0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2025-01-20 23:15:09 +00:00
2024-07-22 09:56:55 +00:00

955 lines
35 KiB
Rust

/*
** 2000-05-29
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** Driver template for the LEMON parser generator.
**
** The "lemon" program processes an LALR(1) input grammar file, then uses
** this template to construct a parser. The "lemon" program inserts text
** at each "%%" line. Also, any "P-a-r-s-e" identifer prefix (without the
** interstitial "-" characters) contained in this template is changed into
** the value of the %name directive from the grammar. Otherwise, the content
** of this template is copied straight through into the generate parser
** source file.
**
** The following is the concatenation of all %include directives from the
** input grammar file:
*/
/************ Begin %include sections from the grammar ************************/
%%
/**************** End of %include directives **********************************/
/* These constants specify the various numeric values for terminal symbols.
***************** Begin token definitions *************************************/
%%
/**************** End token definitions ***************************************/
/* The next sections is a series of control #defines.
** various aspects of the generated parser.
** YYCODETYPE is the data type used to store the integer codes
** that represent terminal and non-terminal symbols.
** "unsigned char" is used if there are fewer than
** 256 symbols. Larger types otherwise.
** YYNOCODE is a number of type YYCODETYPE that is not used for
** any terminal or nonterminal symbol.
** YYFALLBACK If defined, this indicates that one or more tokens
** (also known as: "terminal symbols") have fall-back
** values which should be used if the original symbol
** would not parse. This permits keywords to sometimes
** be used as identifiers, for example.
** YYACTIONTYPE is the data type used for "action codes" - numbers
** that indicate what to do in response to the next
** token.
** ParseTOKENTYPE is the data type used for minor type for terminal
** symbols. Background: A "minor type" is a semantic
** value associated with a terminal or non-terminal
** symbols. For example, for an "ID" terminal symbol,
** the minor type might be the name of the identifier.
** Each non-terminal can have a different minor type.
** Terminal symbols all have the same minor type, though.
** This macros defines the minor type for terminal
** symbols.
** YYMINORTYPE is the data type used for all minor types.
** This is typically a union of many types, one of
** which is ParseTOKENTYPE. The entry in the union
** for terminal symbols is called "yy0".
** YYSTACKDEPTH is the maximum depth of the parser's stack. If
** zero the stack is dynamically sized using realloc()
** YYERRORSYMBOL is the code number of the error symbol. If not
** defined, then do no error processing.
** YYNSTATE the combined number of states.
** YYNRULE the number of rules in the grammar
** YYNTOKEN Number of terminal symbols
** YY_MAX_SHIFT Maximum value for shift actions
** YY_MIN_SHIFTREDUCE Minimum value for shift-reduce actions
** YY_MAX_SHIFTREDUCE Maximum value for shift-reduce actions
** YY_ERROR_ACTION The yy_action[] code for syntax error
** YY_ACCEPT_ACTION The yy_action[] code for accept
** YY_NO_ACTION The yy_action[] code for no-op
** YY_MIN_REDUCE Minimum value for reduce actions
** YY_MAX_REDUCE Maximum value for reduce actions
*/
/************* Begin control #defines *****************************************/
%%
/************* End control #defines *******************************************/
/* Next are the tables used to determine what action to take based on the
** current state and lookahead token. These tables are used to implement
** functions that take a state number and lookahead value and return an
** action integer.
**
** Suppose the action integer is N. Then the action is determined as
** follows
**
** 0 <= N <= YY_MAX_SHIFT Shift N. That is, push the lookahead
** token onto the stack and goto state N.
**
** N between YY_MIN_SHIFTREDUCE Shift to an arbitrary state then
** and YY_MAX_SHIFTREDUCE reduce by rule N-YY_MIN_SHIFTREDUCE.
**
** N == YY_ERROR_ACTION A syntax error has occurred.
**
** N == YY_ACCEPT_ACTION The parser accepts its input.
**
** N == YY_NO_ACTION No such action. Denotes unused
** slots in the yy_action[] table.
**
** N between YY_MIN_REDUCE Reduce by rule N-YY_MIN_REDUCE
** and YY_MAX_REDUCE
**
** The action table is constructed as a single large table named yy_action[].
** Given state S and lookahead X, the action is computed as either:
**
** (A) N = yy_action[ yy_shift_ofst[S] + X ]
** (B) N = yy_default[S]
**
** The (A) formula is preferred. The B formula is used instead if
** yy_lookahead[yy_shift_ofst[S]+X] is not equal to X.
**
** The formulas above are for computing the action when the lookahead is
** a terminal symbol. If the lookahead is a non-terminal (as occurs after
** a reduce action) then the yy_reduce_ofst[] array is used in place of
** the yy_shift_ofst[] array.
**
** The following are the tables generated in this section:
**
** yy_action[] A single table containing all actions.
** yy_lookahead[] A table containing the lookahead for each entry in
** yy_action. Used to detect hash collisions.
** yy_shift_ofst[] For each state, the offset into yy_action for
** shifting terminals.
** yy_reduce_ofst[] For each state, the offset into yy_action for
** shifting non-terminals after a reduce.
** yy_default[] Default action for each state.
**
*********** Begin parsing tables **********************************************/
%%
/********** End of lemon-generated parsing tables *****************************/
/* The next table maps tokens (terminal symbols) into fallback tokens.
** If a construct like the following:
**
** %fallback ID X Y Z.
**
** appears in the grammar, then ID becomes a fallback token for X, Y,
** and Z. Whenever one of the tokens X, Y, or Z is input to the parser
** but it does not parse, the type of the token is changed to ID and
** the parse is retried before an error is thrown.
**
** This feature can be used, for example, to cause some keywords in a language
** to revert to identifiers if they keyword does not apply in the context where
** it appears.
*/
%%
/* The following structure represents a single element of the
** parser's stack. Information stored includes:
**
** + The state number for the parser at this level of the stack.
**
** + The value of the token stored at this level of the stack.
** (In other words, the "major" token.)
**
** + The semantic value stored at this level of the stack. This is
** the information used by the action routines in the grammar.
** It is sometimes called the "minor" token.
**
** After the "shift" half of a SHIFTREDUCE action, the stateno field
** actually contains the reduce action for the second half of the
** SHIFTREDUCE.
*/
#[allow(non_camel_case_types)]
#[derive(Default)]
pub struct yyStackEntry {
stateno: YYACTIONTYPE, /* The state-number, or reduce action in SHIFTREDUCE */
major: YYCODETYPE, /* The major token value. This is the code
** number for the token at this stack level */
minor: YYMINORTYPE, /* The user-supplied minor token value. This
** is the value of the token */
}
/* The state of the parser is completely contained in an instance of
** the following structure */
#[allow(non_camel_case_types)]
pub struct yyParser<'input> {
yyidx: usize, /* Index to top element of the stack */
#[cfg(feature = "YYTRACKMAXSTACKDEPTH")]
yyhwm: usize, /* High-water mark of the stack */
//#[cfg(not(feature = "YYNOERRORRECOVERY"))]
yyerrcnt: i32, /* Shifts left before out of the error */
%% /* A place to hold %extra_context */
yystack: Vec<yyStackEntry>, /* The parser's stack */
}
use std::cmp::Ordering;
use std::ops::Neg;
impl yyParser<'_> {
fn shift(&self, shift: i8) -> usize {
assert!(shift <= 1);
match shift.cmp(&0) {
Ordering::Equal => self.yyidx,
Ordering::Greater => self.yyidx + shift as usize,
Ordering::Less => self.yyidx.checked_sub(shift.neg() as usize).unwrap(),
}
}
fn yyidx_shift(&mut self, shift: i8) {
match shift.cmp(&0) {
Ordering::Greater => self.yyidx += shift as usize,
Ordering::Less => self.yyidx = self.yyidx.checked_sub(shift.neg() as usize).unwrap(),
Ordering::Equal => {}
}
}
fn yy_move(&mut self, shift: i8) -> yyStackEntry {
use std::mem::take;
let idx = self.shift(shift);
take(&mut self.yystack[idx])
}
fn push(&mut self, entry: yyStackEntry) {
if self.yyidx == self.yystack.len() {
self.yystack.push(entry);
} else {
self.yystack[self.yyidx] = entry;
}
}
}
use std::ops::{Index, IndexMut};
impl Index<i8> for yyParser<'_> {
type Output = yyStackEntry;
fn index(&self, shift: i8) -> &yyStackEntry {
let idx = self.shift(shift);
&self.yystack[idx]
}
}
impl IndexMut<i8> for yyParser<'_> {
fn index_mut(&mut self, shift: i8) -> &mut yyStackEntry {
let idx = self.shift(shift);
&mut self.yystack[idx]
}
}
#[cfg(not(feature = "NDEBUG"))]
use log::Level::Debug;
#[cfg(not(feature = "NDEBUG"))]
static TARGET: &str = "Parse";
/* For tracing shifts, the names of all terminals and nonterminals
** are required. The following table supplies these names */
#[cfg(any(feature = "YYCOVERAGE", not(feature = "NDEBUG")))]
%%
/* For tracing reduce actions, the names of all rules are required.
*/
#[cfg(not(feature = "NDEBUG"))]
#[rustfmt::skip]
#[allow(non_upper_case_globals)]
static yyRuleName: [&str; YYNRULE] = [
%%
];
/*
** Try to increase the size of the parser stack. Return the number
** of errors. Return 0 on success.
*/
impl yyParser<'_> {
fn yy_grow_stack_if_needed(&mut self) -> bool {
if self.yyidx >= self.yystack.capacity() {
if self.yyGrowStack() {
self.yyidx = self.yyidx.checked_sub(1).unwrap();
self.yyStackOverflow();
return true;
}
}
false
}
fn yy_grow_stack_for_push(&mut self) -> bool {
if self.yyidx >= self.yystack.capacity() - 1 {
if self.yyGrowStack() {
self.yyStackOverflow();
return true;
}
}
// yystack is not prefilled with zero value like in C.
if self.yyidx == self.yystack.len() {
self.yystack.push(yyStackEntry::default());
} else if self.yyidx + 1 == self.yystack.len() {
self.yystack.push(yyStackEntry::default());
}
false
}
#[allow(non_snake_case)]
#[cfg(feature = "YYSTACKDYNAMIC")]
fn yyGrowStack(&mut self) -> bool {
let capacity = self.yystack.capacity();
let additional = capacity + 100;
self.yystack.reserve(additional);
#[cfg(not(feature = "NDEBUG"))]
{
trace!(
target: TARGET,
"Stack grows from {} to {} entries.",
capacity,
self.yystack.capacity()
);
}
false
}
#[allow(non_snake_case)]
#[cfg(not(feature = "YYSTACKDYNAMIC"))]
fn yyGrowStack(&mut self) -> bool {
true
}
}
/* Initialize a new parser.
*/
impl yyParser<'_> {
pub fn new(
%% /* Optional %extra_context parameter */
) -> yyParser {
let mut p = yyParser {
yyidx: 0,
#[cfg(feature = "YYTRACKMAXSTACKDEPTH")]
yyhwm: 0,
yystack: Vec::with_capacity(YYSTACKDEPTH),
//#[cfg(not(feature = "YYNOERRORRECOVERY"))]
yyerrcnt: -1,
%% /* Optional %extra_context store */
};
p.push(yyStackEntry::default());
p
}
}
/*
** Pop the parser's stack once.
*/
impl yyParser<'_> {
fn yy_pop_parser_stack(&mut self) {
use std::mem::take;
let yytos = take(&mut self.yystack[self.yyidx]);
self.yyidx = self.yyidx.checked_sub(1).unwrap();
//assert_eq!(self.yyidx+1, self.yystack.len());
#[cfg(not(feature = "NDEBUG"))]
{
trace!(
target: TARGET,
"Popping {}", yyTokenName[yytos.major as usize]
);
}
}
}
/*
** Clear all secondary memory allocations from the parser
*/
impl yyParser<'_> {
#[allow(non_snake_case)]
pub fn ParseFinalize(&mut self) {
while self.yyidx > 0 {
self.yy_pop_parser_stack();
}
// TODO check all elements remaining in yystack are yyinit()
}
}
/*
** Return the peak depth of the stack for a parser.
*/
#[cfg(feature = "YYTRACKMAXSTACKDEPTH")]
impl yyParser<'_> {
#[allow(non_snake_case)]
pub fn ParseStackPeak(&self) -> usize {
self.yyhwm
}
fn yyhwm_incr(&mut self) {
if self.yyidx > self.yyhwm {
self.yyhwm += 1;
assert_eq!(self.yyhwm, self.yyidx);
}
}
}
#[cfg(not(feature = "YYTRACKMAXSTACKDEPTH"))]
impl yyParser<'_> {
#[inline]
fn yyhwm_incr(&mut self) {}
}
/* This array of booleans keeps track of the parser statement
** coverage. The element yycoverage[X][Y] is set when the parser
** is in state X and has a lookahead token Y. In a well-tested
** systems, every element of this matrix should end up being set.
*/
#[cfg(feature = "YYCOVERAGE")]
static yycoverage: [[bool; YYNTOKEN]; YYNSTATE] = [];
/*
** Write into out a description of every state/lookahead combination that
**
** (1) has not been used by the parser, and
** (2) is not a syntax error.
**
** Return the number of missed state/lookahead combinations.
*/
#[cfg(feature = "YYCOVERAGE")]
fn ParseCoverage(/*FILE *out*/) -> i32 {
//int stateno, iLookAhead, i;
let mut nMissed = 0;
/*for(stateno=0; stateno<YYNSTATE; stateno++){
i = yy_shift_ofst[stateno];
for(iLookAhead=0; iLookAhead<YYNTOKEN; iLookAhead++){
if( yy_lookahead[i+iLookAhead]!=iLookAhead ) continue;
if( yycoverage[stateno][iLookAhead]==0 ) nMissed++;
if( out ){
fprintf(out,"State %d lookahead %s %s\n", stateno,
yyTokenName[iLookAhead],
yycoverage[stateno][iLookAhead] ? "ok" : "missed");
}
}
}*/
return nMissed;
}
/*
** Find the appropriate action for a parser given the terminal
** look-ahead token iLookAhead.
*/
#[allow(non_snake_case)]
fn yy_find_shift_action(
mut iLookAhead: YYCODETYPE, /* The look-ahead token */
stateno: YYACTIONTYPE, /* Current state number */
) -> YYACTIONTYPE {
if stateno > YY_MAX_SHIFT {
return stateno;
}
assert!(stateno <= YY_SHIFT_COUNT);
#[cfg(feature = "YYCOVERAGE")]
{
//yycoverage[stateno][iLookAhead] = true;
}
loop {
let mut i = yy_shift_ofst[stateno as usize] as usize;
assert!(i <= YY_ACTTAB_COUNT!());
assert!(i + usize::from(YYNTOKEN) <= yy_lookahead.len());
assert_ne!(iLookAhead, YYNOCODE);
assert!((iLookAhead as YYACTIONTYPE) < YYNTOKEN);
i += iLookAhead as usize;
if yy_lookahead[i] != iLookAhead {
if YYFALLBACK {
let iFallback = yyFallback[iLookAhead as usize]; /* Fallback token */
if iFallback != 0 {
#[cfg(not(feature = "NDEBUG"))]
{
trace!(
target: TARGET,
"FALLBACK {} => {}",
yyTokenName[iLookAhead as usize],
yyTokenName[iFallback as usize]
);
}
assert_eq!(yyFallback[iFallback as usize], 0); /* Fallback loop must terminate */
iLookAhead = iFallback;
continue;
}
}
if YYWILDCARD > 0 {
let j = i - iLookAhead as usize + YYWILDCARD as usize;
if yy_lookahead[j] == YYWILDCARD && iLookAhead > 0 {
#[cfg(not(feature = "NDEBUG"))]
{
trace!(
target: TARGET,
"WILDCARD {} => {}",
yyTokenName[iLookAhead as usize],
yyTokenName[YYWILDCARD as usize]
);
}
return yy_action[j];
}
} /* YYWILDCARD */
return yy_default[stateno as usize];
} else {
return yy_action[i];
}
}
}
/*
** Find the appropriate action for a parser given the non-terminal
** look-ahead token iLookAhead.
*/
#[allow(non_snake_case)]
fn yy_find_reduce_action(
stateno: YYACTIONTYPE, /* Current state number */
iLookAhead: YYCODETYPE, /* The look-ahead token */
) -> YYACTIONTYPE {
if YYERRORSYMBOL > 0 {
if stateno > YY_REDUCE_COUNT {
return yy_default[stateno as usize];
}
} else {
assert!(stateno <= YY_REDUCE_COUNT);
}
let mut i: i32 = yy_reduce_ofst[stateno as usize].into();
assert_ne!(iLookAhead, YYNOCODE);
i += i32::from(iLookAhead);
if YYERRORSYMBOL > 0 {
if !(0..YY_ACTTAB_COUNT!()).contains(&i) || yy_lookahead[i as usize] != iLookAhead {
return yy_default[stateno as usize];
}
} else {
assert!((0..YY_ACTTAB_COUNT!()).contains(&i));
assert_eq!(yy_lookahead[i as usize], iLookAhead);
}
yy_action[i as usize]
}
/*
** The following routine is called if the stack overflows.
*/
impl yyParser<'_> {
#[allow(non_snake_case)]
fn yyStackOverflow(&mut self) {
#[cfg(not(feature = "NDEBUG"))]
{
error!(target: TARGET, "Stack Overflow!");
}
while self.yyidx > 0 {
self.yy_pop_parser_stack();
}
/* Here code is inserted which will execute if the parser
** stack every overflows */
/******** Begin %stack_overflow code ******************************************/
%%
/******** End %stack_overflow code ********************************************/
}
}
/*
** Print tracing information for a SHIFT action
*/
impl yyParser<'_> {
#[allow(non_snake_case)]
fn yyTraceShift(&self, yyNewState: YYACTIONTYPE, zTag: &str) {
#[cfg(not(feature = "NDEBUG"))]
{
let yytos = &self[0];
if yyNewState < YYNSTATE {
trace!(
target: TARGET,
"{} '{}', go to state {}", zTag, yyTokenName[yytos.major as usize], yyNewState
);
} else {
trace!(
target: TARGET,
"{} '{}', pending reduce {:?}",
zTag,
yyTokenName[yytos.major as usize],
yyNewState.checked_sub(YY_MIN_REDUCE)
);
}
}
}
}
/*
** Perform a shift action.
*/
impl yyParser<'_> {
#[allow(non_snake_case)]
fn yy_shift(
&mut self,
mut yyNewState: YYACTIONTYPE, /* The new state to shift in */
yyMajor: YYCODETYPE, /* The major token to shift in */
yyMinor: ParseTOKENTYPE, /* The minor token to shift in */
) {
self.yyidx_shift(1);
self.yyhwm_incr();
if self.yy_grow_stack_if_needed() {
return;
}
if yyNewState > YY_MAX_SHIFT {
yyNewState += YY_MIN_REDUCE - YY_MIN_SHIFTREDUCE;
}
let yytos = yyStackEntry {
stateno: yyNewState,
major: yyMajor,
minor: YYMINORTYPE::yy0(yyMinor),
};
self.push(yytos);
self.yyTraceShift(yyNewState, "Shift");
}
}
/* For rule J, yyRuleInfoLhs[J] contains the symbol on the left-hand side
** of that rule */
#[allow(non_upper_case_globals)]
static yyRuleInfoLhs: [YYCODETYPE; YYNRULE] = [
%%
];
/* For rule J, yyRuleInfoNRhs[J] contains the negative of the number
** of symbols on the right-hand side of that rule. */
#[allow(non_upper_case_globals)]
static yyRuleInfoNRhs: [i8; YYNRULE] = [
%%
];
/*
** Perform a reduce action and the shift that must immediately
** follow the reduce.
**
** The yyLookahead and yyLookaheadToken parameters provide reduce actions
** access to the lookahead token (if any). The yyLookahead will be YYNOCODE
** if the lookahead token has already been consumed. As this procedure is
** only called from one place, optimizing compilers will in-line it, which
** means that the extra parameters have no performance impact.
*/
impl yyParser<'_> {
fn yy_reduce(
&mut self,
yyruleno: YYACTIONTYPE, /* Number of the rule by which to reduce */
yy_look_ahead: YYCODETYPE, /* Lookahead token, or YYNOCODE if none */
yy_lookahead_token: &ParseTOKENTYPE, /* Value of the lookahead token */
) -> Result<YYACTIONTYPE, ParseError> {
let _ = yy_look_ahead;
let _ = yy_lookahead_token;
let yylhsminor: YYMINORTYPE;
match yyruleno {
/* Beginning here are the reduction cases. A typical example
** follows:
** case 0:
** #line <lineno> <grammarfile>
** { ... } // User supplied code
** #line <lineno> <thisfile>
** break;
*/
/********** Begin reduce actions **********************************************/
%%
/********** End reduce actions ************************************************/
};
let yygoto: YYCODETYPE = yyRuleInfoLhs[yyruleno as usize]; /* The next state */
let yysize: i8 = yyRuleInfoNRhs[yyruleno as usize]; /* Amount to pop the stack */
let yyact: YYACTIONTYPE = yy_find_reduce_action(self[yysize].stateno, yygoto); /* The next action */
/* There are no SHIFTREDUCE actions on nonterminals because the table
** generator has simplified them to pure REDUCE actions. */
assert!(!(yyact > YY_MAX_SHIFT && yyact <= YY_MAX_SHIFTREDUCE));
/* It is not possible for a REDUCE to be followed by an error */
assert_ne!(yyact, YY_ERROR_ACTION);
self.yyidx_shift(yysize + 1);
{
let yymsp = &mut self[0];
yymsp.stateno = yyact;
yymsp.major = yygoto;
}
self.yyTraceShift(yyact, "... then shift");
Ok(yyact)
}
}
/*
** The following code executes when the parse fails
*/
impl yyParser<'_> {
#[cfg(not(feature = "YYNOERRORRECOVERY"))]
fn yy_parse_failed(&mut self) {
#[cfg(not(feature = "NDEBUG"))]
{
error!(target: TARGET, "Fail!");
}
while self.yyidx > 0 {
self.yy_pop_parser_stack();
}
/* Here code is inserted which will be executed whenever the
** parser fails */
/************ Begin %parse_failure code ***************************************/
%%
/************ End %parse_failure code *****************************************/
}
#[cfg(feature = "YYNOERRORRECOVERY")]
fn yy_parse_failed(&mut self) {}
}
/*
** The following code executes when a syntax error first occurs.
*/
impl yyParser<'_> {
fn yy_syntax_error(
&mut self,
yymajor: YYCODETYPE, /* The major type of the error token */
yyminor: &ParseTOKENTYPE, /* The minor type of the error token */
) {
/************ Begin %syntax_error code ****************************************/
%%
/************ End %syntax_error code ******************************************/
}
}
/*
** The following is executed when the parser accepts
*/
impl yyParser<'_> {
fn yy_accept(&mut self) {
#[cfg(not(feature = "NDEBUG"))]
{
trace!(target: TARGET, "Accept!");
}
if cfg!(not(feature = "YYNOERRORRECOVERY")) {
self.yyerrcnt = -1;
}
assert_eq!(self.yyidx, 0);
/* Here code is inserted which will be executed whenever the
** parser accepts */
/*********** Begin %parse_accept code *****************************************/
%%
/*********** End %parse_accept code *******************************************/
}
}
/* The main parser program.
** The first argument is a pointer to a structure obtained from
** "ParseAlloc" which describes the current state of the parser.
** The second argument is the major token number. The third is
** the minor token. The fourth optional argument is whatever the
** user wants (and specified in the grammar) and is available for
** use by the action routines.
**
** Inputs:
** <ul>
** <li> A pointer to the parser (an opaque structure.)
** <li> The major token number.
** <li> The minor token number.
** <li> An option argument of a grammar-specified type.
** </ul>
**
** Outputs:
** None.
*/
impl yyParser<'_> {
#[allow(non_snake_case)]
pub fn Parse(
&mut self,
yymajor: TokenType, /* The major token code number */
mut yyminor: ParseTOKENTYPE, /* The value for the token */
) -> Result<(), ParseError> {
let mut yymajor = yymajor as YYCODETYPE;
//#[cfg(all(not(feature = "YYERRORSYMBOL"), not(feature = "YYNOERRORRECOVERY")))]
let mut yyendofinput: bool = false; /* True if we are at the end of input */
//#[cfg(feature = "YYERRORSYMBOL")]
let mut yyerrorhit: bool = false; /* True if yymajor has invoked an error */
//assert_ne!( self[0], null );
if YYERRORSYMBOL == 0 && cfg!(not(feature = "YYNOERRORRECOVERY")) {
yyendofinput = yymajor == 0;
}
let mut yyact: YYACTIONTYPE = self[0].stateno; /* The parser action. */
#[cfg(not(feature = "NDEBUG"))]
{
if yyact < YY_MIN_REDUCE {
trace!(
target: TARGET,
"Input '{}' in state {}", yyTokenName[yymajor as usize], yyact
);
} else {
trace!(
target: TARGET,
"Input '{}' with pending reduce {}",
yyTokenName[yymajor as usize],
yyact - YY_MIN_REDUCE
);
}
}
loop {
assert_eq!(yyact, self[0].stateno);
yyact = yy_find_shift_action(yymajor, yyact);
if yyact >= YY_MIN_REDUCE {
let yyruleno = yyact - YY_MIN_REDUCE; /* Reduce by this rule */
#[cfg(not(feature = "NDEBUG"))]
{
assert!((yyruleno as usize) < yyRuleName.len());
let yysize = yyRuleInfoNRhs[yyruleno as usize];
let action = if yyruleno < YYNRULE_WITH_ACTION {
""
} else {
" without external action"
};
if yysize != 0 {
trace!(
target: TARGET,
"Reduce {} [{}]{}, pop back to state {}.",
yyruleno,
yyRuleName[yyruleno as usize],
action,
self[yysize].stateno
);
} else {
trace!(
target: TARGET,
"Reduce {} [{}]{}.", yyruleno, yyRuleName[yyruleno as usize], action
);
}
}
/* Check that the stack is large enough to grow by a single entry
** if the RHS of the rule is empty. This ensures that there is room
** enough on the stack to push the LHS value */
if yyRuleInfoNRhs[yyruleno as usize] == 0 {
self.yyhwm_incr();
if self.yy_grow_stack_for_push() {
break;
}
}
yyact = self.yy_reduce(yyruleno, yymajor, &yyminor)?;
} else if yyact <= YY_MAX_SHIFTREDUCE {
self.yy_shift(yyact, yymajor, yyminor.take());
if cfg!(not(feature = "YYNOERRORRECOVERY")) {
self.yyerrcnt -= 1;
}
break;
} else if yyact == YY_ACCEPT_ACTION {
self.yyidx_shift(-1);
self.yy_accept();
return Ok(());
} else {
assert_eq!(yyact, YY_ERROR_ACTION);
#[cfg(not(feature = "NDEBUG"))]
{
trace!(target: TARGET, "Syntax Error!");
}
if YYERRORSYMBOL > 0 {
/* A syntax error has occurred.
** The response to an error depends upon whether or not the
** grammar defines an error token "ERROR".
**
** This is what we do if the grammar does define ERROR:
**
** * Call the %syntax_error function.
**
** * Begin popping the stack until we enter a state where
** it is legal to shift the error symbol, then shift
** the error symbol.
**
** * Set the error count to three.
**
** * Begin accepting and shifting new tokens. No new error
** processing will occur until three tokens have been
** shifted successfully.
**
*/
if self.yyerrcnt < 0 {
self.yy_syntax_error(yymajor, &yyminor);
}
let yymx = self[0].major;
if yymx == YYERRORSYMBOL || yyerrorhit {
#[cfg(not(feature = "NDEBUG"))]
{
trace!(
target: TARGET,
"Discard input token {}", yyTokenName[yymajor as usize]
);
}
yymajor = YYNOCODE;
} else {
while self.yyidx > 0 {
yyact = yy_find_reduce_action(self[0].stateno, YYERRORSYMBOL);
if yyact <= YY_MAX_SHIFTREDUCE {
break;
}
self.yy_pop_parser_stack();
}
if self.yyidx <= 0 || yymajor == 0 {
self.yy_parse_failed();
if cfg!(not(feature = "YYNOERRORRECOVERY")) {
self.yyerrcnt = -1;
}
yymajor = YYNOCODE;
} else if yymx != YYERRORSYMBOL {
self.yy_shift(yyact, YYERRORSYMBOL, yyminor.take());
}
}
self.yyerrcnt = 3;
yyerrorhit = true;
if yymajor == YYNOCODE {
break;
}
yyact = self[0].stateno;
} else if cfg!(feature = "YYNOERRORRECOVERY") {
/* If the YYNOERRORRECOVERY macro is defined, then do not attempt to
** do any kind of error recovery. Instead, simply invoke the syntax
** error routine and continue going as if nothing had happened.
**
** Applications can set this macro (for example inside %include) if
** they intend to abandon the parse upon the first syntax error seen.
*/
self.yy_syntax_error(yymajor, &yyminor);
break;
} else {
/* YYERRORSYMBOL is not defined */
/* This is what we do if the grammar does not define ERROR:
**
** * Report an error message, and throw away the input token.
**
** * If the input token is $, then fail the parse.
**
** As before, subsequent error messages are suppressed until
** three input tokens have been successfully shifted.
*/
if self.yyerrcnt <= 0 {
self.yy_syntax_error(yymajor, &yyminor);
}
self.yyerrcnt = 3;
if yyendofinput {
self.yy_parse_failed();
if cfg!(not(feature = "YYNOERRORRECOVERY")) {
self.yyerrcnt = -1;
}
}
break;
}
}
if self.yyidx <= 0 {
break;
}
}
#[cfg(not(feature = "NDEBUG"))]
{
if log_enabled!(target: TARGET, Debug) {
let msg = self.yystack[1..=self.yyidx]
.iter()
.map(|entry| yyTokenName[entry.major as usize])
.collect::<Vec<&str>>()
.join(" ");
trace!(target: TARGET, "Return. Stack=[{}]", msg);
}
}
return Ok(());
}
/*
** Return the fallback token corresponding to canonical token iToken, or
** 0 if iToken has no fallback.
*/
pub fn parse_fallback(i_token: YYCODETYPE) -> YYCODETYPE {
if YYFALLBACK {
return yyFallback[i_token as usize];
}
0
}
}