0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2024-12-15 12:09:42 +00:00
libsql/libsql-sqlite3/ext/wasm/api/sqlite3-vfs-opfs.c-pp.js
2023-11-15 14:46:34 +01:00

1470 lines
56 KiB
JavaScript

//#ifnot target=node
/*
2022-09-18
The author disclaims copyright to this source code. In place of a
legal notice, here is a blessing:
* May you do good and not evil.
* May you find forgiveness for yourself and forgive others.
* May you share freely, never taking more than you give.
***********************************************************************
This file holds the synchronous half of an sqlite3_vfs
implementation which proxies, in a synchronous fashion, the
asynchronous Origin-Private FileSystem (OPFS) APIs using a second
Worker, implemented in sqlite3-opfs-async-proxy.js. This file is
intended to be appended to the main sqlite3 JS deliverable somewhere
after sqlite3-api-oo1.js and before sqlite3-api-cleanup.js.
*/
'use strict';
globalThis.sqlite3ApiBootstrap.initializers.push(function(sqlite3){
/**
installOpfsVfs() returns a Promise which, on success, installs an
sqlite3_vfs named "opfs", suitable for use with all sqlite3 APIs
which accept a VFS. It is intended to be called via
sqlite3ApiBootstrap.initializers or an equivalent mechanism.
The installed VFS uses the Origin-Private FileSystem API for
all file storage. On error it is rejected with an exception
explaining the problem. Reasons for rejection include, but are
not limited to:
- The counterpart Worker (see below) could not be loaded.
- The environment does not support OPFS. That includes when
this function is called from the main window thread.
Significant notes and limitations:
- As of this writing, OPFS is still very much in flux and only
available in bleeding-edge versions of Chrome (v102+, noting that
that number will increase as the OPFS API matures).
- The OPFS features used here are only available in dedicated Worker
threads. This file tries to detect that case, resulting in a
rejected Promise if those features do not seem to be available.
- It requires the SharedArrayBuffer and Atomics classes, and the
former is only available if the HTTP server emits the so-called
COOP and COEP response headers. These features are required for
proxying OPFS's synchronous API via the synchronous interface
required by the sqlite3_vfs API.
- This function may only be called a single time. When called, this
function removes itself from the sqlite3 object.
All arguments to this function are for internal/development purposes
only. They do not constitute a public API and may change at any
time.
The argument may optionally be a plain object with the following
configuration options:
- proxyUri: as described above
- verbose (=2): an integer 0-3. 0 disables all logging, 1 enables
logging of errors. 2 enables logging of warnings and errors. 3
additionally enables debugging info.
- sanityChecks (=false): if true, some basic sanity tests are
run on the OPFS VFS API after it's initialized, before the
returned Promise resolves.
On success, the Promise resolves to the top-most sqlite3 namespace
object and that object gets a new object installed in its
`opfs` property, containing several OPFS-specific utilities.
*/
const installOpfsVfs = function callee(options){
if(!globalThis.SharedArrayBuffer
|| !globalThis.Atomics){
return Promise.reject(
new Error("Cannot install OPFS: Missing SharedArrayBuffer and/or Atomics. "+
"The server must emit the COOP/COEP response headers to enable those. "+
"See https://sqlite.org/wasm/doc/trunk/persistence.md#coop-coep")
);
}else if('undefined'===typeof WorkerGlobalScope){
return Promise.reject(
new Error("The OPFS sqlite3_vfs cannot run in the main thread "+
"because it requires Atomics.wait().")
);
}else if(!globalThis.FileSystemHandle ||
!globalThis.FileSystemDirectoryHandle ||
!globalThis.FileSystemFileHandle ||
!globalThis.FileSystemFileHandle.prototype.createSyncAccessHandle ||
!navigator?.storage?.getDirectory){
return Promise.reject(
new Error("Missing required OPFS APIs.")
);
}
if(!options || 'object'!==typeof options){
options = Object.create(null);
}
const urlParams = new URL(globalThis.location.href).searchParams;
if(urlParams.has('opfs-disable')){
//sqlite3.config.warn('Explicitly not installing "opfs" VFS due to opfs-disable flag.');
return Promise.resolve(sqlite3);
}
if(undefined===options.verbose){
options.verbose = urlParams.has('opfs-verbose')
? (+urlParams.get('opfs-verbose') || 2) : 1;
}
if(undefined===options.sanityChecks){
options.sanityChecks = urlParams.has('opfs-sanity-check');
}
if(undefined===options.proxyUri){
options.proxyUri = callee.defaultProxyUri;
}
//sqlite3.config.warn("OPFS options =",options,globalThis.location);
if('function' === typeof options.proxyUri){
options.proxyUri = options.proxyUri();
}
const thePromise = new Promise(function(promiseResolve_, promiseReject_){
const loggers = [
sqlite3.config.error,
sqlite3.config.warn,
sqlite3.config.log
];
const logImpl = (level,...args)=>{
if(options.verbose>level) loggers[level]("OPFS syncer:",...args);
};
const log = (...args)=>logImpl(2, ...args);
const warn = (...args)=>logImpl(1, ...args);
const error = (...args)=>logImpl(0, ...args);
const toss = sqlite3.util.toss;
const capi = sqlite3.capi;
const util = sqlite3.util;
const wasm = sqlite3.wasm;
const sqlite3_vfs = capi.sqlite3_vfs;
const sqlite3_file = capi.sqlite3_file;
const sqlite3_io_methods = capi.sqlite3_io_methods;
/**
Generic utilities for working with OPFS. This will get filled out
by the Promise setup and, on success, installed as sqlite3.opfs.
ACHTUNG: do not rely on these APIs in client code. They are
experimental and subject to change or removal as the
OPFS-specific sqlite3_vfs evolves.
*/
const opfsUtil = Object.create(null);
/**
Returns true if _this_ thread has access to the OPFS APIs.
*/
const thisThreadHasOPFS = ()=>{
return globalThis.FileSystemHandle &&
globalThis.FileSystemDirectoryHandle &&
globalThis.FileSystemFileHandle &&
globalThis.FileSystemFileHandle.prototype.createSyncAccessHandle &&
navigator?.storage?.getDirectory;
};
/**
Not part of the public API. Solely for internal/development
use.
*/
opfsUtil.metrics = {
dump: function(){
let k, n = 0, t = 0, w = 0;
for(k in state.opIds){
const m = metrics[k];
n += m.count;
t += m.time;
w += m.wait;
m.avgTime = (m.count && m.time) ? (m.time / m.count) : 0;
m.avgWait = (m.count && m.wait) ? (m.wait / m.count) : 0;
}
sqlite3.config.log(globalThis.location.href,
"metrics for",globalThis.location.href,":",metrics,
"\nTotal of",n,"op(s) for",t,
"ms (incl. "+w+" ms of waiting on the async side)");
sqlite3.config.log("Serialization metrics:",metrics.s11n);
W.postMessage({type:'opfs-async-metrics'});
},
reset: function(){
let k;
const r = (m)=>(m.count = m.time = m.wait = 0);
for(k in state.opIds){
r(metrics[k] = Object.create(null));
}
let s = metrics.s11n = Object.create(null);
s = s.serialize = Object.create(null);
s.count = s.time = 0;
s = metrics.s11n.deserialize = Object.create(null);
s.count = s.time = 0;
}
}/*metrics*/;
const opfsIoMethods = new sqlite3_io_methods();
const opfsVfs = new sqlite3_vfs()
.addOnDispose( ()=>opfsIoMethods.dispose());
let promiseWasRejected = undefined;
const promiseReject = (err)=>{
promiseWasRejected = true;
opfsVfs.dispose();
return promiseReject_(err);
};
const promiseResolve = ()=>{
promiseWasRejected = false;
return promiseResolve_(sqlite3);
};
const W =
//#if target=es6-bundler-friendly
new Worker(new URL("sqlite3-opfs-async-proxy.js", import.meta.url));
//#elif target=es6-module
new Worker(new URL(options.proxyUri, import.meta.url));
//#else
new Worker(options.proxyUri);
//#endif
setTimeout(()=>{
/* At attempt to work around a browser-specific quirk in which
the Worker load is failing in such a way that we neither
resolve nor reject it. This workaround gives that resolve/reject
a time limit and rejects if that timer expires. Discussion:
https://sqlite.org/forum/forumpost/a708c98dcb3ef */
if(undefined===promiseWasRejected){
promiseReject(
new Error("Timeout while waiting for OPFS async proxy worker.")
);
}
}, 4000);
W._originalOnError = W.onerror /* will be restored later */;
W.onerror = function(err){
// The error object doesn't contain any useful info when the
// failure is, e.g., that the remote script is 404.
error("Error initializing OPFS asyncer:",err);
promiseReject(new Error("Loading OPFS async Worker failed for unknown reasons."));
};
const pDVfs = capi.sqlite3_vfs_find(null)/*pointer to default VFS*/;
const dVfs = pDVfs
? new sqlite3_vfs(pDVfs)
: null /* dVfs will be null when sqlite3 is built with
SQLITE_OS_OTHER. */;
opfsIoMethods.$iVersion = 1;
opfsVfs.$iVersion = 2/*yes, two*/;
opfsVfs.$szOsFile = capi.sqlite3_file.structInfo.sizeof;
opfsVfs.$mxPathname = 1024/*sure, why not?*/;
opfsVfs.$zName = wasm.allocCString("opfs");
// All C-side memory of opfsVfs is zeroed out, but just to be explicit:
opfsVfs.$xDlOpen = opfsVfs.$xDlError = opfsVfs.$xDlSym = opfsVfs.$xDlClose = null;
opfsVfs.addOnDispose(
'$zName', opfsVfs.$zName,
'cleanup default VFS wrapper', ()=>(dVfs ? dVfs.dispose() : null)
);
/**
Pedantic sidebar about opfsVfs.ondispose: the entries in that array
are items to clean up when opfsVfs.dispose() is called, but in this
environment it will never be called. The VFS instance simply
hangs around until the WASM module instance is cleaned up. We
"could" _hypothetically_ clean it up by "importing" an
sqlite3_os_end() impl into the wasm build, but the shutdown order
of the wasm engine and the JS one are undefined so there is no
guaranty that the opfsVfs instance would be available in one
environment or the other when sqlite3_os_end() is called (_if_ it
gets called at all in a wasm build, which is undefined).
*/
/**
State which we send to the async-api Worker or share with it.
This object must initially contain only cloneable or sharable
objects. After the worker's "inited" message arrives, other types
of data may be added to it.
For purposes of Atomics.wait() and Atomics.notify(), we use a
SharedArrayBuffer with one slot reserved for each of the API
proxy's methods. The sync side of the API uses Atomics.wait()
on the corresponding slot and the async side uses
Atomics.notify() on that slot.
The approach of using a single SAB to serialize comms for all
instances might(?) lead to deadlock situations in multi-db
cases. We should probably have one SAB here with a single slot
for locking a per-file initialization step and then allocate a
separate SAB like the above one for each file. That will
require a bit of acrobatics but should be feasible. The most
problematic part is that xOpen() would have to use
postMessage() to communicate its SharedArrayBuffer, and mixing
that approach with Atomics.wait/notify() gets a bit messy.
*/
const state = Object.create(null);
state.verbose = options.verbose;
state.littleEndian = (()=>{
const buffer = new ArrayBuffer(2);
new DataView(buffer).setInt16(0, 256, true /* ==>littleEndian */);
// Int16Array uses the platform's endianness.
return new Int16Array(buffer)[0] === 256;
})();
/**
asyncIdleWaitTime is how long (ms) to wait, in the async proxy,
for each Atomics.wait() when waiting on inbound VFS API calls.
We need to wake up periodically to give the thread a chance to
do other things. If this is too high (e.g. 500ms) then even two
workers/tabs can easily run into locking errors. Some multiple
of this value is also used for determining how long to wait on
lock contention to free up.
*/
state.asyncIdleWaitTime = 150;
/**
Whether the async counterpart should log exceptions to
the serialization channel. That produces a great deal of
noise for seemingly innocuous things like xAccess() checks
for missing files, so this option may have one of 3 values:
0 = no exception logging.
1 = only log exceptions for "significant" ops like xOpen(),
xRead(), and xWrite().
2 = log all exceptions.
*/
state.asyncS11nExceptions = 1;
/* Size of file I/O buffer block. 64k = max sqlite3 page size, and
xRead/xWrite() will never deal in blocks larger than that. */
state.fileBufferSize = 1024 * 64;
state.sabS11nOffset = state.fileBufferSize;
/**
The size of the block in our SAB for serializing arguments and
result values. Needs to be large enough to hold serialized
values of any of the proxied APIs. Filenames are the largest
part but are limited to opfsVfs.$mxPathname bytes. We also
store exceptions there, so it needs to be long enough to hold
a reasonably long exception string.
*/
state.sabS11nSize = opfsVfs.$mxPathname * 2;
/**
The SAB used for all data I/O between the synchronous and
async halves (file i/o and arg/result s11n).
*/
state.sabIO = new SharedArrayBuffer(
state.fileBufferSize/* file i/o block */
+ state.sabS11nSize/* argument/result serialization block */
);
state.opIds = Object.create(null);
const metrics = Object.create(null);
{
/* Indexes for use in our SharedArrayBuffer... */
let i = 0;
/* SAB slot used to communicate which operation is desired
between both workers. This worker writes to it and the other
listens for changes. */
state.opIds.whichOp = i++;
/* Slot for storing return values. This worker listens to that
slot and the other worker writes to it. */
state.opIds.rc = i++;
/* Each function gets an ID which this worker writes to
the whichOp slot. The async-api worker uses Atomic.wait()
on the whichOp slot to figure out which operation to run
next. */
state.opIds.xAccess = i++;
state.opIds.xClose = i++;
state.opIds.xDelete = i++;
state.opIds.xDeleteNoWait = i++;
state.opIds.xFileSize = i++;
state.opIds.xLock = i++;
state.opIds.xOpen = i++;
state.opIds.xRead = i++;
state.opIds.xSleep = i++;
state.opIds.xSync = i++;
state.opIds.xTruncate = i++;
state.opIds.xUnlock = i++;
state.opIds.xWrite = i++;
state.opIds.mkdir = i++;
state.opIds['opfs-async-metrics'] = i++;
state.opIds['opfs-async-shutdown'] = i++;
/* The retry slot is used by the async part for wait-and-retry
semantics. Though we could hypothetically use the xSleep slot
for that, doing so might lead to undesired side effects. */
state.opIds.retry = i++;
state.sabOP = new SharedArrayBuffer(
i * 4/* ==sizeof int32, noting that Atomics.wait() and friends
can only function on Int32Array views of an SAB. */);
opfsUtil.metrics.reset();
}
/**
SQLITE_xxx constants to export to the async worker
counterpart...
*/
state.sq3Codes = Object.create(null);
[
'SQLITE_ACCESS_EXISTS',
'SQLITE_ACCESS_READWRITE',
'SQLITE_BUSY',
'SQLITE_ERROR',
'SQLITE_IOERR',
'SQLITE_IOERR_ACCESS',
'SQLITE_IOERR_CLOSE',
'SQLITE_IOERR_DELETE',
'SQLITE_IOERR_FSYNC',
'SQLITE_IOERR_LOCK',
'SQLITE_IOERR_READ',
'SQLITE_IOERR_SHORT_READ',
'SQLITE_IOERR_TRUNCATE',
'SQLITE_IOERR_UNLOCK',
'SQLITE_IOERR_WRITE',
'SQLITE_LOCK_EXCLUSIVE',
'SQLITE_LOCK_NONE',
'SQLITE_LOCK_PENDING',
'SQLITE_LOCK_RESERVED',
'SQLITE_LOCK_SHARED',
'SQLITE_LOCKED',
'SQLITE_MISUSE',
'SQLITE_NOTFOUND',
'SQLITE_OPEN_CREATE',
'SQLITE_OPEN_DELETEONCLOSE',
'SQLITE_OPEN_MAIN_DB',
'SQLITE_OPEN_READONLY'
].forEach((k)=>{
if(undefined === (state.sq3Codes[k] = capi[k])){
toss("Maintenance required: not found:",k);
}
});
state.opfsFlags = Object.assign(Object.create(null),{
/**
Flag for use with xOpen(). "opfs-unlock-asap=1" enables
this. See defaultUnlockAsap, below.
*/
OPFS_UNLOCK_ASAP: 0x01,
/**
If true, any async routine which implicitly acquires a sync
access handle (i.e. an OPFS lock) will release that locks at
the end of the call which acquires it. If false, such
"autolocks" are not released until the VFS is idle for some
brief amount of time.
The benefit of enabling this is much higher concurrency. The
down-side is much-reduced performance (as much as a 4x decrease
in speedtest1).
*/
defaultUnlockAsap: false
});
/**
Runs the given operation (by name) in the async worker
counterpart, waits for its response, and returns the result
which the async worker writes to SAB[state.opIds.rc]. The
2nd and subsequent arguments must be the aruguments for the
async op.
*/
const opRun = (op,...args)=>{
const opNdx = state.opIds[op] || toss("Invalid op ID:",op);
state.s11n.serialize(...args);
Atomics.store(state.sabOPView, state.opIds.rc, -1);
Atomics.store(state.sabOPView, state.opIds.whichOp, opNdx);
Atomics.notify(state.sabOPView, state.opIds.whichOp)
/* async thread will take over here */;
const t = performance.now();
Atomics.wait(state.sabOPView, state.opIds.rc, -1)
/* When this wait() call returns, the async half will have
completed the operation and reported its results. */;
const rc = Atomics.load(state.sabOPView, state.opIds.rc);
metrics[op].wait += performance.now() - t;
if(rc && state.asyncS11nExceptions){
const err = state.s11n.deserialize();
if(err) error(op+"() async error:",...err);
}
return rc;
};
/**
Not part of the public API. Only for test/development use.
*/
opfsUtil.debug = {
asyncShutdown: ()=>{
warn("Shutting down OPFS async listener. The OPFS VFS will no longer work.");
opRun('opfs-async-shutdown');
},
asyncRestart: ()=>{
warn("Attempting to restart OPFS VFS async listener. Might work, might not.");
W.postMessage({type: 'opfs-async-restart'});
}
};
const initS11n = ()=>{
/**
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
ACHTUNG: this code is 100% duplicated in the other half of
this proxy! The documentation is maintained in the
"synchronous half".
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
This proxy de/serializes cross-thread function arguments and
output-pointer values via the state.sabIO SharedArrayBuffer,
using the region defined by (state.sabS11nOffset,
state.sabS11nOffset + state.sabS11nSize]. Only one dataset is
recorded at a time.
This is not a general-purpose format. It only supports the
range of operations, and data sizes, needed by the
sqlite3_vfs and sqlite3_io_methods operations. Serialized
data are transient and this serialization algorithm may
change at any time.
The data format can be succinctly summarized as:
Nt...Td...D
Where:
- N = number of entries (1 byte)
- t = type ID of first argument (1 byte)
- ...T = type IDs of the 2nd and subsequent arguments (1 byte
each).
- d = raw bytes of first argument (per-type size).
- ...D = raw bytes of the 2nd and subsequent arguments (per-type
size).
All types except strings have fixed sizes. Strings are stored
using their TextEncoder/TextDecoder representations. It would
arguably make more sense to store them as Int16Arrays of
their JS character values, but how best/fastest to get that
in and out of string form is an open point. Initial
experimentation with that approach did not gain us any speed.
Historical note: this impl was initially about 1% this size by
using using JSON.stringify/parse(), but using fit-to-purpose
serialization saves considerable runtime.
*/
if(state.s11n) return state.s11n;
const textDecoder = new TextDecoder(),
textEncoder = new TextEncoder('utf-8'),
viewU8 = new Uint8Array(state.sabIO, state.sabS11nOffset, state.sabS11nSize),
viewDV = new DataView(state.sabIO, state.sabS11nOffset, state.sabS11nSize);
state.s11n = Object.create(null);
/* Only arguments and return values of these types may be
serialized. This covers the whole range of types needed by the
sqlite3_vfs API. */
const TypeIds = Object.create(null);
TypeIds.number = { id: 1, size: 8, getter: 'getFloat64', setter: 'setFloat64' };
TypeIds.bigint = { id: 2, size: 8, getter: 'getBigInt64', setter: 'setBigInt64' };
TypeIds.boolean = { id: 3, size: 4, getter: 'getInt32', setter: 'setInt32' };
TypeIds.string = { id: 4 };
const getTypeId = (v)=>(
TypeIds[typeof v]
|| toss("Maintenance required: this value type cannot be serialized.",v)
);
const getTypeIdById = (tid)=>{
switch(tid){
case TypeIds.number.id: return TypeIds.number;
case TypeIds.bigint.id: return TypeIds.bigint;
case TypeIds.boolean.id: return TypeIds.boolean;
case TypeIds.string.id: return TypeIds.string;
default: toss("Invalid type ID:",tid);
}
};
/**
Returns an array of the deserialized state stored by the most
recent serialize() operation (from from this thread or the
counterpart thread), or null if the serialization buffer is
empty. If passed a truthy argument, the serialization buffer
is cleared after deserialization.
*/
state.s11n.deserialize = function(clear=false){
++metrics.s11n.deserialize.count;
const t = performance.now();
const argc = viewU8[0];
const rc = argc ? [] : null;
if(argc){
const typeIds = [];
let offset = 1, i, n, v;
for(i = 0; i < argc; ++i, ++offset){
typeIds.push(getTypeIdById(viewU8[offset]));
}
for(i = 0; i < argc; ++i){
const t = typeIds[i];
if(t.getter){
v = viewDV[t.getter](offset, state.littleEndian);
offset += t.size;
}else{/*String*/
n = viewDV.getInt32(offset, state.littleEndian);
offset += 4;
v = textDecoder.decode(viewU8.slice(offset, offset+n));
offset += n;
}
rc.push(v);
}
}
if(clear) viewU8[0] = 0;
//log("deserialize:",argc, rc);
metrics.s11n.deserialize.time += performance.now() - t;
return rc;
};
/**
Serializes all arguments to the shared buffer for consumption
by the counterpart thread.
This routine is only intended for serializing OPFS VFS
arguments and (in at least one special case) result values,
and the buffer is sized to be able to comfortably handle
those.
If passed no arguments then it zeroes out the serialization
state.
*/
state.s11n.serialize = function(...args){
const t = performance.now();
++metrics.s11n.serialize.count;
if(args.length){
//log("serialize():",args);
const typeIds = [];
let i = 0, offset = 1;
viewU8[0] = args.length & 0xff /* header = # of args */;
for(; i < args.length; ++i, ++offset){
/* Write the TypeIds.id value into the next args.length
bytes. */
typeIds.push(getTypeId(args[i]));
viewU8[offset] = typeIds[i].id;
}
for(i = 0; i < args.length; ++i) {
/* Deserialize the following bytes based on their
corresponding TypeIds.id from the header. */
const t = typeIds[i];
if(t.setter){
viewDV[t.setter](offset, args[i], state.littleEndian);
offset += t.size;
}else{/*String*/
const s = textEncoder.encode(args[i]);
viewDV.setInt32(offset, s.byteLength, state.littleEndian);
offset += 4;
viewU8.set(s, offset);
offset += s.byteLength;
}
}
//log("serialize() result:",viewU8.slice(0,offset));
}else{
viewU8[0] = 0;
}
metrics.s11n.serialize.time += performance.now() - t;
};
return state.s11n;
}/*initS11n()*/;
/**
Generates a random ASCII string len characters long, intended for
use as a temporary file name.
*/
const randomFilename = function f(len=16){
if(!f._chars){
f._chars = "abcdefghijklmnopqrstuvwxyz"+
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"+
"012346789";
f._n = f._chars.length;
}
const a = [];
let i = 0;
for( ; i < len; ++i){
const ndx = Math.random() * (f._n * 64) % f._n | 0;
a[i] = f._chars[ndx];
}
return a.join("");
/*
An alternative impl. with an unpredictable length
but much simpler:
Math.floor(Math.random() * Number.MAX_SAFE_INTEGER).toString(36)
*/
};
/**
Map of sqlite3_file pointers to objects constructed by xOpen().
*/
const __openFiles = Object.create(null);
const opTimer = Object.create(null);
opTimer.op = undefined;
opTimer.start = undefined;
const mTimeStart = (op)=>{
opTimer.start = performance.now();
opTimer.op = op;
++metrics[op].count;
};
const mTimeEnd = ()=>(
metrics[opTimer.op].time += performance.now() - opTimer.start
);
/**
Impls for the sqlite3_io_methods methods. Maintenance reminder:
members are in alphabetical order to simplify finding them.
*/
const ioSyncWrappers = {
xCheckReservedLock: function(pFile,pOut){
/**
As of late 2022, only a single lock can be held on an OPFS
file. We have no way of checking whether any _other_ db
connection has a lock except by trying to obtain and (on
success) release a sync-handle for it, but doing so would
involve an inherent race condition. For the time being,
pending a better solution, we simply report whether the
given pFile is open.
*/
const f = __openFiles[pFile];
wasm.poke(pOut, f.lockType ? 1 : 0, 'i32');
return 0;
},
xClose: function(pFile){
mTimeStart('xClose');
let rc = 0;
const f = __openFiles[pFile];
if(f){
delete __openFiles[pFile];
rc = opRun('xClose', pFile);
if(f.sq3File) f.sq3File.dispose();
}
mTimeEnd();
return rc;
},
xDeviceCharacteristics: function(pFile){
//debug("xDeviceCharacteristics(",pFile,")");
return capi.SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN;
},
xFileControl: function(pFile, opId, pArg){
/*mTimeStart('xFileControl');
mTimeEnd();*/
return capi.SQLITE_NOTFOUND;
},
xFileSize: function(pFile,pSz64){
mTimeStart('xFileSize');
let rc = opRun('xFileSize', pFile);
if(0==rc){
try {
const sz = state.s11n.deserialize()[0];
wasm.poke(pSz64, sz, 'i64');
}catch(e){
error("Unexpected error reading xFileSize() result:",e);
rc = state.sq3Codes.SQLITE_IOERR;
}
}
mTimeEnd();
return rc;
},
xLock: function(pFile,lockType){
mTimeStart('xLock');
const f = __openFiles[pFile];
let rc = 0;
/* All OPFS locks are exclusive locks. If xLock() has
previously succeeded, do nothing except record the lock
type. If no lock is active, have the async counterpart
lock the file. */
if( !f.lockType ) {
rc = opRun('xLock', pFile, lockType);
if( 0===rc ) f.lockType = lockType;
}else{
f.lockType = lockType;
}
mTimeEnd();
return rc;
},
xRead: function(pFile,pDest,n,offset64){
mTimeStart('xRead');
const f = __openFiles[pFile];
let rc;
try {
rc = opRun('xRead',pFile, n, Number(offset64));
if(0===rc || capi.SQLITE_IOERR_SHORT_READ===rc){
/**
Results get written to the SharedArrayBuffer f.sabView.
Because the heap is _not_ a SharedArrayBuffer, we have
to copy the results. TypedArray.set() seems to be the
fastest way to copy this. */
wasm.heap8u().set(f.sabView.subarray(0, n), pDest);
}
}catch(e){
error("xRead(",arguments,") failed:",e,f);
rc = capi.SQLITE_IOERR_READ;
}
mTimeEnd();
return rc;
},
xSync: function(pFile,flags){
mTimeStart('xSync');
++metrics.xSync.count;
const rc = opRun('xSync', pFile, flags);
mTimeEnd();
return rc;
},
xTruncate: function(pFile,sz64){
mTimeStart('xTruncate');
const rc = opRun('xTruncate', pFile, Number(sz64));
mTimeEnd();
return rc;
},
xUnlock: function(pFile,lockType){
mTimeStart('xUnlock');
const f = __openFiles[pFile];
let rc = 0;
if( capi.SQLITE_LOCK_NONE === lockType
&& f.lockType ){
rc = opRun('xUnlock', pFile, lockType);
}
if( 0===rc ) f.lockType = lockType;
mTimeEnd();
return rc;
},
xWrite: function(pFile,pSrc,n,offset64){
mTimeStart('xWrite');
const f = __openFiles[pFile];
let rc;
try {
f.sabView.set(wasm.heap8u().subarray(pSrc, pSrc+n));
rc = opRun('xWrite', pFile, n, Number(offset64));
}catch(e){
error("xWrite(",arguments,") failed:",e,f);
rc = capi.SQLITE_IOERR_WRITE;
}
mTimeEnd();
return rc;
}
}/*ioSyncWrappers*/;
/**
Impls for the sqlite3_vfs methods. Maintenance reminder: members
are in alphabetical order to simplify finding them.
*/
const vfsSyncWrappers = {
xAccess: function(pVfs,zName,flags,pOut){
mTimeStart('xAccess');
const rc = opRun('xAccess', wasm.cstrToJs(zName));
wasm.poke( pOut, (rc ? 0 : 1), 'i32' );
mTimeEnd();
return 0;
},
xCurrentTime: function(pVfs,pOut){
/* If it turns out that we need to adjust for timezone, see:
https://stackoverflow.com/a/11760121/1458521 */
wasm.poke(pOut, 2440587.5 + (new Date().getTime()/86400000),
'double');
return 0;
},
xCurrentTimeInt64: function(pVfs,pOut){
wasm.poke(pOut, (2440587.5 * 86400000) + new Date().getTime(),
'i64');
return 0;
},
xDelete: function(pVfs, zName, doSyncDir){
mTimeStart('xDelete');
const rc = opRun('xDelete', wasm.cstrToJs(zName), doSyncDir, false);
mTimeEnd();
return rc;
},
xFullPathname: function(pVfs,zName,nOut,pOut){
/* Until/unless we have some notion of "current dir"
in OPFS, simply copy zName to pOut... */
const i = wasm.cstrncpy(pOut, zName, nOut);
return i<nOut ? 0 : capi.SQLITE_CANTOPEN
/*CANTOPEN is required by the docs but SQLITE_RANGE would be a closer match*/;
},
xGetLastError: function(pVfs,nOut,pOut){
/* TODO: store exception.message values from the async
partner in a dedicated SharedArrayBuffer, noting that we'd have
to encode them... TextEncoder can do that for us. */
warn("OPFS xGetLastError() has nothing sensible to return.");
return 0;
},
//xSleep is optionally defined below
xOpen: function f(pVfs, zName, pFile, flags, pOutFlags){
mTimeStart('xOpen');
let opfsFlags = 0;
if(0===zName){
zName = randomFilename();
}else if('number'===typeof zName){
if(capi.sqlite3_uri_boolean(zName, "opfs-unlock-asap", 0)){
/* -----------------------^^^^^ MUST pass the untranslated
C-string here. */
opfsFlags |= state.opfsFlags.OPFS_UNLOCK_ASAP;
}
zName = wasm.cstrToJs(zName);
}
const fh = Object.create(null);
fh.fid = pFile;
fh.filename = zName;
fh.sab = new SharedArrayBuffer(state.fileBufferSize);
fh.flags = flags;
const rc = opRun('xOpen', pFile, zName, flags, opfsFlags);
if(!rc){
/* Recall that sqlite3_vfs::xClose() will be called, even on
error, unless pFile->pMethods is NULL. */
if(fh.readOnly){
wasm.poke(pOutFlags, capi.SQLITE_OPEN_READONLY, 'i32');
}
__openFiles[pFile] = fh;
fh.sabView = state.sabFileBufView;
fh.sq3File = new sqlite3_file(pFile);
fh.sq3File.$pMethods = opfsIoMethods.pointer;
fh.lockType = capi.SQLITE_LOCK_NONE;
}
mTimeEnd();
return rc;
}/*xOpen()*/
}/*vfsSyncWrappers*/;
if(dVfs){
opfsVfs.$xRandomness = dVfs.$xRandomness;
opfsVfs.$xSleep = dVfs.$xSleep;
}
if(!opfsVfs.$xRandomness){
/* If the default VFS has no xRandomness(), add a basic JS impl... */
vfsSyncWrappers.xRandomness = function(pVfs, nOut, pOut){
const heap = wasm.heap8u();
let i = 0;
for(; i < nOut; ++i) heap[pOut + i] = (Math.random()*255000) & 0xFF;
return i;
};
}
if(!opfsVfs.$xSleep){
/* If we can inherit an xSleep() impl from the default VFS then
assume it's sane and use it, otherwise install a JS-based
one. */
vfsSyncWrappers.xSleep = function(pVfs,ms){
Atomics.wait(state.sabOPView, state.opIds.xSleep, 0, ms);
return 0;
};
}
/**
Expects an OPFS file path. It gets resolved, such that ".."
components are properly expanded, and returned. If the 2nd arg
is true, the result is returned as an array of path elements,
else an absolute path string is returned.
*/
opfsUtil.getResolvedPath = function(filename,splitIt){
const p = new URL(filename, "file://irrelevant").pathname;
return splitIt ? p.split('/').filter((v)=>!!v) : p;
};
/**
Takes the absolute path to a filesystem element. Returns an
array of [handleOfContainingDir, filename]. If the 2nd argument
is truthy then each directory element leading to the file is
created along the way. Throws if any creation or resolution
fails.
*/
opfsUtil.getDirForFilename = async function f(absFilename, createDirs = false){
const path = opfsUtil.getResolvedPath(absFilename, true);
const filename = path.pop();
let dh = opfsUtil.rootDirectory;
for(const dirName of path){
if(dirName){
dh = await dh.getDirectoryHandle(dirName, {create: !!createDirs});
}
}
return [dh, filename];
};
/**
Creates the given directory name, recursively, in
the OPFS filesystem. Returns true if it succeeds or the
directory already exists, else false.
*/
opfsUtil.mkdir = async function(absDirName){
try {
await opfsUtil.getDirForFilename(absDirName+"/filepart", true);
return true;
}catch(e){
//sqlite3.config.warn("mkdir(",absDirName,") failed:",e);
return false;
}
};
/**
Checks whether the given OPFS filesystem entry exists,
returning true if it does, false if it doesn't.
*/
opfsUtil.entryExists = async function(fsEntryName){
try {
const [dh, fn] = await opfsUtil.getDirForFilename(fsEntryName);
await dh.getFileHandle(fn);
return true;
}catch(e){
return false;
}
};
/**
Generates a random ASCII string, intended for use as a
temporary file name. Its argument is the length of the string,
defaulting to 16.
*/
opfsUtil.randomFilename = randomFilename;
/**
Re-registers the OPFS VFS. This is intended only for odd use
cases which have to call sqlite3_shutdown() as part of their
initialization process, which will unregister the VFS
registered by installOpfsVfs(). If passed a truthy value, the
OPFS VFS is registered as the default VFS, else it is not made
the default. Returns the result of the the
sqlite3_vfs_register() call.
Design note: the problem of having to re-register things after
a shutdown/initialize pair is more general. How to best plug
that in to the library is unclear. In particular, we cannot
hook in to any C-side calls to sqlite3_initialize(), so we
cannot add an after-initialize callback mechanism.
*/
opfsUtil.registerVfs = (asDefault=false)=>{
return wasm.exports.sqlite3_vfs_register(
opfsVfs.pointer, asDefault ? 1 : 0
);
};
/**
Returns a promise which resolves to an object which represents
all files and directories in the OPFS tree. The top-most object
has two properties: `dirs` is an array of directory entries
(described below) and `files` is a list of file names for all
files in that directory.
Traversal starts at sqlite3.opfs.rootDirectory.
Each `dirs` entry is an object in this form:
```
{ name: directoryName,
dirs: [...subdirs],
files: [...file names]
}
```
The `files` and `subdirs` entries are always set but may be
empty arrays.
The returned object has the same structure but its `name` is
an empty string. All returned objects are created with
Object.create(null), so have no prototype.
Design note: the entries do not contain more information,
e.g. file sizes, because getting such info is not only
expensive but is subject to locking-related errors.
*/
opfsUtil.treeList = async function(){
const doDir = async function callee(dirHandle,tgt){
tgt.name = dirHandle.name;
tgt.dirs = [];
tgt.files = [];
for await (const handle of dirHandle.values()){
if('directory' === handle.kind){
const subDir = Object.create(null);
tgt.dirs.push(subDir);
await callee(handle, subDir);
}else{
tgt.files.push(handle.name);
}
}
};
const root = Object.create(null);
await doDir(opfsUtil.rootDirectory, root);
return root;
};
/**
Irrevocably deletes _all_ files in the current origin's OPFS.
Obviously, this must be used with great caution. It may throw
an exception if removal of anything fails (e.g. a file is
locked), but the precise conditions under which the underlying
APIs will throw are not documented (so we cannot tell you what
they are).
*/
opfsUtil.rmfr = async function(){
const dir = opfsUtil.rootDirectory, opt = {recurse: true};
for await (const handle of dir.values()){
dir.removeEntry(handle.name, opt);
}
};
/**
Deletes the given OPFS filesystem entry. As this environment
has no notion of "current directory", the given name must be an
absolute path. If the 2nd argument is truthy, deletion is
recursive (use with caution!).
The returned Promise resolves to true if the deletion was
successful, else false (but...). The OPFS API reports the
reason for the failure only in human-readable form, not
exceptions which can be type-checked to determine the
failure. Because of that...
If the final argument is truthy then this function will
propagate any exception on error, rather than returning false.
*/
opfsUtil.unlink = async function(fsEntryName, recursive = false,
throwOnError = false){
try {
const [hDir, filenamePart] =
await opfsUtil.getDirForFilename(fsEntryName, false);
await hDir.removeEntry(filenamePart, {recursive});
return true;
}catch(e){
if(throwOnError){
throw new Error("unlink(",arguments[0],") failed: "+e.message,{
cause: e
});
}
return false;
}
};
/**
Traverses the OPFS filesystem, calling a callback for each one.
The argument may be either a callback function or an options object
with any of the following properties:
- `callback`: function which gets called for each filesystem
entry. It gets passed 3 arguments: 1) the
FileSystemFileHandle or FileSystemDirectoryHandle of each
entry (noting that both are instanceof FileSystemHandle). 2)
the FileSystemDirectoryHandle of the parent directory. 3) the
current depth level, with 0 being at the top of the tree
relative to the starting directory. If the callback returns a
literal false, as opposed to any other falsy value, traversal
stops without an error. Any exceptions it throws are
propagated. Results are undefined if the callback manipulate
the filesystem (e.g. removing or adding entries) because the
how OPFS iterators behave in the face of such changes is
undocumented.
- `recursive` [bool=true]: specifies whether to recurse into
subdirectories or not. Whether recursion is depth-first or
breadth-first is unspecified!
- `directory` [FileSystemDirectoryEntry=sqlite3.opfs.rootDirectory]
specifies the starting directory.
If this function is passed a function, it is assumed to be the
callback.
Returns a promise because it has to (by virtue of being async)
but that promise has no specific meaning: the traversal it
performs is synchronous. The promise must be used to catch any
exceptions propagated by the callback, however.
TODO: add an option which specifies whether to traverse
depth-first or breadth-first. We currently do depth-first but
an incremental file browsing widget would benefit more from
breadth-first.
*/
opfsUtil.traverse = async function(opt){
const defaultOpt = {
recursive: true,
directory: opfsUtil.rootDirectory
};
if('function'===typeof opt){
opt = {callback:opt};
}
opt = Object.assign(defaultOpt, opt||{});
const doDir = async function callee(dirHandle, depth){
for await (const handle of dirHandle.values()){
if(false === opt.callback(handle, dirHandle, depth)) return false;
else if(opt.recursive && 'directory' === handle.kind){
if(false === await callee(handle, depth + 1)) break;
}
}
};
doDir(opt.directory, 0);
};
/**
impl of importDb() when it's given a function as its second
argument.
*/
const importDbChunked = async function(filename, callback){
const [hDir, fnamePart] = await opfsUtil.getDirForFilename(filename, true);
const hFile = await hDir.getFileHandle(fnamePart, {create:true});
let sah = await hFile.createSyncAccessHandle();
let nWrote = 0, chunk, checkedHeader = false, err = false;
try{
sah.truncate(0);
while( undefined !== (chunk = await callback()) ){
if(chunk instanceof ArrayBuffer) chunk = new Uint8Array(chunk);
if( 0===nWrote && chunk.byteLength>=15 ){
util.affirmDbHeader(chunk);
checkedHeader = true;
}
sah.write(chunk, {at: nWrote});
nWrote += chunk.byteLength;
}
if( nWrote < 512 || 0!==nWrote % 512 ){
toss("Input size",nWrote,"is not correct for an SQLite database.");
}
if( !checkedHeader ){
const header = new Uint8Array(20);
sah.read( header, {at: 0} );
util.affirmDbHeader( header );
}
sah.write(new Uint8Array([1,1]), {at: 18}/*force db out of WAL mode*/);
return nWrote;
}catch(e){
await sah.close();
sah = undefined;
await hDir.removeEntry( fnamePart ).catch(()=>{});
throw e;
}finally {
if( sah ) await sah.close();
}
};
/**
Asynchronously imports the given bytes (a byte array or
ArrayBuffer) into the given database file.
If passed a function for its second argument, its behaviour
changes to async and it imports its data in chunks fed to it by
the given callback function. It calls the callback (which may
be async) repeatedly, expecting either a Uint8Array or
ArrayBuffer (to denote new input) or undefined (to denote
EOF). For so long as the callback continues to return
non-undefined, it will append incoming data to the given
VFS-hosted database file. When called this way, the resolved
value of the returned Promise is the number of bytes written to
the target file.
It very specifically requires the input to be an SQLite3
database and throws if that's not the case. It does so in
order to prevent this function from taking on a larger scope
than it is specifically intended to. i.e. we do not want it to
become a convenience for importing arbitrary files into OPFS.
This routine rewrites the database header bytes in the output
file (not the input array) to force disabling of WAL mode.
On error this throws and the state of the input file is
undefined (it depends on where the exception was triggered).
On success, resolves to the number of bytes written.
*/
opfsUtil.importDb = async function(filename, bytes){
if( bytes instanceof Function ){
return importDbChunked(filename, bytes);
}
if(bytes instanceof ArrayBuffer) bytes = new Uint8Array(bytes);
util.affirmIsDb(bytes);
const n = bytes.byteLength;
const [hDir, fnamePart] = await opfsUtil.getDirForFilename(filename, true);
let sah, err, nWrote = 0;
try {
const hFile = await hDir.getFileHandle(fnamePart, {create:true});
sah = await hFile.createSyncAccessHandle();
sah.truncate(0);
nWrote = sah.write(bytes, {at: 0});
if(nWrote != n){
toss("Expected to write "+n+" bytes but wrote "+nWrote+".");
}
sah.write(new Uint8Array([1,1]), {at: 18}) /* force db out of WAL mode */;
return nWrote;
}catch(e){
if( sah ){ await sah.close(); sah = undefined; }
await hDir.removeEntry( fnamePart ).catch(()=>{});
throw e;
}finally{
if( sah ) await sah.close();
}
};
if(sqlite3.oo1){
const OpfsDb = function(...args){
const opt = sqlite3.oo1.DB.dbCtorHelper.normalizeArgs(...args);
opt.vfs = opfsVfs.$zName;
sqlite3.oo1.DB.dbCtorHelper.call(this, opt);
};
OpfsDb.prototype = Object.create(sqlite3.oo1.DB.prototype);
sqlite3.oo1.OpfsDb = OpfsDb;
OpfsDb.importDb = opfsUtil.importDb;
sqlite3.oo1.DB.dbCtorHelper.setVfsPostOpenSql(
opfsVfs.pointer,
function(oo1Db, sqlite3){
/* Set a relatively high default busy-timeout handler to
help OPFS dbs deal with multi-tab/multi-worker
contention. */
sqlite3.capi.sqlite3_busy_timeout(oo1Db, 10000);
sqlite3.capi.sqlite3_exec(oo1Db, [
/* As of July 2023, the PERSIST journal mode on OPFS is
somewhat slower than DELETE or TRUNCATE (it was faster
before Chrome version 108 or 109). TRUNCATE and DELETE
have very similar performance on OPFS.
Roy Hashimoto notes that TRUNCATE and PERSIST modes may
decrease OPFS concurrency because multiple connections
can open the journal file in those modes:
https://github.com/rhashimoto/wa-sqlite/issues/68
Given that, and the fact that testing has not revealed
any appreciable difference between performance of
TRUNCATE and DELETE modes on OPFS, we currently (as of
2023-07-13) default to DELETE mode.
*/
"pragma journal_mode=DELETE;",
/*
This vfs benefits hugely from cache on moderate/large
speedtest1 --size 50 and --size 100 workloads. We
currently rely on setting a non-default cache size when
building sqlite3.wasm. If that policy changes, the cache
can be set here.
*/
"pragma cache_size=-16384;"
], 0, 0, 0);
}
);
}/*extend sqlite3.oo1*/
const sanityCheck = function(){
const scope = wasm.scopedAllocPush();
const sq3File = new sqlite3_file();
try{
const fid = sq3File.pointer;
const openFlags = capi.SQLITE_OPEN_CREATE
| capi.SQLITE_OPEN_READWRITE
//| capi.SQLITE_OPEN_DELETEONCLOSE
| capi.SQLITE_OPEN_MAIN_DB;
const pOut = wasm.scopedAlloc(8);
const dbFile = "/sanity/check/file"+randomFilename(8);
const zDbFile = wasm.scopedAllocCString(dbFile);
let rc;
state.s11n.serialize("This is ä string.");
rc = state.s11n.deserialize();
log("deserialize() says:",rc);
if("This is ä string."!==rc[0]) toss("String d13n error.");
vfsSyncWrappers.xAccess(opfsVfs.pointer, zDbFile, 0, pOut);
rc = wasm.peek(pOut,'i32');
log("xAccess(",dbFile,") exists ?=",rc);
rc = vfsSyncWrappers.xOpen(opfsVfs.pointer, zDbFile,
fid, openFlags, pOut);
log("open rc =",rc,"state.sabOPView[xOpen] =",
state.sabOPView[state.opIds.xOpen]);
if(0!==rc){
error("open failed with code",rc);
return;
}
vfsSyncWrappers.xAccess(opfsVfs.pointer, zDbFile, 0, pOut);
rc = wasm.peek(pOut,'i32');
if(!rc) toss("xAccess() failed to detect file.");
rc = ioSyncWrappers.xSync(sq3File.pointer, 0);
if(rc) toss('sync failed w/ rc',rc);
rc = ioSyncWrappers.xTruncate(sq3File.pointer, 1024);
if(rc) toss('truncate failed w/ rc',rc);
wasm.poke(pOut,0,'i64');
rc = ioSyncWrappers.xFileSize(sq3File.pointer, pOut);
if(rc) toss('xFileSize failed w/ rc',rc);
log("xFileSize says:",wasm.peek(pOut, 'i64'));
rc = ioSyncWrappers.xWrite(sq3File.pointer, zDbFile, 10, 1);
if(rc) toss("xWrite() failed!");
const readBuf = wasm.scopedAlloc(16);
rc = ioSyncWrappers.xRead(sq3File.pointer, readBuf, 6, 2);
wasm.poke(readBuf+6,0);
let jRead = wasm.cstrToJs(readBuf);
log("xRead() got:",jRead);
if("sanity"!==jRead) toss("Unexpected xRead() value.");
if(vfsSyncWrappers.xSleep){
log("xSleep()ing before close()ing...");
vfsSyncWrappers.xSleep(opfsVfs.pointer,2000);
log("waking up from xSleep()");
}
rc = ioSyncWrappers.xClose(fid);
log("xClose rc =",rc,"sabOPView =",state.sabOPView);
log("Deleting file:",dbFile);
vfsSyncWrappers.xDelete(opfsVfs.pointer, zDbFile, 0x1234);
vfsSyncWrappers.xAccess(opfsVfs.pointer, zDbFile, 0, pOut);
rc = wasm.peek(pOut,'i32');
if(rc) toss("Expecting 0 from xAccess(",dbFile,") after xDelete().");
warn("End of OPFS sanity checks.");
}finally{
sq3File.dispose();
wasm.scopedAllocPop(scope);
}
}/*sanityCheck()*/;
W.onmessage = function({data}){
//log("Worker.onmessage:",data);
switch(data.type){
case 'opfs-unavailable':
/* Async proxy has determined that OPFS is unavailable. There's
nothing more for us to do here. */
promiseReject(new Error(data.payload.join(' ')));
break;
case 'opfs-async-loaded':
/* Arrives as soon as the asyc proxy finishes loading.
Pass our config and shared state on to the async
worker. */
W.postMessage({type: 'opfs-async-init',args: state});
break;
case 'opfs-async-inited': {
/* Indicates that the async partner has received the 'init'
and has finished initializing, so the real work can
begin... */
if(true===promiseWasRejected){
break /* promise was already rejected via timer */;
}
try {
sqlite3.vfs.installVfs({
io: {struct: opfsIoMethods, methods: ioSyncWrappers},
vfs: {struct: opfsVfs, methods: vfsSyncWrappers}
});
state.sabOPView = new Int32Array(state.sabOP);
state.sabFileBufView = new Uint8Array(state.sabIO, 0, state.fileBufferSize);
state.sabS11nView = new Uint8Array(state.sabIO, state.sabS11nOffset, state.sabS11nSize);
initS11n();
if(options.sanityChecks){
warn("Running sanity checks because of opfs-sanity-check URL arg...");
sanityCheck();
}
if(thisThreadHasOPFS()){
navigator.storage.getDirectory().then((d)=>{
W.onerror = W._originalOnError;
delete W._originalOnError;
sqlite3.opfs = opfsUtil;
opfsUtil.rootDirectory = d;
log("End of OPFS sqlite3_vfs setup.", opfsVfs);
promiseResolve();
}).catch(promiseReject);
}else{
promiseResolve();
}
}catch(e){
error(e);
promiseReject(e);
}
break;
}
default: {
const errMsg = (
"Unexpected message from the OPFS async worker: " +
JSON.stringify(data)
);
error(errMsg);
promiseReject(new Error(errMsg));
break;
}
}/*switch(data.type)*/
}/*W.onmessage()*/;
})/*thePromise*/;
return thePromise;
}/*installOpfsVfs()*/;
installOpfsVfs.defaultProxyUri =
"sqlite3-opfs-async-proxy.js";
globalThis.sqlite3ApiBootstrap.initializersAsync.push(async (sqlite3)=>{
try{
let proxyJs = installOpfsVfs.defaultProxyUri;
if(sqlite3.scriptInfo.sqlite3Dir){
installOpfsVfs.defaultProxyUri =
sqlite3.scriptInfo.sqlite3Dir + proxyJs;
//sqlite3.config.warn("installOpfsVfs.defaultProxyUri =",installOpfsVfs.defaultProxyUri);
}
return installOpfsVfs().catch((e)=>{
sqlite3.config.warn("Ignoring inability to install OPFS sqlite3_vfs:",e.message);
});
}catch(e){
sqlite3.config.error("installOpfsVfs() exception:",e);
return Promise.reject(e);
}
});
}/*sqlite3ApiBootstrap.initializers.push()*/);
//#else
/* The OPFS VFS parts are elided from builds targeting node.js. */
//#endif target=node