0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2025-01-24 06:36:49 +00:00
libsql/test/btree5.test
drh e6c438166f Table 1 of a database (the sqlite_master table) defaults to use B+trees. (CVS 1378)
FossilOrigin-Name: 45b60de5c7deb83d10ab54759434e32847f0c2ef
2004-05-14 12:17:46 +00:00

293 lines
7.0 KiB
Plaintext

# 2004 May 10
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. The
# focus of this script is btree database backend
#
# $Id: btree5.test,v 1.5 2004/05/14 12:17:46 drh Exp $
set testdir [file dirname $argv0]
source $testdir/tester.tcl
# Attempting to read table 1 of an empty file gives an SQLITE_EMPTY
# error.
#
do_test btree5-1.1 {
file delete -force test1.bt
file delete -force test1.bt-journal
set rc [catch {btree_open test1.bt 2000 0} ::b1]
} {0}
do_test btree5-1.2 {
set rc [catch {btree_cursor $::b1 1 0} ::c1]
} {1}
do_test btree5-1.3 {
set ::c1
} {SQLITE_EMPTY}
do_test btree5-1.4 {
set rc [catch {btree_cursor $::b1 1 1} ::c1]
} {1}
do_test btree5-1.5 {
set ::c1
} {SQLITE_EMPTY}
# Starting a transaction initializes the first page of the database
# and the error goes away.
#
do_test btree5-1.6 {
btree_begin_transaction $b1
set rc [catch {btree_cursor $b1 1 0} c1]
} {0}
do_test btree5-1.7 {
btree_first $c1
} {1}
do_test btree5-1.8 {
btree_close_cursor $c1
btree_rollback $b1
set rc [catch {btree_cursor $b1 1 0} c1]
} {1}
do_test btree5-1.9 {
set c1
} {SQLITE_EMPTY}
do_test btree5-1.10 {
btree_begin_transaction $b1
set rc [catch {btree_cursor $b1 1 0} c1]
} {0}
do_test btree5-1.11 {
btree_first $c1
} {1}
do_test btree5-1.12 {
btree_close_cursor $c1
btree_commit $b1
set rc [catch {btree_cursor $b1 1 0} c1]
} {0}
do_test btree5-1.13 {
btree_first $c1
} {1}
do_test btree5-1.14 {
btree_close_cursor $c1
btree_integrity_check $b1 1
} {}
# Insert many entries into table 1. This is designed to test the
# virtual-root logic that comes into play for page one. It is also
# a good test of INTKEY tables.
#
# Stagger the inserts. After the inserts complete, go back and do
# deletes. Stagger the deletes too. Repeat this several times.
#
# Do N inserts into table 1 using random keys between 0 and 1000000
#
proc random_inserts {N} {
global c1
while {$N>0} {
set k [expr {int(rand()*1000000)}]
if {[btree_move_to $c1 $k]==0} continue; # entry already exists
btree_insert $c1 $k data-for-$k
incr N -1
}
}
# Do N delete from table 1
#
proc random_deletes {N} {
global c1
while {$N>0} {
set k [expr {int(rand()*1000000)}]
btree_move_to $c1 $k
btree_delete $c1
incr N -1
}
}
# Make sure the table has exactly N entries. Make sure the data for
# each entry agrees with its key.
#
proc check_table {N} {
global c1
btree_first $c1
set cnt 0
while {![btree_eof $c1]} {
if {[set data [btree_data $c1]] ne "data-for-[btree_key $c1]"} {
return "wrong data for entry $cnt"
}
set n [string length $data]
set fdata1 [btree_fetch_data $c1 $n]
set fdata2 [btree_fetch_data $c1 -1]
if {$fdata1 ne "" && $fdata1 ne $data} {
return "DataFetch returned the wrong value with amt=$n"
}
if {$fdata1 ne $fdata2} {
return "DataFetch returned the wrong value when amt=-1"
}
if {$n>10} {
set fdata3 [btree_fetch_data $c1 10]
if {$fdata3 ne [string range $data 0 9]} {
return "DataFetch returned the wrong value when amt=10"
}
}
incr cnt
btree_next $c1
}
if {$cnt!=$N} {
return "wrong number of entries"
}
return {}
}
# Initialize the database
#
btree_begin_transaction $b1
set c1 [btree_cursor $b1 1 1]
set btree_trace 0
# Do the tests.
#
set cnt 0
for {set i 1} {$i<=100} {incr i} {
do_test btree5-2.$i.1 {
random_inserts 200
incr cnt 200
check_table $cnt
} {}
do_test btree5-2.$i.2 {
btree_integrity_check $b1 1
} {}
do_test btree5-2.$i.3 {
random_deletes 190
incr cnt -190
check_table $cnt
} {}
do_test btree5-2.$i.4 {
btree_integrity_check $b1 1
} {}
}
#btree_tree_dump $b1 1
btree_close_cursor $c1
btree_commit $b1
btree_begin_transaction $b1
# This procedure converts an integer into a variable-length text key.
# The conversion is reversible.
#
# The first two characters of the string are alphabetics derived from
# the least significant bits of the number. Because they are derived
# from least significant bits, the sort order of the resulting string
# is different from numeric order. After the alphabetic prefix comes
# the original number. A variable-length suffix follows. The length
# of the suffix is based on a hash of the original number.
#
proc num_to_key {n} {
global charset ncharset suffix
set c1 [string index $charset [expr {$n%$ncharset}]]
set c2 [string index $charset [expr {($n/$ncharset)%$ncharset}]]
set nsuf [expr {($n*211)%593}]
return $c1$c2-$n-[string range $suffix 0 $nsuf]
}
set charset {abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ}
set ncharset [string length $charset]
set suffix $charset$charset
while {[string length $suffix]<1000} {append suffix $suffix}
# This procedures extracts the original integer used to create
# a key by num_to_key
#
proc key_to_num {key} {
regexp {^..-([0-9]+)} $key all n
return $n
}
# Insert into table $tab keys corresponding to all values between
# $start and $end, inclusive.
#
proc insert_range {tab start end} {
for {set i $start} {$i<=$end} {incr i} {
btree_insert $tab [num_to_key $i] {}
}
}
# Delete from table $tab keys corresponding to all values between
# $start and $end, inclusive.
#
proc delete_range {tab start end} {
for {set i $start} {$i<=$end} {incr i} {
if {[btree_move_to $tab [num_to_key $i]]==0} {
btree_delete $tab
}
}
}
# Make sure table $tab contains exactly those keys corresponding
# to values between $start and $end
#
proc check_range {tab start end} {
btree_first $tab
while {![btree_eof $tab]} {
set key [btree_key $tab]
set i [key_to_num $key]
if {[num_to_key $i] ne $key} {
return "malformed key: $key"
}
set got($i) 1
btree_next $tab
}
set all [lsort -integer [array names got]]
if {[llength $all]!=$end+1-$start} {
return "table contains wrong number of values"
}
if {[lindex $all 0]!=$start} {
return "wrong starting value"
}
if {[lindex $all end]!=$end} {
return "wrong ending value"
}
return {}
}
# Create a zero-data table and test it out.
#
do_test btree5-3.1 {
set rc [catch {btree_create_table $b1 2} t2]
} {0}
do_test btree5-3.2 {
set rc [catch {btree_cursor $b1 $t2 1} c2]
} {0}
set start 1
set end 100
for {set i 1} {$i<=100} {incr i} {
do_test btree5-3.3.$i.1 {
insert_range $c2 $start $end
btree_integrity_check $b1 1 $t2
} {}
do_test btree5-3.3.$i.2 {
check_range $c2 $start $end
} {}
set nstart $start
incr nstart 89
do_test btree5-3.3.$i.3 {
delete_range $c2 $start $nstart
btree_integrity_check $b1 1 $t2
} {}
incr start 90
do_test btree5-3.3.$i.4 {
check_range $c2 $start $end
} {}
incr end 100
}
btree_close_cursor $c2
btree_commit $b1
btree_close $b1
finish_test