-locking-method" in this sense: It uses the
** other locking methods on secondary lock files. Proxy locking is a
** meta-layer over top of the primitive locking implemented above. For
** this reason, the division that implements of proxy locking is deferred
** until late in the file (here) after all of the other I/O methods have
** been defined - so that the primitive locking methods are available
** as services to help with the implementation of proxy locking.
**
****
**
** The default locking schemes in SQLite use byte-range locks on the
** database file to coordinate safe, concurrent access by multiple readers
** and writers [http://sqlite.org/lockingv3.html]. The five file locking
** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
** as POSIX read & write locks over fixed set of locations (via fsctl),
** on AFP and SMB only exclusive byte-range locks are available via fsctl
** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
** address in the shared range is taken for a SHARED lock, the entire
** shared range is taken for an EXCLUSIVE lock):
**
** PENDING_BYTE 0x40000000
** RESERVED_BYTE 0x40000001
** SHARED_RANGE 0x40000002 -> 0x40000200
**
** This works well on the local file system, but shows a nearly 100x
** slowdown in read performance on AFP because the AFP client disables
** the read cache when byte-range locks are present. Enabling the read
** cache exposes a cache coherency problem that is present on all OS X
** supported network file systems. NFS and AFP both observe the
** close-to-open semantics for ensuring cache coherency
** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
** address the requirements for concurrent database access by multiple
** readers and writers
** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
**
** To address the performance and cache coherency issues, proxy file locking
** changes the way database access is controlled by limiting access to a
** single host at a time and moving file locks off of the database file
** and onto a proxy file on the local file system.
**
**
** Using proxy locks
** -----------------
**
** C APIs
**
** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE,
** <proxy_path> | ":auto:");
** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE,
** &<proxy_path>);
**
**
** SQL pragmas
**
** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
** PRAGMA [database.]lock_proxy_file
**
** Specifying ":auto:" means that if there is a conch file with a matching
** host ID in it, the proxy path in the conch file will be used, otherwise
** a proxy path based on the user's temp dir
** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
** actual proxy file name is generated from the name and path of the
** database file. For example:
**
** For database path "/Users/me/foo.db"
** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
**
** Once a lock proxy is configured for a database connection, it can not
** be removed, however it may be switched to a different proxy path via
** the above APIs (assuming the conch file is not being held by another
** connection or process).
**
**
** How proxy locking works
** -----------------------
**
** Proxy file locking relies primarily on two new supporting files:
**
** * conch file to limit access to the database file to a single host
** at a time
**
** * proxy file to act as a proxy for the advisory locks normally
** taken on the database
**
** The conch file - to use a proxy file, sqlite must first "hold the conch"
** by taking an sqlite-style shared lock on the conch file, reading the
** contents and comparing the host's unique host ID (see below) and lock
** proxy path against the values stored in the conch. The conch file is
** stored in the same directory as the database file and the file name
** is patterned after the database file name as ".<databasename>-conch".
** If the conch file does not exist, or its contents do not match the
** host ID and/or proxy path, then the lock is escalated to an exclusive
** lock and the conch file contents is updated with the host ID and proxy
** path and the lock is downgraded to a shared lock again. If the conch
** is held by another process (with a shared lock), the exclusive lock
** will fail and SQLITE_BUSY is returned.
**
** The proxy file - a single-byte file used for all advisory file locks
** normally taken on the database file. This allows for safe sharing
** of the database file for multiple readers and writers on the same
** host (the conch ensures that they all use the same local lock file).
**
** Requesting the lock proxy does not immediately take the conch, it is
** only taken when the first request to lock database file is made.
** This matches the semantics of the traditional locking behavior, where
** opening a connection to a database file does not take a lock on it.
** The shared lock and an open file descriptor are maintained until
** the connection to the database is closed.
**
** The proxy file and the lock file are never deleted so they only need
** to be created the first time they are used.
**
** Configuration options
** ---------------------
**
** SQLITE_PREFER_PROXY_LOCKING
**
** Database files accessed on non-local file systems are
** automatically configured for proxy locking, lock files are
** named automatically using the same logic as
** PRAGMA lock_proxy_file=":auto:"
**
** SQLITE_PROXY_DEBUG
**
** Enables the logging of error messages during host id file
** retrieval and creation
**
** LOCKPROXYDIR
**
** Overrides the default directory used for lock proxy files that
** are named automatically via the ":auto:" setting
**
** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
**
** Permissions to use when creating a directory for storing the
** lock proxy files, only used when LOCKPROXYDIR is not set.
**
**
** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
** force proxy locking to be used for every database file opened, and 0
** will force automatic proxy locking to be disabled for all database
** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or
** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
*/
/*
** Proxy locking is only available on MacOSX
*/
#if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
/*
** The proxyLockingContext has the path and file structures for the remote
** and local proxy files in it
*/
typedef struct proxyLockingContext proxyLockingContext;
struct proxyLockingContext {
unixFile *conchFile; /* Open conch file */
char *conchFilePath; /* Name of the conch file */
unixFile *lockProxy; /* Open proxy lock file */
char *lockProxyPath; /* Name of the proxy lock file */
char *dbPath; /* Name of the open file */
int conchHeld; /* 1 if the conch is held, -1 if lockless */
int nFails; /* Number of conch taking failures */
void *oldLockingContext; /* Original lockingcontext to restore on close */
sqlite3_io_methods const *pOldMethod; /* Original I/O methods for close */
};
/*
** The proxy lock file path for the database at dbPath is written into lPath,
** which must point to valid, writable memory large enough for a maxLen length
** file path.
*/
static int proxyGetLockPath(const char *dbPath, char *lPath, size_t maxLen){
int len;
int dbLen;
int i;
#ifdef LOCKPROXYDIR
len = strlcpy(lPath, LOCKPROXYDIR, maxLen);
#else
# ifdef _CS_DARWIN_USER_TEMP_DIR
{
if( !confstr(_CS_DARWIN_USER_TEMP_DIR, lPath, maxLen) ){
OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
lPath, errno, osGetpid(0)));
return SQLITE_IOERR_LOCK;
}
len = strlcat(lPath, "sqliteplocks", maxLen);
}
# else
len = strlcpy(lPath, "/tmp/", maxLen);
# endif
#endif
if( lPath[len-1]!='/' ){
len = strlcat(lPath, "/", maxLen);
}
/* transform the db path to a unique cache name */
dbLen = (int)strlen(dbPath);
for( i=0; i<dbLen && (i+len+7)<(int)maxLen; i++){
char c = dbPath[i];
lPath[i+len] = (c=='/')?'_':c;
}
lPath[i+len]='\0';
strlcat(lPath, ":auto:", maxLen);
OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath, osGetpid(0)));
return SQLITE_OK;
}
/*
** Creates the lock file and any missing directories in lockPath
*/
static int proxyCreateLockPath(const char *lockPath){
int i, len;
char buf[MAXPATHLEN];
int start = 0;
assert(lockPath!=NULL);
/* try to create all the intermediate directories */
len = (int)strlen(lockPath);
buf[0] = lockPath[0];
for( i=1; i<len; i++ ){
if( lockPath[i] == '/' && (i - start > 0) ){
/* only mkdir if leaf dir != "." or "/" or ".." */
if( i-start>2 || (i-start==1 && buf[start] != '.' && buf[start] != '/')
|| (i-start==2 && buf[start] != '.' && buf[start+1] != '.') ){
buf[i]='\0';
if( osMkdir(buf, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS) ){
int err=errno;
if( err!=EEXIST ) {
OSTRACE(("CREATELOCKPATH FAILED creating %s, "
"'%s' proxy lock path=%s pid=%d\n",
buf, strerror(err), lockPath, osGetpid(0)));
return err;
}
}
}
start=i+1;
}
buf[i] = lockPath[i];
}
OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath,osGetpid(0)));
return 0;
}
/*
** Create a new VFS file descriptor (stored in memory obtained from
** sqlite3_malloc) and open the file named "path" in the file descriptor.
**
** The caller is responsible not only for closing the file descriptor
** but also for freeing the memory associated with the file descriptor.
*/
static int proxyCreateUnixFile(
const char *path, /* path for the new unixFile */
unixFile **ppFile, /* unixFile created and returned by ref */
int islockfile /* if non zero missing dirs will be created */
) {
int fd = -1;
unixFile *pNew;
int rc = SQLITE_OK;
int openFlags = O_RDWR | O_CREAT | O_NOFOLLOW;
sqlite3_vfs dummyVfs;
int terrno = 0;
UnixUnusedFd *pUnused = NULL;
/* 1. first try to open/create the file
** 2. if that fails, and this is a lock file (not-conch), try creating
** the parent directories and then try again.
** 3. if that fails, try to open the file read-only
** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
*/
pUnused = findReusableFd(path, openFlags);
if( pUnused ){
fd = pUnused->fd;
}else{
pUnused = sqlite3_malloc64(sizeof(*pUnused));
if( !pUnused ){
return SQLITE_NOMEM_BKPT;
}
}
if( fd<0 ){
fd = robust_open(path, openFlags, 0);
terrno = errno;
if( fd<0 && errno==ENOENT && islockfile ){
if( proxyCreateLockPath(path) == SQLITE_OK ){
fd = robust_open(path, openFlags, 0);
}
}
}
if( fd<0 ){
openFlags = O_RDONLY | O_NOFOLLOW;
fd = robust_open(path, openFlags, 0);
terrno = errno;
}
if( fd<0 ){
if( islockfile ){
return SQLITE_BUSY;
}
switch (terrno) {
case EACCES:
return SQLITE_PERM;
case EIO:
return SQLITE_IOERR_LOCK; /* even though it is the conch */
default:
return SQLITE_CANTOPEN_BKPT;
}
}
pNew = (unixFile *)sqlite3_malloc64(sizeof(*pNew));
if( pNew==NULL ){
rc = SQLITE_NOMEM_BKPT;
goto end_create_proxy;
}
memset(pNew, 0, sizeof(unixFile));
pNew->openFlags = openFlags;
memset(&dummyVfs, 0, sizeof(dummyVfs));
dummyVfs.pAppData = (void*)&autolockIoFinder;
dummyVfs.zName = "dummy";
pUnused->fd = fd;
pUnused->flags = openFlags;
pNew->pPreallocatedUnused = pUnused;
rc = fillInUnixFile(&dummyVfs, fd, (sqlite3_file*)pNew, path, 0);
if( rc==SQLITE_OK ){
*ppFile = pNew;
return SQLITE_OK;
}
end_create_proxy:
robust_close(pNew, fd, __LINE__);
sqlite3_free(pNew);
sqlite3_free(pUnused);
return rc;
}
#ifdef SQLITE_TEST
/* simulate multiple hosts by creating unique hostid file paths */
int sqlite3_hostid_num = 0;
#endif
#define PROXY_HOSTIDLEN 16 /* conch file host id length */
#if HAVE_GETHOSTUUID
/* Not always defined in the headers as it ought to be */
extern int gethostuuid(uuid_t id, const struct timespec *wait);
#endif
/* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
** bytes of writable memory.
*/
static int proxyGetHostID(unsigned char *pHostID, int *pError){
assert(PROXY_HOSTIDLEN == sizeof(uuid_t));
memset(pHostID, 0, PROXY_HOSTIDLEN);
#if HAVE_GETHOSTUUID
{
struct timespec timeout = {1, 0}; /* 1 sec timeout */
if( gethostuuid(pHostID, &timeout) ){
int err = errno;
if( pError ){
*pError = err;
}
return SQLITE_IOERR;
}
}
#else
UNUSED_PARAMETER(pError);
#endif
#ifdef SQLITE_TEST
/* simulate multiple hosts by creating unique hostid file paths */
if( sqlite3_hostid_num != 0){
pHostID[0] = (char)(pHostID[0] + (char)(sqlite3_hostid_num & 0xFF));
}
#endif
return SQLITE_OK;
}
/* The conch file contains the header, host id and lock file path
*/
#define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
#define PROXY_HEADERLEN 1 /* conch file header length */
#define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
#define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
/*
** Takes an open conch file, copies the contents to a new path and then moves
** it back. The newly created file's file descriptor is assigned to the
** conch file structure and finally the original conch file descriptor is
** closed. Returns zero if successful.
*/
static int proxyBreakConchLock(unixFile *pFile, uuid_t myHostID){
proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
unixFile *conchFile = pCtx->conchFile;
char tPath[MAXPATHLEN];
char buf[PROXY_MAXCONCHLEN];
char *cPath = pCtx->conchFilePath;
size_t readLen = 0;
size_t pathLen = 0;
char errmsg[64] = "";
int fd = -1;
int rc = -1;
UNUSED_PARAMETER(myHostID);
/* create a new path by replace the trailing '-conch' with '-break' */
pathLen = strlcpy(tPath, cPath, MAXPATHLEN);
if( pathLen>MAXPATHLEN || pathLen<6 ||
(strlcpy(&tPath[pathLen-5], "break", 6) != 5) ){
sqlite3_snprintf(sizeof(errmsg),errmsg,"path error (len %d)",(int)pathLen);
goto end_breaklock;
}
/* read the conch content */
readLen = osPread(conchFile->h, buf, PROXY_MAXCONCHLEN, 0);
if( readLen<PROXY_PATHINDEX ){
sqlite3_snprintf(sizeof(errmsg),errmsg,"read error (len %d)",(int)readLen);
goto end_breaklock;
}
/* write it out to the temporary break file */
fd = robust_open(tPath, (O_RDWR|O_CREAT|O_EXCL|O_NOFOLLOW), 0);
if( fd<0 ){
sqlite3_snprintf(sizeof(errmsg), errmsg, "create failed (%d)", errno);
goto end_breaklock;
}
if( osPwrite(fd, buf, readLen, 0) != (ssize_t)readLen ){
sqlite3_snprintf(sizeof(errmsg), errmsg, "write failed (%d)", errno);
goto end_breaklock;
}
if( rename(tPath, cPath) ){
sqlite3_snprintf(sizeof(errmsg), errmsg, "rename failed (%d)", errno);
goto end_breaklock;
}
rc = 0;
fprintf(stderr, "broke stale lock on %s\n", cPath);
robust_close(pFile, conchFile->h, __LINE__);
conchFile->h = fd;
conchFile->openFlags = O_RDWR | O_CREAT;
end_breaklock:
if( rc ){
if( fd>=0 ){
osUnlink(tPath);
robust_close(pFile, fd, __LINE__);
}
fprintf(stderr, "failed to break stale lock on %s, %s\n", cPath, errmsg);
}
return rc;
}
/* Take the requested lock on the conch file and break a stale lock if the
** host id matches.
*/
static int proxyConchLock(unixFile *pFile, uuid_t myHostID, int lockType){
proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
unixFile *conchFile = pCtx->conchFile;
int rc = SQLITE_OK;
int nTries = 0;
struct timespec conchModTime;
memset(&conchModTime, 0, sizeof(conchModTime));
do {
rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
nTries ++;
if( rc==SQLITE_BUSY ){
/* If the lock failed (busy):
* 1st try: get the mod time of the conch, wait 0.5s and try again.
* 2nd try: fail if the mod time changed or host id is different, wait
* 10 sec and try again
* 3rd try: break the lock unless the mod time has changed.
*/
struct stat buf;
if( osFstat(conchFile->h, &buf) ){
storeLastErrno(pFile, errno);
return SQLITE_IOERR_LOCK;
}
if( nTries==1 ){
conchModTime = buf.st_mtimespec;
unixSleep(0,500000); /* wait 0.5 sec and try the lock again*/
continue;
}
assert( nTries>1 );
if( conchModTime.tv_sec != buf.st_mtimespec.tv_sec ||
conchModTime.tv_nsec != buf.st_mtimespec.tv_nsec ){
return SQLITE_BUSY;
}
if( nTries==2 ){
char tBuf[PROXY_MAXCONCHLEN];
int len = osPread(conchFile->h, tBuf, PROXY_MAXCONCHLEN, 0);
if( len<0 ){
storeLastErrno(pFile, errno);
return SQLITE_IOERR_LOCK;
}
if( len>PROXY_PATHINDEX && tBuf[0]==(char)PROXY_CONCHVERSION){
/* don't break the lock if the host id doesn't match */
if( 0!=memcmp(&tBuf[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN) ){
return SQLITE_BUSY;
}
}else{
/* don't break the lock on short read or a version mismatch */
return SQLITE_BUSY;
}
unixSleep(0,10000000); /* wait 10 sec and try the lock again */
continue;
}
assert( nTries==3 );
if( 0==proxyBreakConchLock(pFile, myHostID) ){
rc = SQLITE_OK;
if( lockType==EXCLUSIVE_LOCK ){
rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, SHARED_LOCK);
}
if( !rc ){
rc = conchFile->pMethod->xLock((sqlite3_file*)conchFile, lockType);
}
}
}
} while( rc==SQLITE_BUSY && nTries<3 );
return rc;
}
/* Takes the conch by taking a shared lock and read the contents conch, if
** lockPath is non-NULL, the host ID and lock file path must match. A NULL
** lockPath means that the lockPath in the conch file will be used if the
** host IDs match, or a new lock path will be generated automatically
** and written to the conch file.
*/
static int proxyTakeConch(unixFile *pFile){
proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
if( pCtx->conchHeld!=0 ){
return SQLITE_OK;
}else{
unixFile *conchFile = pCtx->conchFile;
uuid_t myHostID;
int pError = 0;
char readBuf[PROXY_MAXCONCHLEN];
char lockPath[MAXPATHLEN];
char *tempLockPath = NULL;
int rc = SQLITE_OK;
int createConch = 0;
int hostIdMatch = 0;
int readLen = 0;
int tryOldLockPath = 0;
int forceNewLockPath = 0;
OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile->h,
(pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
osGetpid(0)));
rc = proxyGetHostID(myHostID, &pError);
if( (rc&0xff)==SQLITE_IOERR ){
storeLastErrno(pFile, pError);
goto end_takeconch;
}
rc = proxyConchLock(pFile, myHostID, SHARED_LOCK);
if( rc!=SQLITE_OK ){
goto end_takeconch;
}
/* read the existing conch file */
readLen = seekAndRead((unixFile*)conchFile, 0, readBuf, PROXY_MAXCONCHLEN);
if( readLen<0 ){
/* I/O error: lastErrno set by seekAndRead */
storeLastErrno(pFile, conchFile->lastErrno);
rc = SQLITE_IOERR_READ;
goto end_takeconch;
}else if( readLen<=(PROXY_HEADERLEN+PROXY_HOSTIDLEN) ||
readBuf[0]!=(char)PROXY_CONCHVERSION ){
/* a short read or version format mismatch means we need to create a new
** conch file.
*/
createConch = 1;
}
/* if the host id matches and the lock path already exists in the conch
** we'll try to use the path there, if we can't open that path, we'll
** retry with a new auto-generated path
*/
do { /* in case we need to try again for an :auto: named lock file */
if( !createConch && !forceNewLockPath ){
hostIdMatch = !memcmp(&readBuf[PROXY_HEADERLEN], myHostID,
PROXY_HOSTIDLEN);
/* if the conch has data compare the contents */
if( !pCtx->lockProxyPath ){
/* for auto-named local lock file, just check the host ID and we'll
** use the local lock file path that's already in there
*/
if( hostIdMatch ){
size_t pathLen = (readLen - PROXY_PATHINDEX);
if( pathLen>=MAXPATHLEN ){
pathLen=MAXPATHLEN-1;
}
memcpy(lockPath, &readBuf[PROXY_PATHINDEX], pathLen);
lockPath[pathLen] = 0;
tempLockPath = lockPath;
tryOldLockPath = 1;
/* create a copy of the lock path if the conch is taken */
goto end_takeconch;
}
}else if( hostIdMatch
&& !strncmp(pCtx->lockProxyPath, &readBuf[PROXY_PATHINDEX],
readLen-PROXY_PATHINDEX)
){
/* conch host and lock path match */
goto end_takeconch;
}
}
/* if the conch isn't writable and doesn't match, we can't take it */
if( (conchFile->openFlags&O_RDWR) == 0 ){
rc = SQLITE_BUSY;
goto end_takeconch;
}
/* either the conch didn't match or we need to create a new one */
if( !pCtx->lockProxyPath ){
proxyGetLockPath(pCtx->dbPath, lockPath, MAXPATHLEN);
tempLockPath = lockPath;
/* create a copy of the lock path _only_ if the conch is taken */
}
/* update conch with host and path (this will fail if other process
** has a shared lock already), if the host id matches, use the big
** stick.
*/
futimes(conchFile->h, NULL);
if( hostIdMatch && !createConch ){
if( conchFile->pInode && conchFile->pInode->nShared>1 ){
/* We are trying for an exclusive lock but another thread in this
** same process is still holding a shared lock. */
rc = SQLITE_BUSY;
} else {
rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
}
}else{
rc = proxyConchLock(pFile, myHostID, EXCLUSIVE_LOCK);
}
if( rc==SQLITE_OK ){
char writeBuffer[PROXY_MAXCONCHLEN];
int writeSize = 0;
writeBuffer[0] = (char)PROXY_CONCHVERSION;
memcpy(&writeBuffer[PROXY_HEADERLEN], myHostID, PROXY_HOSTIDLEN);
if( pCtx->lockProxyPath!=NULL ){
strlcpy(&writeBuffer[PROXY_PATHINDEX], pCtx->lockProxyPath,
MAXPATHLEN);
}else{
strlcpy(&writeBuffer[PROXY_PATHINDEX], tempLockPath, MAXPATHLEN);
}
writeSize = PROXY_PATHINDEX + strlen(&writeBuffer[PROXY_PATHINDEX]);
robust_ftruncate(conchFile->h, writeSize);
rc = unixWrite((sqlite3_file *)conchFile, writeBuffer, writeSize, 0);
full_fsync(conchFile->h,0,0);
/* If we created a new conch file (not just updated the contents of a
** valid conch file), try to match the permissions of the database
*/
if( rc==SQLITE_OK && createConch ){
struct stat buf;
int err = osFstat(pFile->h, &buf);
if( err==0 ){
mode_t cmode = buf.st_mode&(S_IRUSR|S_IWUSR | S_IRGRP|S_IWGRP |
S_IROTH|S_IWOTH);
/* try to match the database file R/W permissions, ignore failure */
#ifndef SQLITE_PROXY_DEBUG
osFchmod(conchFile->h, cmode);
#else
do{
rc = osFchmod(conchFile->h, cmode);
}while( rc==(-1) && errno==EINTR );
if( rc!=0 ){
int code = errno;
fprintf(stderr, "fchmod %o FAILED with %d %s\n",
cmode, code, strerror(code));
} else {
fprintf(stderr, "fchmod %o SUCCEDED\n",cmode);
}
}else{
int code = errno;
fprintf(stderr, "STAT FAILED[%d] with %d %s\n",
err, code, strerror(code));
#endif
}
}
}
conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, SHARED_LOCK);
end_takeconch:
OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile->h));
if( rc==SQLITE_OK && pFile->openFlags ){
int fd;
if( pFile->h>=0 ){
robust_close(pFile, pFile->h, __LINE__);
}
pFile->h = -1;
fd = robust_open(pCtx->dbPath, pFile->openFlags, 0);
OSTRACE(("TRANSPROXY: OPEN %d\n", fd));
if( fd>=0 ){
pFile->h = fd;
}else{
rc=SQLITE_CANTOPEN_BKPT; /* SQLITE_BUSY? proxyTakeConch called
during locking */
}
}
if( rc==SQLITE_OK && !pCtx->lockProxy ){
char *path = tempLockPath ? tempLockPath : pCtx->lockProxyPath;
rc = proxyCreateUnixFile(path, &pCtx->lockProxy, 1);
if( rc!=SQLITE_OK && rc!=SQLITE_NOMEM && tryOldLockPath ){
/* we couldn't create the proxy lock file with the old lock file path
** so try again via auto-naming
*/
forceNewLockPath = 1;
tryOldLockPath = 0;
continue; /* go back to the do {} while start point, try again */
}
}
if( rc==SQLITE_OK ){
/* Need to make a copy of path if we extracted the value
** from the conch file or the path was allocated on the stack
*/
if( tempLockPath ){
pCtx->lockProxyPath = sqlite3DbStrDup(0, tempLockPath);
if( !pCtx->lockProxyPath ){
rc = SQLITE_NOMEM_BKPT;
}
}
}
if( rc==SQLITE_OK ){
pCtx->conchHeld = 1;
if( pCtx->lockProxy->pMethod == &afpIoMethods ){
afpLockingContext *afpCtx;
afpCtx = (afpLockingContext *)pCtx->lockProxy->lockingContext;
afpCtx->dbPath = pCtx->lockProxyPath;
}
} else {
conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
}
OSTRACE(("TAKECONCH %d %s\n", conchFile->h,
rc==SQLITE_OK?"ok":"failed"));
return rc;
} while (1); /* in case we need to retry the :auto: lock file -
** we should never get here except via the 'continue' call. */
}
}
/*
** If pFile holds a lock on a conch file, then release that lock.
*/
static int proxyReleaseConch(unixFile *pFile){
int rc = SQLITE_OK; /* Subroutine return code */
proxyLockingContext *pCtx; /* The locking context for the proxy lock */
unixFile *conchFile; /* Name of the conch file */
pCtx = (proxyLockingContext *)pFile->lockingContext;
conchFile = pCtx->conchFile;
OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile->h,
(pCtx->lockProxyPath ? pCtx->lockProxyPath : ":auto:"),
osGetpid(0)));
if( pCtx->conchHeld>0 ){
rc = conchFile->pMethod->xUnlock((sqlite3_file*)conchFile, NO_LOCK);
}
pCtx->conchHeld = 0;
OSTRACE(("RELEASECONCH %d %s\n", conchFile->h,
(rc==SQLITE_OK ? "ok" : "failed")));
return rc;
}
/*
** Given the name of a database file, compute the name of its conch file.
** Store the conch filename in memory obtained from sqlite3_malloc64().
** Make *pConchPath point to the new name. Return SQLITE_OK on success
** or SQLITE_NOMEM if unable to obtain memory.
**
** The caller is responsible for ensuring that the allocated memory
** space is eventually freed.
**
** *pConchPath is set to NULL if a memory allocation error occurs.
*/
static int proxyCreateConchPathname(char *dbPath, char **pConchPath){
int i; /* Loop counter */
int len = (int)strlen(dbPath); /* Length of database filename - dbPath */
char *conchPath; /* buffer in which to construct conch name */
/* Allocate space for the conch filename and initialize the name to
** the name of the original database file. */
*pConchPath = conchPath = (char *)sqlite3_malloc64(len + 8);
if( conchPath==0 ){
return SQLITE_NOMEM_BKPT;
}
memcpy(conchPath, dbPath, len+1);
/* now insert a "." before the last / character */
for( i=(len-1); i>=0; i-- ){
if( conchPath[i]=='/' ){
i++;
break;
}
}
conchPath[i]='.';
while ( i<len ){
conchPath[i+1]=dbPath[i];
i++;
}
/* append the "-conch" suffix to the file */
memcpy(&conchPath[i+1], "-conch", 7);
assert( (int)strlen(conchPath) == len+7 );
return SQLITE_OK;
}
/* Takes a fully configured proxy locking-style unix file and switches
** the local lock file path
*/
static int switchLockProxyPath(unixFile *pFile, const char *path) {
proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
char *oldPath = pCtx->lockProxyPath;
int rc = SQLITE_OK;
if( pFile->eFileLock!=NO_LOCK ){
return SQLITE_BUSY;
}
/* nothing to do if the path is NULL, :auto: or matches the existing path */
if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ||
(oldPath && !strncmp(oldPath, path, MAXPATHLEN)) ){
return SQLITE_OK;
}else{
unixFile *lockProxy = pCtx->lockProxy;
pCtx->lockProxy=NULL;
pCtx->conchHeld = 0;
if( lockProxy!=NULL ){
rc=lockProxy->pMethod->xClose((sqlite3_file *)lockProxy);
if( rc ) return rc;
sqlite3_free(lockProxy);
}
sqlite3_free(oldPath);
pCtx->lockProxyPath = sqlite3DbStrDup(0, path);
}
return rc;
}
/*
** pFile is a file that has been opened by a prior xOpen call. dbPath
** is a string buffer at least MAXPATHLEN+1 characters in size.
**
** This routine find the filename associated with pFile and writes it
** int dbPath.
*/
static int proxyGetDbPathForUnixFile(unixFile *pFile, char *dbPath){
#if defined(__APPLE__)
if( pFile->pMethod == &afpIoMethods ){
/* afp style keeps a reference to the db path in the filePath field
** of the struct */
assert( (int)strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
strlcpy(dbPath, ((afpLockingContext *)pFile->lockingContext)->dbPath,
MAXPATHLEN);
} else
#endif
if( pFile->pMethod == &dotlockIoMethods ){
/* dot lock style uses the locking context to store the dot lock
** file path */
int len = strlen((char *)pFile->lockingContext) - strlen(DOTLOCK_SUFFIX);
memcpy(dbPath, (char *)pFile->lockingContext, len + 1);
}else{
/* all other styles use the locking context to store the db file path */
assert( strlen((char*)pFile->lockingContext)<=MAXPATHLEN );
strlcpy(dbPath, (char *)pFile->lockingContext, MAXPATHLEN);
}
return SQLITE_OK;
}
/*
** Takes an already filled in unix file and alters it so all file locking
** will be performed on the local proxy lock file. The following fields
** are preserved in the locking context so that they can be restored and
** the unix structure properly cleaned up at close time:
** ->lockingContext
** ->pMethod
*/
static int proxyTransformUnixFile(unixFile *pFile, const char *path) {
proxyLockingContext *pCtx;
char dbPath[MAXPATHLEN+1]; /* Name of the database file */
char *lockPath=NULL;
int rc = SQLITE_OK;
if( pFile->eFileLock!=NO_LOCK ){
return SQLITE_BUSY;
}
proxyGetDbPathForUnixFile(pFile, dbPath);
if( !path || path[0]=='\0' || !strcmp(path, ":auto:") ){
lockPath=NULL;
}else{
lockPath=(char *)path;
}
OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile->h,
(lockPath ? lockPath : ":auto:"), osGetpid(0)));
pCtx = sqlite3_malloc64( sizeof(*pCtx) );
if( pCtx==0 ){
return SQLITE_NOMEM_BKPT;
}
memset(pCtx, 0, sizeof(*pCtx));
rc = proxyCreateConchPathname(dbPath, &pCtx->conchFilePath);
if( rc==SQLITE_OK ){
rc = proxyCreateUnixFile(pCtx->conchFilePath, &pCtx->conchFile, 0);
if( rc==SQLITE_CANTOPEN && ((pFile->openFlags&O_RDWR) == 0) ){
/* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
** (c) the file system is read-only, then enable no-locking access.
** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
** that openFlags will have only one of O_RDONLY or O_RDWR.
*/
struct statfs fsInfo;
struct stat conchInfo;
int goLockless = 0;
if( osStat(pCtx->conchFilePath, &conchInfo) == -1 ) {
int err = errno;
if( (err==ENOENT) && (statfs(dbPath, &fsInfo) != -1) ){
goLockless = (fsInfo.f_flags&MNT_RDONLY) == MNT_RDONLY;
}
}
if( goLockless ){
pCtx->conchHeld = -1; /* read only FS/ lockless */
rc = SQLITE_OK;
}
}
}
if( rc==SQLITE_OK && lockPath ){
pCtx->lockProxyPath = sqlite3DbStrDup(0, lockPath);
}
if( rc==SQLITE_OK ){
pCtx->dbPath = sqlite3DbStrDup(0, dbPath);
if( pCtx->dbPath==NULL ){
rc = SQLITE_NOMEM_BKPT;
}
}
if( rc==SQLITE_OK ){
/* all memory is allocated, proxys are created and assigned,
** switch the locking context and pMethod then return.
*/
pCtx->oldLockingContext = pFile->lockingContext;
pFile->lockingContext = pCtx;
pCtx->pOldMethod = pFile->pMethod;
pFile->pMethod = &proxyIoMethods;
}else{
if( pCtx->conchFile ){
pCtx->conchFile->pMethod->xClose((sqlite3_file *)pCtx->conchFile);
sqlite3_free(pCtx->conchFile);
}
sqlite3DbFree(0, pCtx->lockProxyPath);
sqlite3_free(pCtx->conchFilePath);
sqlite3_free(pCtx);
}
OSTRACE(("TRANSPROXY %d %s\n", pFile->h,
(rc==SQLITE_OK ? "ok" : "failed")));
return rc;
}
/*
** This routine handles sqlite3_file_control() calls that are specific
** to proxy locking.
*/
static int proxyFileControl(sqlite3_file *id, int op, void *pArg){
switch( op ){
case SQLITE_FCNTL_GET_LOCKPROXYFILE: {
unixFile *pFile = (unixFile*)id;
if( pFile->pMethod == &proxyIoMethods ){
proxyLockingContext *pCtx = (proxyLockingContext*)pFile->lockingContext;
proxyTakeConch(pFile);
if( pCtx->lockProxyPath ){
*(const char **)pArg = pCtx->lockProxyPath;
}else{
*(const char **)pArg = ":auto: (not held)";
}
} else {
*(const char **)pArg = NULL;
}
return SQLITE_OK;
}
case SQLITE_FCNTL_SET_LOCKPROXYFILE: {
unixFile *pFile = (unixFile*)id;
int rc = SQLITE_OK;
int isProxyStyle = (pFile->pMethod == &proxyIoMethods);
if( pArg==NULL || (const char *)pArg==0 ){
if( isProxyStyle ){
/* turn off proxy locking - not supported. If support is added for
** switching proxy locking mode off then it will need to fail if
** the journal mode is WAL mode.
*/
rc = SQLITE_ERROR /*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
}else{
/* turn off proxy locking - already off - NOOP */
rc = SQLITE_OK;
}
}else{
const char *proxyPath = (const char *)pArg;
if( isProxyStyle ){
proxyLockingContext *pCtx =
(proxyLockingContext*)pFile->lockingContext;
if( !strcmp(pArg, ":auto:")
|| (pCtx->lockProxyPath &&
!strncmp(pCtx->lockProxyPath, proxyPath, MAXPATHLEN))
){
rc = SQLITE_OK;
}else{
rc = switchLockProxyPath(pFile, proxyPath);
}
}else{
/* turn on proxy file locking */
rc = proxyTransformUnixFile(pFile, proxyPath);
}
}
return rc;
}
default: {
assert( 0 ); /* The call assures that only valid opcodes are sent */
}
}
/*NOTREACHED*/ assert(0);
return SQLITE_ERROR;
}
/*
** Within this division (the proxying locking implementation) the procedures
** above this point are all utilities. The lock-related methods of the
** proxy-locking sqlite3_io_method object follow.
*/
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, set *pResOut
** to a non-zero value otherwise *pResOut is set to zero. The return value
** is set to SQLITE_OK unless an I/O error occurs during lock checking.
*/
static int proxyCheckReservedLock(sqlite3_file *id, int *pResOut) {
unixFile *pFile = (unixFile*)id;
int rc = proxyTakeConch(pFile);
if( rc==SQLITE_OK ){
proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
if( pCtx->conchHeld>0 ){
unixFile *proxy = pCtx->lockProxy;
return proxy->pMethod->xCheckReservedLock((sqlite3_file*)proxy, pResOut);
}else{ /* conchHeld < 0 is lockless */
pResOut=0;
}
}
return rc;
}
/*
** Lock the file with the lock specified by parameter eFileLock - one
** of the following:
**
** (1) SHARED_LOCK
** (2) RESERVED_LOCK
** (3) PENDING_LOCK
** (4) EXCLUSIVE_LOCK
**
** Sometimes when requesting one lock state, additional lock states
** are inserted in between. The locking might fail on one of the later
** transitions leaving the lock state different from what it started but
** still short of its goal. The following chart shows the allowed
** transitions and the inserted intermediate states:
**
** UNLOCKED -> SHARED
** SHARED -> RESERVED
** SHARED -> (PENDING) -> EXCLUSIVE
** RESERVED -> (PENDING) -> EXCLUSIVE
** PENDING -> EXCLUSIVE
**
** This routine will only increase a lock. Use the sqlite3OsUnlock()
** routine to lower a locking level.
*/
static int proxyLock(sqlite3_file *id, int eFileLock) {
unixFile *pFile = (unixFile*)id;
int rc = proxyTakeConch(pFile);
if( rc==SQLITE_OK ){
proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
if( pCtx->conchHeld>0 ){
unixFile *proxy = pCtx->lockProxy;
rc = proxy->pMethod->xLock((sqlite3_file*)proxy, eFileLock);
pFile->eFileLock = proxy->eFileLock;
}else{
/* conchHeld < 0 is lockless */
}
}
return rc;
}
/*
** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
*/
static int proxyUnlock(sqlite3_file *id, int eFileLock) {
unixFile *pFile = (unixFile*)id;
int rc = proxyTakeConch(pFile);
if( rc==SQLITE_OK ){
proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
if( pCtx->conchHeld>0 ){
unixFile *proxy = pCtx->lockProxy;
rc = proxy->pMethod->xUnlock((sqlite3_file*)proxy, eFileLock);
pFile->eFileLock = proxy->eFileLock;
}else{
/* conchHeld < 0 is lockless */
}
}
return rc;
}
/*
** Close a file that uses proxy locks.
*/
static int proxyClose(sqlite3_file *id) {
if( ALWAYS(id) ){
unixFile *pFile = (unixFile*)id;
proxyLockingContext *pCtx = (proxyLockingContext *)pFile->lockingContext;
unixFile *lockProxy = pCtx->lockProxy;
unixFile *conchFile = pCtx->conchFile;
int rc = SQLITE_OK;
if( lockProxy ){
rc = lockProxy->pMethod->xUnlock((sqlite3_file*)lockProxy, NO_LOCK);
if( rc ) return rc;
rc = lockProxy->pMethod->xClose((sqlite3_file*)lockProxy);
if( rc ) return rc;
sqlite3_free(lockProxy);
pCtx->lockProxy = 0;
}
if( conchFile ){
if( pCtx->conchHeld ){
rc = proxyReleaseConch(pFile);
if( rc ) return rc;
}
rc = conchFile->pMethod->xClose((sqlite3_file*)conchFile);
if( rc ) return rc;
sqlite3_free(conchFile);
}
sqlite3DbFree(0, pCtx->lockProxyPath);
sqlite3_free(pCtx->conchFilePath);
sqlite3DbFree(0, pCtx->dbPath);
/* restore the original locking context and pMethod then close it */
pFile->lockingContext = pCtx->oldLockingContext;
pFile->pMethod = pCtx->pOldMethod;
sqlite3_free(pCtx);
return pFile->pMethod->xClose(id);
}
return SQLITE_OK;
}
#endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
/*
** The proxy locking style is intended for use with AFP filesystems.
** And since AFP is only supported on MacOSX, the proxy locking is also
** restricted to MacOSX.
**
**
******************* End of the proxy lock implementation **********************
******************************************************************************/
/*
** Initialize the operating system interface.
**
** This routine registers all VFS implementations for unix-like operating
** systems. This routine, and the sqlite3_os_end() routine that follows,
** should be the only routines in this file that are visible from other
** files.
**
** This routine is called once during SQLite initialization and by a
** single thread. The memory allocation and mutex subsystems have not
** necessarily been initialized when this routine is called, and so they
** should not be used.
*/
int sqlite3_os_init(void){
/*
** The following macro defines an initializer for an sqlite3_vfs object.
** The name of the VFS is NAME. The pAppData is a pointer to a pointer
** to the "finder" function. (pAppData is a pointer to a pointer because
** silly C90 rules prohibit a void* from being cast to a function pointer
** and so we have to go through the intermediate pointer to avoid problems
** when compiling with -pedantic-errors on GCC.)
**
** The FINDER parameter to this macro is the name of the pointer to the
** finder-function. The finder-function returns a pointer to the
** sqlite_io_methods object that implements the desired locking
** behaviors. See the division above that contains the IOMETHODS
** macro for addition information on finder-functions.
**
** Most finders simply return a pointer to a fixed sqlite3_io_methods
** object. But the "autolockIoFinder" available on MacOSX does a little
** more than that; it looks at the filesystem type that hosts the
** database file and tries to choose an locking method appropriate for
** that filesystem time.
*/
#define UNIXVFS(VFSNAME, FINDER) { \
3, /* iVersion */ \
sizeof(unixFile), /* szOsFile */ \
MAX_PATHNAME, /* mxPathname */ \
0, /* pNext */ \
VFSNAME, /* zName */ \
(void*)&FINDER, /* pAppData */ \
unixOpen, /* xOpen */ \
unixDelete, /* xDelete */ \
unixAccess, /* xAccess */ \
unixFullPathname, /* xFullPathname */ \
unixDlOpen, /* xDlOpen */ \
unixDlError, /* xDlError */ \
unixDlSym, /* xDlSym */ \
unixDlClose, /* xDlClose */ \
unixRandomness, /* xRandomness */ \
unixSleep, /* xSleep */ \
unixCurrentTime, /* xCurrentTime */ \
unixGetLastError, /* xGetLastError */ \
unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
unixSetSystemCall, /* xSetSystemCall */ \
unixGetSystemCall, /* xGetSystemCall */ \
unixNextSystemCall, /* xNextSystemCall */ \
}
/*
** All default VFSes for unix are contained in the following array.
**
** Note that the sqlite3_vfs.pNext field of the VFS object is modified
** by the SQLite core when the VFS is registered. So the following
** array cannot be const.
*/
static sqlite3_vfs aVfs[] = {
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
UNIXVFS("unix", autolockIoFinder ),
#elif OS_VXWORKS
UNIXVFS("unix", vxworksIoFinder ),
#else
UNIXVFS("unix", posixIoFinder ),
#endif
UNIXVFS("unix-none", nolockIoFinder ),
UNIXVFS("unix-dotfile", dotlockIoFinder ),
UNIXVFS("unix-excl", posixIoFinder ),
#if OS_VXWORKS
UNIXVFS("unix-namedsem", semIoFinder ),
#endif
#if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
UNIXVFS("unix-posix", posixIoFinder ),
#endif
#if SQLITE_ENABLE_LOCKING_STYLE
UNIXVFS("unix-flock", flockIoFinder ),
#endif
#if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
UNIXVFS("unix-afp", afpIoFinder ),
UNIXVFS("unix-nfs", nfsIoFinder ),
UNIXVFS("unix-proxy", proxyIoFinder ),
#endif
};
unsigned int i; /* Loop counter */
/* Double-check that the aSyscall[] array has been constructed
** correctly. See ticket [bb3a86e890c8e96ab] */
assert( ArraySize(aSyscall)==29 );
/* Register all VFSes defined in the aVfs[] array */
for(i=0; i<(sizeof(aVfs)/sizeof(sqlite3_vfs)); i++){
#ifdef SQLITE_DEFAULT_UNIX_VFS
sqlite3_vfs_register(&aVfs[i],
0==strcmp(aVfs[i].zName,SQLITE_DEFAULT_UNIX_VFS));
#else
sqlite3_vfs_register(&aVfs[i], i==0);
#endif
}
#ifdef SQLITE_OS_KV_OPTIONAL
sqlite3KvvfsInit();
#endif
unixBigLock = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1);
#ifndef SQLITE_OMIT_SHARED_MEM
/* Validate lock assumptions */
assert( SQLITE_SHM_NLOCK==8 ); /* Number of available locks */
assert( UNIX_SHM_BASE==120 ); /* Start of locking area */
/* Locks:
** WRITE UNIX_SHM_BASE 120
** CKPT UNIX_SHM_BASE+1 121
** RECOVER UNIX_SHM_BASE+2 122
** READ-0 UNIX_SHM_BASE+3 123
** READ-1 UNIX_SHM_BASE+4 124
** READ-2 UNIX_SHM_BASE+5 125
** READ-3 UNIX_SHM_BASE+6 126
** READ-4 UNIX_SHM_BASE+7 127
** DMS UNIX_SHM_BASE+8 128
*/
assert( UNIX_SHM_DMS==128 ); /* Byte offset of the deadman-switch */
#endif
/* Initialize temp file dir array. */
unixTempFileInit();
return SQLITE_OK;
}
/*
** Shutdown the operating system interface.
**
** Some operating systems might need to do some cleanup in this routine,
** to release dynamically allocated objects. But not on unix.
** This routine is a no-op for unix.
*/
int sqlite3_os_end(void){
unixBigLock = 0;
return SQLITE_OK;
}
#endif /* SQLITE_OS_UNIX */