0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2024-12-15 16:49:47 +00:00
Pekka Enberg 9ed72eb5ae Merge upstream SQLite 3.45.1
This merges the version-3.45.1 tag from upstream SQLite git repository
to libSQL with the following conflicts resolved:

Conflicts:
      README.md
      ext/jni/src/org/sqlite/jni/capi/ConfigSqllogCallback.java
      libsql-sqlite3/configure
      libsql-sqlite3/doc/jsonb.md
      libsql-sqlite3/ext/fts5/test/fts5faultH.test
      libsql-sqlite3/ext/fts5/test/fts5origintext.test
      libsql-sqlite3/ext/fts5/test/fts5origintext2.test
      libsql-sqlite3/ext/fts5/test/fts5origintext3.test
      libsql-sqlite3/ext/fts5/test/fts5origintext4.test
      libsql-sqlite3/ext/fts5/test/fts5origintext5.test
      libsql-sqlite3/ext/fts5/test/fts5secure8.test
      libsql-sqlite3/ext/fts5/test/fts5tokenizer2.test
      libsql-sqlite3/ext/fts5/test/fts5trigram2.test
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/annotation/Experimental.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/capi/ConfigSqlLogCallback.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/capi/ConfigSqllogCallback.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/wrapper1/WindowFunction.java
      libsql-sqlite3/ext/wasm/GNUmakefile
      libsql-sqlite3/ext/wasm/batch-runner-sahpool.html
      libsql-sqlite3/ext/wasm/batch-runner-sahpool.js
      libsql-sqlite3/src/pager.c
      libsql-sqlite3/src/shell.c.in
      libsql-sqlite3/src/sqliteInt.h
      libsql-sqlite3/src/wal.c
      libsql-sqlite3/test/fts3integrity.test
      libsql-sqlite3/test/json/jsonb-q1.txt
      libsql-sqlite3/test/json106.test
      libsql-sqlite3/test/json107.test
      libsql-sqlite3/test/jsonb01.test
      libsql-sqlite3/test/mmapcorrupt.test
      libsql-sqlite3/test/releasetest_data.tcl
      libsql-sqlite3/test/shell9.test
      libsql-sqlite3/test/wapp.tcl
      libsql-sqlite3/test/wapptest.tcl
2024-07-25 13:45:06 +03:00

2056 lines
64 KiB
C

/*
** 2015-04-06
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
**
** This is a utility program that computes the differences in content
** between two SQLite databases.
**
** To compile, simply link against SQLite. (Windows builds must also link
** against ext/consio/console_io.c.)
**
** See the showHelp() routine below for a brief description of how to
** run the utility.
*/
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <ctype.h>
#include <string.h>
#include <assert.h>
#include "sqlite3.h"
/* Output function substitutions that cause UTF8 characters to be rendered
** correctly on Windows:
**
** fprintf() -> Wfprintf()
**
*/
#if defined(_WIN32)
# include "console_io.h"
# define Wfprintf fPrintfUtf8
#else
# define Wfprintf fprintf
#endif
/*
** All global variables are gathered into the "g" singleton.
*/
struct GlobalVars {
const char *zArgv0; /* Name of program */
int bSchemaOnly; /* Only show schema differences */
int bSchemaPK; /* Use the schema-defined PK, not the true PK */
int bHandleVtab; /* Handle fts3, fts4, fts5 and rtree vtabs */
unsigned fDebug; /* Debug flags */
int bSchemaCompare; /* Doing single-table sqlite_schema compare */
sqlite3 *db; /* The database connection */
} g;
/*
** Allowed values for g.fDebug
*/
#define DEBUG_COLUMN_NAMES 0x000001
#define DEBUG_DIFF_SQL 0x000002
/*
** Clear and free an sqlite3_str object
*/
static void strFree(sqlite3_str *pStr){
sqlite3_free(sqlite3_str_finish(pStr));
}
/*
** Print an error resulting from faulting command-line arguments and
** abort the program.
*/
static void cmdlineError(const char *zFormat, ...){
sqlite3_str *pOut = sqlite3_str_new(0);
va_list ap;
va_start(ap, zFormat);
sqlite3_str_vappendf(pOut, zFormat, ap);
va_end(ap);
Wfprintf(stderr, "%s: %s\n", g.zArgv0, sqlite3_str_value(pOut));
strFree(pOut);
Wfprintf(stderr, "\"%s --help\" for more help\n", g.zArgv0);
exit(1);
}
/*
** Print an error message for an error that occurs at runtime, then
** abort the program.
*/
static void runtimeError(const char *zFormat, ...){
sqlite3_str *pOut = sqlite3_str_new(0);
va_list ap;
va_start(ap, zFormat);
sqlite3_str_vappendf(pOut, zFormat, ap);
va_end(ap);
Wfprintf(stderr, "%s: %s\n", g.zArgv0, sqlite3_str_value(pOut));
strFree(pOut);
exit(1);
}
/* Safely quote an SQL identifier. Use the minimum amount of transformation
** necessary to allow the string to be used with %s.
**
** Space to hold the returned string is obtained from sqlite3_malloc(). The
** caller is responsible for ensuring this space is freed when no longer
** needed.
*/
static char *safeId(const char *zId){
int i, x;
char c;
if( zId[0]==0 ) return sqlite3_mprintf("\"\"");
for(i=x=0; (c = zId[i])!=0; i++){
if( !isalpha(c) && c!='_' ){
if( i>0 && isdigit(c) ){
x++;
}else{
return sqlite3_mprintf("\"%w\"", zId);
}
}
}
if( x || !sqlite3_keyword_check(zId,i) ){
return sqlite3_mprintf("%s", zId);
}
return sqlite3_mprintf("\"%w\"", zId);
}
/*
** Prepare a new SQL statement. Print an error and abort if anything
** goes wrong.
*/
static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){
char *zSql;
int rc;
sqlite3_stmt *pStmt;
zSql = sqlite3_vmprintf(zFormat, ap);
if( zSql==0 ) runtimeError("out of memory");
rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0);
if( rc ){
runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db),
zSql);
}
sqlite3_free(zSql);
return pStmt;
}
static sqlite3_stmt *db_prepare(const char *zFormat, ...){
va_list ap;
sqlite3_stmt *pStmt;
va_start(ap, zFormat);
pStmt = db_vprepare(zFormat, ap);
va_end(ap);
return pStmt;
}
/*
** Free a list of strings
*/
static void namelistFree(char **az){
if( az ){
int i;
for(i=0; az[i]; i++) sqlite3_free(az[i]);
sqlite3_free(az);
}
}
/*
** Return a list of column names [a] for the table zDb.zTab. Space to
** hold the list is obtained from sqlite3_malloc() and should released
** using namelistFree() when no longer needed.
**
** Primary key columns are listed first, followed by data columns.
** The number of columns in the primary key is returned in *pnPkey.
**
** Normally [a], the "primary key" in the previous sentence is the true
** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables
** or the declared PRIMARY KEY for WITHOUT ROWID tables. However, if
** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is
** used in all cases. In that case, entries that have NULL values in
** any of their primary key fields will be excluded from the analysis.
**
** If the primary key for a table is the rowid but rowid is inaccessible,
** then this routine returns a NULL pointer.
**
** [a. If the lone, named table is "sqlite_schema", "rootpage" column is
** omitted and the "type" and "name" columns are made to be the PK.]
**
** Examples:
** CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c));
** *pnPKey = 1;
** az = { "rowid", "a", "b", "c", 0 } // Normal case
** az = { "c", "a", "b", 0 } // g.bSchemaPK==1
**
** CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b));
** *pnPKey = 1;
** az = { "b", "a", "c", 0 }
**
** CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z));
** *pnPKey = 1 // Normal case
** az = { "rowid", "x", "y", "z", 0 } // Normal case
** *pnPKey = 2 // g.bSchemaPK==1
** az = { "y", "x", "z", 0 } // g.bSchemaPK==1
**
** CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID;
** *pnPKey = 2
** az = { "y", "z", "x", 0 }
**
** CREATE TABLE t5(rowid,_rowid_,oid);
** az = 0 // The rowid is not accessible
*/
static char **columnNames(
const char *zDb, /* Database ("main" or "aux") to query */
const char *zTab, /* Name of table to return details of */
int *pnPKey, /* OUT: Number of PK columns */
int *pbRowid /* OUT: True if PK is an implicit rowid */
){
char **az = 0; /* List of column names to be returned */
int naz = 0; /* Number of entries in az[] */
sqlite3_stmt *pStmt; /* SQL statement being run */
char *zPkIdxName = 0; /* Name of the PRIMARY KEY index */
int truePk = 0; /* PRAGMA table_info indentifies the PK to use */
int nPK = 0; /* Number of PRIMARY KEY columns */
int i, j; /* Loop counters */
if( g.bSchemaPK==0 ){
/* Normal case: Figure out what the true primary key is for the table.
** * For WITHOUT ROWID tables, the true primary key is the same as
** the schema PRIMARY KEY, which is guaranteed to be present.
** * For rowid tables with an INTEGER PRIMARY KEY, the true primary
** key is the INTEGER PRIMARY KEY.
** * For all other rowid tables, the rowid is the true primary key.
*/
pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){
zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1));
break;
}
}
sqlite3_finalize(pStmt);
if( zPkIdxName ){
int nKey = 0;
int nCol = 0;
truePk = 0;
pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
nCol++;
if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; }
if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1;
}
if( nCol==nKey ) truePk = 1;
if( truePk ){
nPK = nKey;
}else{
nPK = 1;
}
sqlite3_finalize(pStmt);
sqlite3_free(zPkIdxName);
}else{
truePk = 1;
nPK = 1;
}
pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
}else{
/* The g.bSchemaPK==1 case: Use whatever primary key is declared
** in the schema. The "rowid" will still be used as the primary key
** if the table definition does not contain a PRIMARY KEY.
*/
nPK = 0;
pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
if( sqlite3_column_int(pStmt,5)>0 ) nPK++;
}
sqlite3_reset(pStmt);
if( nPK==0 ) nPK = 1;
truePk = 1;
}
if( g.bSchemaCompare ){
assert( sqlite3_stricmp(zTab,"sqlite_schema")==0
|| sqlite3_stricmp(zTab,"sqlite_master")==0 );
/* For sqlite_schema, will use type and name as the PK. */
nPK = 2;
truePk = 0;
}
*pnPKey = nPK;
naz = nPK;
az = sqlite3_malloc( sizeof(char*)*(nPK+1) );
if( az==0 ) runtimeError("out of memory");
memset(az, 0, sizeof(char*)*(nPK+1));
if( g.bSchemaCompare ){
az[0] = sqlite3_mprintf("%s", "type");
az[1] = sqlite3_mprintf("%s", "name");
}
while( SQLITE_ROW==sqlite3_step(pStmt) ){
char * sid = safeId((char*)sqlite3_column_text(pStmt,1));
int iPKey;
if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){
az[iPKey-1] = sid;
}else{
if( !g.bSchemaCompare
|| !(strcmp(sid,"rootpage")==0
||strcmp(sid,"name")==0
||strcmp(sid,"type")==0)){
az = sqlite3_realloc(az, sizeof(char*)*(naz+2) );
if( az==0 ) runtimeError("out of memory");
az[naz++] = sid;
}
}
}
sqlite3_finalize(pStmt);
if( az ) az[naz] = 0;
/* If it is non-NULL, set *pbRowid to indicate whether or not the PK of
** this table is an implicit rowid (*pbRowid==1) or not (*pbRowid==0). */
if( pbRowid ) *pbRowid = (az[0]==0);
/* If this table has an implicit rowid for a PK, figure out how to refer
** to it. There are usually three options - "rowid", "_rowid_" and "oid".
** Any of these will work, unless the table has an explicit column of the
** same name or the sqlite_schema tables are to be compared. In the latter
** case, pretend that the "true" primary key is the name column, which
** avoids extraneous diffs against the schemas due to rowid variance. */
if( az[0]==0 ){
const char *azRowid[] = { "rowid", "_rowid_", "oid" };
for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){
for(j=1; j<naz; j++){
if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break;
}
if( j>=naz ){
az[0] = sqlite3_mprintf("%s", azRowid[i]);
break;
}
}
if( az[0]==0 ){
for(i=1; i<naz; i++) sqlite3_free(az[i]);
sqlite3_free(az);
az = 0;
}
}
return az;
}
/*
** Print the sqlite3_value X as an SQL literal.
*/
static void printQuoted(FILE *out, sqlite3_value *X){
switch( sqlite3_value_type(X) ){
case SQLITE_FLOAT: {
double r1;
char zBuf[50];
r1 = sqlite3_value_double(X);
sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1);
fprintf(out, "%s", zBuf);
break;
}
case SQLITE_INTEGER: {
fprintf(out, "%lld", sqlite3_value_int64(X));
break;
}
case SQLITE_BLOB: {
const unsigned char *zBlob = sqlite3_value_blob(X);
int nBlob = sqlite3_value_bytes(X);
if( zBlob ){
int i;
fprintf(out, "x'");
for(i=0; i<nBlob; i++){
fprintf(out, "%02x", zBlob[i]);
}
fprintf(out, "'");
}else{
/* Could be an OOM, could be a zero-byte blob */
fprintf(out, "X''");
}
break;
}
case SQLITE_TEXT: {
const unsigned char *zArg = sqlite3_value_text(X);
if( zArg==0 ){
fprintf(out, "NULL");
}else{
int inctl = 0;
int i, j;
fprintf(out, "'");
for(i=j=0; zArg[i]; i++){
char c = zArg[i];
int ctl = iscntrl(c);
if( ctl>inctl ){
inctl = ctl;
fprintf(out, "%.*s'||X'%02x", i-j, &zArg[j], c);
j = i+1;
}else if( ctl ){
fprintf(out, "%02x", c);
j = i+1;
}else{
if( inctl ){
inctl = 0;
fprintf(out, "'\n||'");
}
if( c=='\'' ){
fprintf(out, "%.*s'", i-j+1, &zArg[j]);
j = i+1;
}
}
}
fprintf(out, "%s'", &zArg[j]);
}
break;
}
case SQLITE_NULL: {
fprintf(out, "NULL");
break;
}
}
}
/*
** Output SQL that will recreate the aux.zTab table.
*/
static void dump_table(const char *zTab, FILE *out){
char *zId = safeId(zTab); /* Name of the table */
char **az = 0; /* List of columns */
int nPk; /* Number of true primary key columns */
int nCol; /* Number of data columns */
int i; /* Loop counter */
sqlite3_stmt *pStmt; /* SQL statement */
const char *zSep; /* Separator string */
sqlite3_str *pIns; /* Beginning of the INSERT statement */
pStmt = db_prepare("SELECT sql FROM aux.sqlite_schema WHERE name=%Q", zTab);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
}
sqlite3_finalize(pStmt);
if( !g.bSchemaOnly ){
az = columnNames("aux", zTab, &nPk, 0);
pIns = sqlite3_str_new(0);
if( az==0 ){
pStmt = db_prepare("SELECT * FROM aux.%s", zId);
sqlite3_str_appendf(pIns,"INSERT INTO %s VALUES", zId);
}else{
sqlite3_str *pSql = sqlite3_str_new(0);
zSep = "SELECT";
for(i=0; az[i]; i++){
sqlite3_str_appendf(pSql, "%s %s", zSep, az[i]);
zSep = ",";
}
sqlite3_str_appendf(pSql," FROM aux.%s", zId);
zSep = " ORDER BY";
for(i=1; i<=nPk; i++){
sqlite3_str_appendf(pSql, "%s %d", zSep, i);
zSep = ",";
}
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
strFree(pSql);
sqlite3_str_appendf(pIns, "INSERT INTO %s", zId);
zSep = "(";
for(i=0; az[i]; i++){
sqlite3_str_appendf(pIns, "%s%s", zSep, az[i]);
zSep = ",";
}
sqlite3_str_appendf(pIns,") VALUES");
namelistFree(az);
}
nCol = sqlite3_column_count(pStmt);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
Wfprintf(out, "%s",sqlite3_str_value(pIns));
zSep = "(";
for(i=0; i<nCol; i++){
Wfprintf(out, "%s",zSep);
printQuoted(out, sqlite3_column_value(pStmt,i));
zSep = ",";
}
Wfprintf(out, ");\n");
}
sqlite3_finalize(pStmt);
strFree(pIns);
} /* endif !g.bSchemaOnly */
pStmt = db_prepare("SELECT sql FROM aux.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL",
zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
Wfprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
}
sqlite3_finalize(pStmt);
sqlite3_free(zId);
}
/*
** Compute all differences for a single table, except if the
** table name is sqlite_schema, ignore the rootpage column.
*/
static void diff_one_table(const char *zTab, FILE *out){
char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
char **az = 0; /* Columns in main */
char **az2 = 0; /* Columns in aux */
int nPk; /* Primary key columns in main */
int nPk2; /* Primary key columns in aux */
int n = 0; /* Number of columns in main */
int n2; /* Number of columns in aux */
int nQ; /* Number of output columns in the diff query */
int i; /* Loop counter */
const char *zSep; /* Separator string */
sqlite3_str *pSql; /* Comparison query */
sqlite3_stmt *pStmt; /* Query statement to do the diff */
const char *zLead = /* Becomes line-comment for sqlite_schema */
(g.bSchemaCompare)? "-- " : "";
pSql = sqlite3_str_new(0);
if( g.fDebug==DEBUG_COLUMN_NAMES ){
/* Simply run columnNames() on all tables of the origin
** database and show the results. This is used for testing
** and debugging of the columnNames() function.
*/
az = columnNames("aux",zTab, &nPk, 0);
if( az==0 ){
Wfprintf(stdout, "Rowid not accessible for %s\n", zId);
}else{
Wfprintf(stdout, "%s:", zId);
for(i=0; az[i]; i++){
Wfprintf(stdout, " %s", az[i]);
if( i+1==nPk ) Wfprintf(stdout, " *");
}
Wfprintf(stdout, "\n");
}
goto end_diff_one_table;
}
if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
/* Table missing from second database. */
if( g.bSchemaCompare )
Wfprintf(out, "-- 2nd DB has no %s table\n", zTab);
else
Wfprintf(out, "DROP TABLE %s;\n", zId);
}
goto end_diff_one_table;
}
if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
/* Table missing from source */
if( g.bSchemaCompare ){
Wfprintf(out, "-- 1st DB has no %s table\n", zTab);
}else{
dump_table(zTab, out);
}
goto end_diff_one_table;
}
az = columnNames("main", zTab, &nPk, 0);
az2 = columnNames("aux", zTab, &nPk2, 0);
if( az && az2 ){
for(n=0; az[n] && az2[n]; n++){
if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
}
}
if( az==0
|| az2==0
|| nPk!=nPk2
|| az[n]
){
/* Schema mismatch */
Wfprintf(out, "%sDROP TABLE %s; -- due to schema mismatch\n", zLead, zId);
dump_table(zTab, out);
goto end_diff_one_table;
}
/* Build the comparison query */
for(n2=n; az2[n2]; n2++){
char *zNTab = safeId(az2[n2]);
Wfprintf(out, "ALTER TABLE %s ADD COLUMN %s;\n", zId, zNTab);
sqlite3_free(zNTab);
}
nQ = nPk2+1+2*(n2-nPk2);
if( n2>nPk2 ){
zSep = "SELECT ";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%sB.%s", zSep, az[i]);
zSep = ", ";
}
sqlite3_str_appendf(pSql, ", 1 /* changed row */");
while( az[i] ){
sqlite3_str_appendf(pSql, ", A.%s IS NOT B.%s, B.%s",
az[i], az2[i], az2[i]);
i++;
}
while( az2[i] ){
sqlite3_str_appendf(pSql, ", B.%s IS NOT NULL, B.%s",
az2[i], az2[i]);
i++;
}
sqlite3_str_appendf(pSql, "\n FROM main.%s A, aux.%s B\n", zId, zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
zSep = "\n AND (";
while( az[i] ){
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s%s\n",
zSep, az[i], az2[i], az2[i+1]==0 ? ")" : "");
zSep = " OR ";
i++;
}
while( az2[i] ){
sqlite3_str_appendf(pSql, "%sB.%s IS NOT NULL%s\n",
zSep, az2[i], az2[i+1]==0 ? ")" : "");
zSep = " OR ";
i++;
}
sqlite3_str_appendf(pSql, " UNION ALL\n");
}
zSep = "SELECT ";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%sA.%s", zSep, az[i]);
zSep = ", ";
}
sqlite3_str_appendf(pSql, ", 2 /* deleted row */");
while( az2[i] ){
sqlite3_str_appendf(pSql, ", NULL, NULL");
i++;
}
sqlite3_str_appendf(pSql, "\n FROM main.%s A\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n");
zSep = " UNION ALL\nSELECT ";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%sB.%s", zSep, az[i]);
zSep = ", ";
}
sqlite3_str_appendf(pSql, ", 3 /* inserted row */");
while( az2[i] ){
sqlite3_str_appendf(pSql, ", 1, B.%s", az2[i]);
i++;
}
sqlite3_str_appendf(pSql, "\n FROM aux.%s B\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n ORDER BY");
zSep = " ";
for(i=1; i<=nPk; i++){
sqlite3_str_appendf(pSql, "%s%d", zSep, i);
zSep = ", ";
}
sqlite3_str_appendf(pSql, ";\n");
if( g.fDebug & DEBUG_DIFF_SQL ){
printf("SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
goto end_diff_one_table;
}
/* Drop indexes that are missing in the destination */
pStmt = db_prepare(
"SELECT name FROM main.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q"
" AND sql IS NOT NULL"
" AND sql NOT IN (SELECT sql FROM aux.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q"
" AND sql IS NOT NULL)",
zTab, zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
char *z = safeId((const char*)sqlite3_column_text(pStmt,0));
fprintf(out, "DROP INDEX %s;\n", z);
sqlite3_free(z);
}
sqlite3_finalize(pStmt);
/* Run the query and output differences */
if( !g.bSchemaOnly ){
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
while( SQLITE_ROW==sqlite3_step(pStmt) ){
int iType = sqlite3_column_int(pStmt, nPk);
if( iType==1 || iType==2 ){
if( iType==1 ){ /* Change the content of a row */
fprintf(out, "%sUPDATE %s", zLead, zId);
zSep = " SET";
for(i=nPk+1; i<nQ; i+=2){
if( sqlite3_column_int(pStmt,i)==0 ) continue;
fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]);
zSep = ",";
printQuoted(out, sqlite3_column_value(pStmt,i+1));
}
}else{ /* Delete a row */
fprintf(out, "%sDELETE FROM %s", zLead, zId);
}
zSep = " WHERE";
for(i=0; i<nPk; i++){
fprintf(out, "%s %s=", zSep, az2[i]);
printQuoted(out, sqlite3_column_value(pStmt,i));
zSep = " AND";
}
fprintf(out, ";\n");
}else{ /* Insert a row */
fprintf(out, "%sINSERT INTO %s(%s", zLead, zId, az2[0]);
for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]);
fprintf(out, ") VALUES");
zSep = "(";
for(i=0; i<nPk2; i++){
fprintf(out, "%s", zSep);
zSep = ",";
printQuoted(out, sqlite3_column_value(pStmt,i));
}
for(i=nPk2+2; i<nQ; i+=2){
fprintf(out, ",");
printQuoted(out, sqlite3_column_value(pStmt,i));
}
fprintf(out, ");\n");
}
}
sqlite3_finalize(pStmt);
} /* endif !g.bSchemaOnly */
/* Create indexes that are missing in the source */
pStmt = db_prepare(
"SELECT sql FROM aux.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q"
" AND sql IS NOT NULL"
" AND sql NOT IN (SELECT sql FROM main.sqlite_schema"
" WHERE type='index' AND tbl_name=%Q"
" AND sql IS NOT NULL)",
zTab, zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0));
}
sqlite3_finalize(pStmt);
end_diff_one_table:
strFree(pSql);
sqlite3_free(zId);
namelistFree(az);
namelistFree(az2);
return;
}
/*
** Check that table zTab exists and has the same schema in both the "main"
** and "aux" databases currently opened by the global db handle. If they
** do not, output an error message on stderr and exit(1). Otherwise, if
** the schemas do match, return control to the caller.
*/
static void checkSchemasMatch(const char *zTab){
sqlite3_stmt *pStmt = db_prepare(
"SELECT A.sql=B.sql FROM main.sqlite_schema A, aux.sqlite_schema B"
" WHERE A.name=%Q AND B.name=%Q", zTab, zTab
);
if( SQLITE_ROW==sqlite3_step(pStmt) ){
if( sqlite3_column_int(pStmt,0)==0 ){
runtimeError("schema changes for table %s", safeId(zTab));
}
}else{
runtimeError("table %s missing from one or both databases", safeId(zTab));
}
sqlite3_finalize(pStmt);
}
/**************************************************************************
** The following code is copied from fossil. It is used to generate the
** fossil delta blobs sometimes used in RBU update records.
*/
typedef unsigned short u16;
typedef unsigned int u32;
typedef unsigned char u8;
/*
** The width of a hash window in bytes. The algorithm only works if this
** is a power of 2.
*/
#define NHASH 16
/*
** The current state of the rolling hash.
**
** z[] holds the values that have been hashed. z[] is a circular buffer.
** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of
** the window.
**
** Hash.a is the sum of all elements of hash.z[]. Hash.b is a weighted
** sum. Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1.
** (Each index for z[] should be module NHASH, of course. The %NHASH operator
** is omitted in the prior expression for brevity.)
*/
typedef struct hash hash;
struct hash {
u16 a, b; /* Hash values */
u16 i; /* Start of the hash window */
char z[NHASH]; /* The values that have been hashed */
};
/*
** Initialize the rolling hash using the first NHASH characters of z[]
*/
static void hash_init(hash *pHash, const char *z){
u16 a, b, i;
a = b = 0;
for(i=0; i<NHASH; i++){
a += z[i];
b += (NHASH-i)*z[i];
pHash->z[i] = z[i];
}
pHash->a = a & 0xffff;
pHash->b = b & 0xffff;
pHash->i = 0;
}
/*
** Advance the rolling hash by a single character "c"
*/
static void hash_next(hash *pHash, int c){
u16 old = pHash->z[pHash->i];
pHash->z[pHash->i] = (char)c;
pHash->i = (pHash->i+1)&(NHASH-1);
pHash->a = pHash->a - old + (char)c;
pHash->b = pHash->b - NHASH*old + pHash->a;
}
/*
** Return a 32-bit hash value
*/
static u32 hash_32bit(hash *pHash){
return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16);
}
/*
** Write an base-64 integer into the given buffer.
*/
static void putInt(unsigned int v, char **pz){
static const char zDigits[] =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~";
/* 123456789 123456789 123456789 123456789 123456789 123456789 123 */
int i, j;
char zBuf[20];
if( v==0 ){
*(*pz)++ = '0';
return;
}
for(i=0; v>0; i++, v>>=6){
zBuf[i] = zDigits[v&0x3f];
}
for(j=i-1; j>=0; j--){
*(*pz)++ = zBuf[j];
}
}
/*
** Return the number digits in the base-64 representation of a positive integer
*/
static int digit_count(int v){
unsigned int i, x;
for(i=1, x=64; (unsigned int)v>=x; i++, x <<= 6){}
return i;
}
/*
** Compute a 32-bit checksum on the N-byte buffer. Return the result.
*/
static unsigned int checksum(const char *zIn, size_t N){
const unsigned char *z = (const unsigned char *)zIn;
unsigned sum0 = 0;
unsigned sum1 = 0;
unsigned sum2 = 0;
unsigned sum3 = 0;
while(N >= 16){
sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]);
sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]);
sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]);
sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]);
z += 16;
N -= 16;
}
while(N >= 4){
sum0 += z[0];
sum1 += z[1];
sum2 += z[2];
sum3 += z[3];
z += 4;
N -= 4;
}
sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24);
switch(N){
case 3: sum3 += (z[2] << 8);
case 2: sum3 += (z[1] << 16);
case 1: sum3 += (z[0] << 24);
default: ;
}
return sum3;
}
/*
** Create a new delta.
**
** The delta is written into a preallocated buffer, zDelta, which
** should be at least 60 bytes longer than the target file, zOut.
** The delta string will be NUL-terminated, but it might also contain
** embedded NUL characters if either the zSrc or zOut files are
** binary. This function returns the length of the delta string
** in bytes, excluding the final NUL terminator character.
**
** Output Format:
**
** The delta begins with a base64 number followed by a newline. This
** number is the number of bytes in the TARGET file. Thus, given a
** delta file z, a program can compute the size of the output file
** simply by reading the first line and decoding the base-64 number
** found there. The delta_output_size() routine does exactly this.
**
** After the initial size number, the delta consists of a series of
** literal text segments and commands to copy from the SOURCE file.
** A copy command looks like this:
**
** NNN@MMM,
**
** where NNN is the number of bytes to be copied and MMM is the offset
** into the source file of the first byte (both base-64). If NNN is 0
** it means copy the rest of the input file. Literal text is like this:
**
** NNN:TTTTT
**
** where NNN is the number of bytes of text (base-64) and TTTTT is the text.
**
** The last term is of the form
**
** NNN;
**
** In this case, NNN is a 32-bit bigendian checksum of the output file
** that can be used to verify that the delta applied correctly. All
** numbers are in base-64.
**
** Pure text files generate a pure text delta. Binary files generate a
** delta that may contain some binary data.
**
** Algorithm:
**
** The encoder first builds a hash table to help it find matching
** patterns in the source file. 16-byte chunks of the source file
** sampled at evenly spaced intervals are used to populate the hash
** table.
**
** Next we begin scanning the target file using a sliding 16-byte
** window. The hash of the 16-byte window in the target is used to
** search for a matching section in the source file. When a match
** is found, a copy command is added to the delta. An effort is
** made to extend the matching section to regions that come before
** and after the 16-byte hash window. A copy command is only issued
** if the result would use less space that just quoting the text
** literally. Literal text is added to the delta for sections that
** do not match or which can not be encoded efficiently using copy
** commands.
*/
static int rbuDeltaCreate(
const char *zSrc, /* The source or pattern file */
unsigned int lenSrc, /* Length of the source file */
const char *zOut, /* The target file */
unsigned int lenOut, /* Length of the target file */
char *zDelta /* Write the delta into this buffer */
){
unsigned int i, base;
char *zOrigDelta = zDelta;
hash h;
int nHash; /* Number of hash table entries */
int *landmark; /* Primary hash table */
int *collide; /* Collision chain */
int lastRead = -1; /* Last byte of zSrc read by a COPY command */
/* Add the target file size to the beginning of the delta
*/
putInt(lenOut, &zDelta);
*(zDelta++) = '\n';
/* If the source file is very small, it means that we have no
** chance of ever doing a copy command. Just output a single
** literal segment for the entire target and exit.
*/
if( lenSrc<=NHASH ){
putInt(lenOut, &zDelta);
*(zDelta++) = ':';
memcpy(zDelta, zOut, lenOut);
zDelta += lenOut;
putInt(checksum(zOut, lenOut), &zDelta);
*(zDelta++) = ';';
return (int)(zDelta - zOrigDelta);
}
/* Compute the hash table used to locate matching sections in the
** source file.
*/
nHash = lenSrc/NHASH;
collide = sqlite3_malloc( nHash*2*sizeof(int) );
landmark = &collide[nHash];
memset(landmark, -1, nHash*sizeof(int));
memset(collide, -1, nHash*sizeof(int));
for(i=0; i<lenSrc-NHASH; i+=NHASH){
int hv;
hash_init(&h, &zSrc[i]);
hv = hash_32bit(&h) % nHash;
collide[i/NHASH] = landmark[hv];
landmark[hv] = i/NHASH;
}
/* Begin scanning the target file and generating copy commands and
** literal sections of the delta.
*/
base = 0; /* We have already generated everything before zOut[base] */
while( base+NHASH<lenOut ){
int iSrc, iBlock;
int bestCnt, bestOfst=0, bestLitsz=0;
hash_init(&h, &zOut[base]);
i = 0; /* Trying to match a landmark against zOut[base+i] */
bestCnt = 0;
while( 1 ){
int hv;
int limit = 250;
hv = hash_32bit(&h) % nHash;
iBlock = landmark[hv];
while( iBlock>=0 && (limit--)>0 ){
/*
** The hash window has identified a potential match against
** landmark block iBlock. But we need to investigate further.
**
** Look for a region in zOut that matches zSrc. Anchor the search
** at zSrc[iSrc] and zOut[base+i]. Do not include anything prior to
** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen].
**
** Set cnt equal to the length of the match and set ofst so that
** zSrc[ofst] is the first element of the match. litsz is the number
** of characters between zOut[base] and the beginning of the match.
** sz will be the overhead (in bytes) needed to encode the copy
** command. Only generate copy command if the overhead of the
** copy command is less than the amount of literal text to be copied.
*/
int cnt, ofst, litsz;
int j, k, x, y;
int sz;
/* Beginning at iSrc, match forwards as far as we can. j counts
** the number of characters that match */
iSrc = iBlock*NHASH;
for(
j=0, x=iSrc, y=base+i;
(unsigned int)x<lenSrc && (unsigned int)y<lenOut;
j++, x++, y++
){
if( zSrc[x]!=zOut[y] ) break;
}
j--;
/* Beginning at iSrc-1, match backwards as far as we can. k counts
** the number of characters that match */
for(k=1; k<iSrc && (unsigned int)k<=i; k++){
if( zSrc[iSrc-k]!=zOut[base+i-k] ) break;
}
k--;
/* Compute the offset and size of the matching region */
ofst = iSrc-k;
cnt = j+k+1;
litsz = i-k; /* Number of bytes of literal text before the copy */
/* sz will hold the number of bytes needed to encode the "insert"
** command and the copy command, not counting the "insert" text */
sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3;
if( cnt>=sz && cnt>bestCnt ){
/* Remember this match only if it is the best so far and it
** does not increase the file size */
bestCnt = cnt;
bestOfst = iSrc-k;
bestLitsz = litsz;
}
/* Check the next matching block */
iBlock = collide[iBlock];
}
/* We have a copy command that does not cause the delta to be larger
** than a literal insert. So add the copy command to the delta.
*/
if( bestCnt>0 ){
if( bestLitsz>0 ){
/* Add an insert command before the copy */
putInt(bestLitsz,&zDelta);
*(zDelta++) = ':';
memcpy(zDelta, &zOut[base], bestLitsz);
zDelta += bestLitsz;
base += bestLitsz;
}
base += bestCnt;
putInt(bestCnt, &zDelta);
*(zDelta++) = '@';
putInt(bestOfst, &zDelta);
*(zDelta++) = ',';
if( bestOfst + bestCnt -1 > lastRead ){
lastRead = bestOfst + bestCnt - 1;
}
bestCnt = 0;
break;
}
/* If we reach this point, it means no match is found so far */
if( base+i+NHASH>=lenOut ){
/* We have reached the end of the file and have not found any
** matches. Do an "insert" for everything that does not match */
putInt(lenOut-base, &zDelta);
*(zDelta++) = ':';
memcpy(zDelta, &zOut[base], lenOut-base);
zDelta += lenOut-base;
base = lenOut;
break;
}
/* Advance the hash by one character. Keep looking for a match */
hash_next(&h, zOut[base+i+NHASH]);
i++;
}
}
/* Output a final "insert" record to get all the text at the end of
** the file that does not match anything in the source file.
*/
if( base<lenOut ){
putInt(lenOut-base, &zDelta);
*(zDelta++) = ':';
memcpy(zDelta, &zOut[base], lenOut-base);
zDelta += lenOut-base;
}
/* Output the final checksum record. */
putInt(checksum(zOut, lenOut), &zDelta);
*(zDelta++) = ';';
sqlite3_free(collide);
return (int)(zDelta - zOrigDelta);
}
/*
** End of code copied from fossil.
**************************************************************************/
static void strPrintfArray(
sqlite3_str *pStr, /* String object to append to */
const char *zSep, /* Separator string */
const char *zFmt, /* Format for each entry */
char **az, int n /* Array of strings & its size (or -1) */
){
int i;
for(i=0; az[i] && (i<n || n<0); i++){
if( i!=0 ) sqlite3_str_appendf(pStr, "%s", zSep);
sqlite3_str_appendf(pStr, zFmt, az[i], az[i], az[i]);
}
}
static void getRbudiffQuery(
const char *zTab,
char **azCol,
int nPK,
int bOtaRowid,
sqlite3_str *pSql
){
int i;
/* First the newly inserted rows: **/
sqlite3_str_appendf(pSql, "SELECT ");
strPrintfArray(pSql, ", ", "%s", azCol, -1);
sqlite3_str_appendf(pSql, ", 0, "); /* Set ota_control to 0 for an insert */
strPrintfArray(pSql, ", ", "NULL", azCol, -1);
sqlite3_str_appendf(pSql, " FROM aux.%Q AS n WHERE NOT EXISTS (\n", zTab);
sqlite3_str_appendf(pSql, " SELECT 1 FROM ", zTab);
sqlite3_str_appendf(pSql, " main.%Q AS o WHERE ", zTab);
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
sqlite3_str_appendf(pSql, "\n) AND ");
strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK);
/* Deleted rows: */
sqlite3_str_appendf(pSql, "\nUNION ALL\nSELECT ");
strPrintfArray(pSql, ", ", "%s", azCol, nPK);
if( azCol[nPK] ){
sqlite3_str_appendf(pSql, ", ");
strPrintfArray(pSql, ", ", "NULL", &azCol[nPK], -1);
}
sqlite3_str_appendf(pSql, ", 1, "); /* Set ota_control to 1 for a delete */
strPrintfArray(pSql, ", ", "NULL", azCol, -1);
sqlite3_str_appendf(pSql, " FROM main.%Q AS n WHERE NOT EXISTS (\n", zTab);
sqlite3_str_appendf(pSql, " SELECT 1 FROM ", zTab);
sqlite3_str_appendf(pSql, " aux.%Q AS o WHERE ", zTab);
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
sqlite3_str_appendf(pSql, "\n) AND ");
strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK);
/* Updated rows. If all table columns are part of the primary key, there
** can be no updates. In this case this part of the compound SELECT can
** be omitted altogether. */
if( azCol[nPK] ){
sqlite3_str_appendf(pSql, "\nUNION ALL\nSELECT ");
strPrintfArray(pSql, ", ", "n.%s", azCol, nPK);
sqlite3_str_appendf(pSql, ",\n");
strPrintfArray(pSql, " ,\n",
" CASE WHEN n.%s IS o.%s THEN NULL ELSE n.%s END", &azCol[nPK], -1
);
if( bOtaRowid==0 ){
sqlite3_str_appendf(pSql, ", '");
strPrintfArray(pSql, "", ".", azCol, nPK);
sqlite3_str_appendf(pSql, "' ||\n");
}else{
sqlite3_str_appendf(pSql, ",\n");
}
strPrintfArray(pSql, " ||\n",
" CASE WHEN n.%s IS o.%s THEN '.' ELSE 'x' END", &azCol[nPK], -1
);
sqlite3_str_appendf(pSql, "\nAS ota_control, ");
strPrintfArray(pSql, ", ", "NULL", azCol, nPK);
sqlite3_str_appendf(pSql, ",\n");
strPrintfArray(pSql, " ,\n",
" CASE WHEN n.%s IS o.%s THEN NULL ELSE o.%s END", &azCol[nPK], -1
);
sqlite3_str_appendf(pSql, "\nFROM main.%Q AS o, aux.%Q AS n\nWHERE ",
zTab, zTab);
strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK);
sqlite3_str_appendf(pSql, " AND ota_control LIKE '%%x%%'");
}
/* Now add an ORDER BY clause to sort everything by PK. */
sqlite3_str_appendf(pSql, "\nORDER BY ");
for(i=1; i<=nPK; i++) sqlite3_str_appendf(pSql, "%s%d", ((i>1)?", ":""), i);
}
static void rbudiff_one_table(const char *zTab, FILE *out){
int bOtaRowid; /* True to use an ota_rowid column */
int nPK; /* Number of primary key columns in table */
char **azCol; /* NULL terminated array of col names */
int i;
int nCol;
sqlite3_str *pCt; /* The "CREATE TABLE data_xxx" statement */
sqlite3_str *pSql; /* Query to find differences */
sqlite3_str *pInsert; /* First part of output INSERT statement */
sqlite3_stmt *pStmt = 0;
int nRow = 0; /* Total rows in data_xxx table */
/* --rbu mode must use real primary keys. */
g.bSchemaPK = 1;
pCt = sqlite3_str_new(0);
pSql = sqlite3_str_new(0);
pInsert = sqlite3_str_new(0);
/* Check that the schemas of the two tables match. Exit early otherwise. */
checkSchemasMatch(zTab);
/* Grab the column names and PK details for the table(s). If no usable PK
** columns are found, bail out early. */
azCol = columnNames("main", zTab, &nPK, &bOtaRowid);
if( azCol==0 ){
runtimeError("table %s has no usable PK columns", zTab);
}
for(nCol=0; azCol[nCol]; nCol++);
/* Build and output the CREATE TABLE statement for the data_xxx table */
sqlite3_str_appendf(pCt, "CREATE TABLE IF NOT EXISTS 'data_%q'(", zTab);
if( bOtaRowid ) sqlite3_str_appendf(pCt, "rbu_rowid, ");
strPrintfArray(pCt, ", ", "%s", &azCol[bOtaRowid], -1);
sqlite3_str_appendf(pCt, ", rbu_control);");
/* Get the SQL for the query to retrieve data from the two databases */
getRbudiffQuery(zTab, azCol, nPK, bOtaRowid, pSql);
/* Build the first part of the INSERT statement output for each row
** in the data_xxx table. */
sqlite3_str_appendf(pInsert, "INSERT INTO 'data_%q' (", zTab);
if( bOtaRowid ) sqlite3_str_appendf(pInsert, "rbu_rowid, ");
strPrintfArray(pInsert, ", ", "%s", &azCol[bOtaRowid], -1);
sqlite3_str_appendf(pInsert, ", rbu_control) VALUES(");
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
while( sqlite3_step(pStmt)==SQLITE_ROW ){
/* If this is the first row output, print out the CREATE TABLE
** statement first. And reset pCt so that it will not be
** printed again. */
if( sqlite3_str_length(pCt) ){
fprintf(out, "%s\n", sqlite3_str_value(pCt));
sqlite3_str_reset(pCt);
}
/* Output the first part of the INSERT statement */
fprintf(out, "%s", sqlite3_str_value(pInsert));
nRow++;
if( sqlite3_column_type(pStmt, nCol)==SQLITE_INTEGER ){
for(i=0; i<=nCol; i++){
if( i>0 ) fprintf(out, ", ");
printQuoted(out, sqlite3_column_value(pStmt, i));
}
}else{
char *zOtaControl;
int nOtaControl = sqlite3_column_bytes(pStmt, nCol);
zOtaControl = (char*)sqlite3_malloc(nOtaControl+1);
memcpy(zOtaControl, sqlite3_column_text(pStmt, nCol), nOtaControl+1);
for(i=0; i<nCol; i++){
int bDone = 0;
if( i>=nPK
&& sqlite3_column_type(pStmt, i)==SQLITE_BLOB
&& sqlite3_column_type(pStmt, nCol+1+i)==SQLITE_BLOB
){
const char *aSrc = sqlite3_column_blob(pStmt, nCol+1+i);
int nSrc = sqlite3_column_bytes(pStmt, nCol+1+i);
const char *aFinal = sqlite3_column_blob(pStmt, i);
int nFinal = sqlite3_column_bytes(pStmt, i);
char *aDelta;
int nDelta;
aDelta = sqlite3_malloc(nFinal + 60);
nDelta = rbuDeltaCreate(aSrc, nSrc, aFinal, nFinal, aDelta);
if( nDelta<nFinal ){
int j;
fprintf(out, "x'");
for(j=0; j<nDelta; j++) fprintf(out, "%02x", (u8)aDelta[j]);
fprintf(out, "'");
zOtaControl[i-bOtaRowid] = 'f';
bDone = 1;
}
sqlite3_free(aDelta);
}
if( bDone==0 ){
printQuoted(out, sqlite3_column_value(pStmt, i));
}
fprintf(out, ", ");
}
fprintf(out, "'%s'", zOtaControl);
sqlite3_free(zOtaControl);
}
/* And the closing bracket of the insert statement */
fprintf(out, ");\n");
}
sqlite3_finalize(pStmt);
if( nRow>0 ){
sqlite3_str *pCnt = sqlite3_str_new(0);
sqlite3_str_appendf(pCnt,
"INSERT INTO rbu_count VALUES('data_%q', %d);", zTab, nRow);
fprintf(out, "%s\n", sqlite3_str_value(pCnt));
strFree(pCnt);
}
strFree(pCt);
strFree(pSql);
strFree(pInsert);
}
/*
** Display a summary of differences between two versions of the same
** table table.
**
** * Number of rows changed
** * Number of rows added
** * Number of rows deleted
** * Number of identical rows
*/
static void summarize_one_table(const char *zTab, FILE *out){
char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */
char **az = 0; /* Columns in main */
char **az2 = 0; /* Columns in aux */
int nPk; /* Primary key columns in main */
int nPk2; /* Primary key columns in aux */
int n = 0; /* Number of columns in main */
int n2; /* Number of columns in aux */
int i; /* Loop counter */
const char *zSep; /* Separator string */
sqlite3_str *pSql; /* Comparison query */
sqlite3_stmt *pStmt; /* Query statement to do the diff */
sqlite3_int64 nUpdate; /* Number of updated rows */
sqlite3_int64 nUnchanged; /* Number of unmodified rows */
sqlite3_int64 nDelete; /* Number of deleted rows */
sqlite3_int64 nInsert; /* Number of inserted rows */
pSql = sqlite3_str_new(0);
if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){
if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
/* Table missing from second database. */
Wfprintf(out, "%s: missing from second database\n", zTab);
}
goto end_summarize_one_table;
}
if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){
/* Table missing from source */
Wfprintf(out, "%s: missing from first database\n", zTab);
goto end_summarize_one_table;
}
az = columnNames("main", zTab, &nPk, 0);
az2 = columnNames("aux", zTab, &nPk2, 0);
if( az && az2 ){
for(n=0; az[n]; n++){
if( sqlite3_stricmp(az[n],az2[n])!=0 ) break;
}
}
if( az==0
|| az2==0
|| nPk!=nPk2
|| az[n]
){
/* Schema mismatch */
Wfprintf(out, "%s: incompatible schema\n", zTab);
goto end_summarize_one_table;
}
/* Build the comparison query */
for(n2=n; az[n2]; n2++){}
sqlite3_str_appendf(pSql, "SELECT 1, count(*)");
if( n2==nPk2 ){
sqlite3_str_appendf(pSql, ", 0\n");
}else{
zSep = ", sum(";
for(i=nPk; az[i]; i++){
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]);
zSep = " OR ";
}
sqlite3_str_appendf(pSql, ")\n");
}
sqlite3_str_appendf(pSql, " FROM main.%s A, aux.%s B\n", zId, zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, " UNION ALL\n");
sqlite3_str_appendf(pSql, "SELECT 2, count(*), 0\n");
sqlite3_str_appendf(pSql, " FROM main.%s A\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId);
zSep = "WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n");
sqlite3_str_appendf(pSql, " UNION ALL\n");
sqlite3_str_appendf(pSql, "SELECT 3, count(*), 0\n");
sqlite3_str_appendf(pSql, " FROM aux.%s B\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId);
zSep = "WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s", zSep, az[i], az[i]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n ORDER BY 1;\n");
if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){
Wfprintf(stdout, "SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
goto end_summarize_one_table;
}
/* Run the query and output difference summary */
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
nUpdate = 0;
nInsert = 0;
nDelete = 0;
nUnchanged = 0;
while( SQLITE_ROW==sqlite3_step(pStmt) ){
switch( sqlite3_column_int(pStmt,0) ){
case 1:
nUpdate = sqlite3_column_int64(pStmt,2);
nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate;
break;
case 2:
nDelete = sqlite3_column_int64(pStmt,1);
break;
case 3:
nInsert = sqlite3_column_int64(pStmt,1);
break;
}
}
sqlite3_finalize(pStmt);
Wfprintf(out,
"%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n",
zTab, nUpdate, nInsert, nDelete, nUnchanged);
end_summarize_one_table:
strFree(pSql);
sqlite3_free(zId);
namelistFree(az);
namelistFree(az2);
return;
}
/*
** Write a 64-bit signed integer as a varint onto out
*/
static void putsVarint(FILE *out, sqlite3_uint64 v){
int i, n;
unsigned char p[12];
if( v & (((sqlite3_uint64)0xff000000)<<32) ){
p[8] = (unsigned char)v;
v >>= 8;
for(i=7; i>=0; i--){
p[i] = (unsigned char)((v & 0x7f) | 0x80);
v >>= 7;
}
fwrite(p, 8, 1, out);
}else{
n = 9;
do{
p[n--] = (unsigned char)((v & 0x7f) | 0x80);
v >>= 7;
}while( v!=0 );
p[9] &= 0x7f;
fwrite(p+n+1, 9-n, 1, out);
}
}
/*
** Write an SQLite value onto out.
*/
static void putValue(FILE *out, sqlite3_stmt *pStmt, int k){
int iDType = sqlite3_column_type(pStmt, k);
sqlite3_int64 iX;
double rX;
sqlite3_uint64 uX;
int j;
putc(iDType, out);
switch( iDType ){
case SQLITE_INTEGER:
iX = sqlite3_column_int64(pStmt, k);
memcpy(&uX, &iX, 8);
for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
break;
case SQLITE_FLOAT:
rX = sqlite3_column_double(pStmt, k);
memcpy(&uX, &rX, 8);
for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out);
break;
case SQLITE_TEXT:
iX = sqlite3_column_bytes(pStmt, k);
putsVarint(out, (sqlite3_uint64)iX);
fwrite(sqlite3_column_text(pStmt, k),1,(size_t)iX,out);
break;
case SQLITE_BLOB:
iX = sqlite3_column_bytes(pStmt, k);
putsVarint(out, (sqlite3_uint64)iX);
fwrite(sqlite3_column_blob(pStmt, k),1,(size_t)iX,out);
break;
case SQLITE_NULL:
break;
}
}
/*
** Generate a CHANGESET for all differences from main.zTab to aux.zTab.
*/
static void changeset_one_table(const char *zTab, FILE *out){
sqlite3_stmt *pStmt; /* SQL statment */
char *zId = safeId(zTab); /* Escaped name of the table */
char **azCol = 0; /* List of escaped column names */
int nCol = 0; /* Number of columns */
int *aiFlg = 0; /* 0 if column is not part of PK */
int *aiPk = 0; /* Column numbers for each PK column */
int nPk = 0; /* Number of PRIMARY KEY columns */
sqlite3_str *pSql; /* SQL for the diff query */
int i, k; /* Loop counters */
const char *zSep; /* List separator */
/* Check that the schemas of the two tables match. Exit early otherwise. */
checkSchemasMatch(zTab);
pSql = sqlite3_str_new(0);
pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab);
while( SQLITE_ROW==sqlite3_step(pStmt) ){
nCol++;
azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol);
if( azCol==0 ) runtimeError("out of memory");
aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol);
if( aiFlg==0 ) runtimeError("out of memory");
azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1));
aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5);
if( i>0 ){
if( i>nPk ){
nPk = i;
aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk);
if( aiPk==0 ) runtimeError("out of memory");
}
aiPk[i-1] = nCol-1;
}
}
sqlite3_finalize(pStmt);
if( nPk==0 ) goto end_changeset_one_table;
if( nCol>nPk ){
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_UPDATE);
for(i=0; i<nCol; i++){
if( aiFlg[i] ){
sqlite3_str_appendf(pSql, ",\n A.%s", azCol[i]);
}else{
sqlite3_str_appendf(pSql, ",\n A.%s IS NOT B.%s, A.%s, B.%s",
azCol[i], azCol[i], azCol[i], azCol[i]);
}
}
sqlite3_str_appendf(pSql,"\n FROM main.%s A, aux.%s B\n", zId, zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
zSep = " AND";
}
zSep = "\n AND (";
for(i=0; i<nCol; i++){
if( aiFlg[i] ) continue;
sqlite3_str_appendf(pSql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]);
zSep = " OR\n ";
}
sqlite3_str_appendf(pSql,")\n UNION ALL\n");
}
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_DELETE);
for(i=0; i<nCol; i++){
if( aiFlg[i] ){
sqlite3_str_appendf(pSql, ",\n A.%s", azCol[i]);
}else{
sqlite3_str_appendf(pSql, ",\n 1, A.%s, NULL", azCol[i]);
}
}
sqlite3_str_appendf(pSql, "\n FROM main.%s A\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n UNION ALL\n");
sqlite3_str_appendf(pSql, "SELECT %d", SQLITE_INSERT);
for(i=0; i<nCol; i++){
if( aiFlg[i] ){
sqlite3_str_appendf(pSql, ",\n B.%s", azCol[i]);
}else{
sqlite3_str_appendf(pSql, ",\n 1, NULL, B.%s", azCol[i]);
}
}
sqlite3_str_appendf(pSql, "\n FROM aux.%s B\n", zId);
sqlite3_str_appendf(pSql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId);
zSep = " WHERE";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s A.%s=B.%s",
zSep, azCol[aiPk[i]], azCol[aiPk[i]]);
zSep = " AND";
}
sqlite3_str_appendf(pSql, ")\n");
sqlite3_str_appendf(pSql, " ORDER BY");
zSep = " ";
for(i=0; i<nPk; i++){
sqlite3_str_appendf(pSql, "%s %d", zSep, aiPk[i]+2);
zSep = ",";
}
sqlite3_str_appendf(pSql, ";\n");
if( g.fDebug & DEBUG_DIFF_SQL ){
Wfprintf(stdout, "SQL for %s:\n%s\n", zId, sqlite3_str_value(pSql));
goto end_changeset_one_table;
}
putc('T', out);
putsVarint(out, (sqlite3_uint64)nCol);
for(i=0; i<nCol; i++) putc(aiFlg[i], out);
fwrite(zTab, 1, strlen(zTab), out);
putc(0, out);
pStmt = db_prepare("%s", sqlite3_str_value(pSql));
while( SQLITE_ROW==sqlite3_step(pStmt) ){
int iType = sqlite3_column_int(pStmt,0);
putc(iType, out);
putc(0, out);
switch( sqlite3_column_int(pStmt,0) ){
case SQLITE_UPDATE: {
for(k=1, i=0; i<nCol; i++){
if( aiFlg[i] ){
putValue(out, pStmt, k);
k++;
}else if( sqlite3_column_int(pStmt,k) ){
putValue(out, pStmt, k+1);
k += 3;
}else{
putc(0, out);
k += 3;
}
}
for(k=1, i=0; i<nCol; i++){
if( aiFlg[i] ){
putc(0, out);
k++;
}else if( sqlite3_column_int(pStmt,k) ){
putValue(out, pStmt, k+2);
k += 3;
}else{
putc(0, out);
k += 3;
}
}
break;
}
case SQLITE_INSERT: {
for(k=1, i=0; i<nCol; i++){
if( aiFlg[i] ){
putValue(out, pStmt, k);
k++;
}else{
putValue(out, pStmt, k+2);
k += 3;
}
}
break;
}
case SQLITE_DELETE: {
for(k=1, i=0; i<nCol; i++){
if( aiFlg[i] ){
putValue(out, pStmt, k);
k++;
}else{
putValue(out, pStmt, k+1);
k += 3;
}
}
break;
}
}
}
sqlite3_finalize(pStmt);
end_changeset_one_table:
while( nCol>0 ) sqlite3_free(azCol[--nCol]);
sqlite3_free(azCol);
sqlite3_free(aiPk);
sqlite3_free(zId);
sqlite3_free(aiFlg);
strFree(pSql);
}
/*
** Return true if the ascii character passed as the only argument is a
** whitespace character. Otherwise return false.
*/
static int is_whitespace(char x){
return (x==' ' || x=='\t' || x=='\n' || x=='\r');
}
/*
** Extract the next SQL keyword or quoted string from buffer zIn and copy it
** (or a prefix of it if it will not fit) into buffer zBuf, size nBuf bytes.
** Return a pointer to the character within zIn immediately following
** the token or quoted string just extracted.
*/
static const char *gobble_token(const char *zIn, char *zBuf, int nBuf){
const char *p = zIn;
char *pOut = zBuf;
char *pEnd = &pOut[nBuf-1];
char q = 0; /* quote character, if any */
if( p==0 ) return 0;
while( is_whitespace(*p) ) p++;
switch( *p ){
case '"': q = '"'; break;
case '\'': q = '\''; break;
case '`': q = '`'; break;
case '[': q = ']'; break;
}
if( q ){
p++;
while( *p && pOut<pEnd ){
if( *p==q ){
p++;
if( *p!=q ) break;
}
if( pOut<pEnd ) *pOut++ = *p;
p++;
}
}else{
while( *p && !is_whitespace(*p) && *p!='(' ){
if( pOut<pEnd ) *pOut++ = *p;
p++;
}
}
*pOut = '\0';
return p;
}
/*
** This function is the implementation of SQL scalar function "module_name":
**
** module_name(SQL)
**
** The only argument should be an SQL statement of the type that may appear
** in the sqlite_schema table. If the statement is a "CREATE VIRTUAL TABLE"
** statement, then the value returned is the name of the module that it
** uses. Otherwise, if the statement is not a CVT, NULL is returned.
*/
static void module_name_func(
sqlite3_context *pCtx,
int nVal, sqlite3_value **apVal
){
const char *zSql;
char zToken[32];
assert( nVal==1 );
zSql = (const char*)sqlite3_value_text(apVal[0]);
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 || sqlite3_stricmp(zToken, "create") ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 || sqlite3_stricmp(zToken, "virtual") ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 || sqlite3_stricmp(zToken, "table") ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
if( zSql==0 || sqlite3_stricmp(zToken, "using") ) return;
zSql = gobble_token(zSql, zToken, sizeof(zToken));
sqlite3_result_text(pCtx, zToken, -1, SQLITE_TRANSIENT);
}
/*
** Return the text of an SQL statement that itself returns the list of
** tables to process within the database.
*/
const char *all_tables_sql(){
if( g.bHandleVtab ){
int rc;
rc = sqlite3_exec(g.db,
"CREATE TEMP TABLE tblmap(module COLLATE nocase, postfix);"
"INSERT INTO temp.tblmap VALUES"
"('fts3', '_content'), ('fts3', '_segments'), ('fts3', '_segdir'),"
"('fts4', '_content'), ('fts4', '_segments'), ('fts4', '_segdir'),"
"('fts4', '_docsize'), ('fts4', '_stat'),"
"('fts5', '_data'), ('fts5', '_idx'), ('fts5', '_content'),"
"('fts5', '_docsize'), ('fts5', '_config'),"
"('rtree', '_node'), ('rtree', '_rowid'), ('rtree', '_parent');"
, 0, 0, 0
);
assert( rc==SQLITE_OK );
rc = sqlite3_create_function(
g.db, "module_name", 1, SQLITE_UTF8, 0, module_name_func, 0, 0
);
assert( rc==SQLITE_OK );
return
"SELECT name FROM main.sqlite_schema\n"
" WHERE type='table' AND (\n"
" module_name(sql) IS NULL OR \n"
" module_name(sql) IN (SELECT module FROM temp.tblmap)\n"
" ) AND name NOT IN (\n"
" SELECT a.name || b.postfix \n"
"FROM main.sqlite_schema AS a, temp.tblmap AS b \n"
"WHERE module_name(a.sql) = b.module\n"
" )\n"
"UNION \n"
"SELECT name FROM aux.sqlite_schema\n"
" WHERE type='table' AND (\n"
" module_name(sql) IS NULL OR \n"
" module_name(sql) IN (SELECT module FROM temp.tblmap)\n"
" ) AND name NOT IN (\n"
" SELECT a.name || b.postfix \n"
"FROM aux.sqlite_schema AS a, temp.tblmap AS b \n"
"WHERE module_name(a.sql) = b.module\n"
" )\n"
" ORDER BY name";
}else{
return
"SELECT name FROM main.sqlite_schema\n"
" WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
" UNION\n"
"SELECT name FROM aux.sqlite_schema\n"
" WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n"
" ORDER BY name";
}
}
/*
** Print sketchy documentation for this utility program
*/
static void showHelp(void){
Wfprintf(stdout, "Usage: %s [options] DB1 DB2\n", g.zArgv0);
Wfprintf(stdout,
"Output SQL text that would transform DB1 into DB2.\n"
"Options:\n"
" --changeset FILE Write a CHANGESET into FILE\n"
" -L|--lib LIBRARY Load an SQLite extension library\n"
" --primarykey Use schema-defined PRIMARY KEYs\n"
" --rbu Output SQL to create/populate RBU table(s)\n"
" --schema Show only differences in the schema\n"
" --summary Show only a summary of the differences\n"
" --table TAB Show only differences in table TAB\n"
" --transaction Show SQL output inside a transaction\n"
" --vtab Handle fts3, fts4, fts5 and rtree tables\n"
"See https://sqlite.org/sqldiff.html for detailed explanation.\n"
);
}
int main(int argc, char **argv){
const char *zDb1 = 0;
const char *zDb2 = 0;
int i;
int rc;
char *zErrMsg = 0;
char *zSql;
sqlite3_stmt *pStmt;
char *zTab = 0;
FILE *out = stdout;
void (*xDiff)(const char*,FILE*) = diff_one_table;
#ifndef SQLITE_OMIT_LOAD_EXTENSION
int nExt = 0;
char **azExt = 0;
#endif
int useTransaction = 0;
int neverUseTransaction = 0;
g.zArgv0 = argv[0];
sqlite3_config(SQLITE_CONFIG_SINGLETHREAD);
for(i=1; i<argc; i++){
const char *z = argv[i];
if( z[0]=='-' ){
z++;
if( z[0]=='-' ) z++;
if( strcmp(z,"changeset")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
out = fopen(argv[++i], "wb");
if( out==0 ) cmdlineError("cannot open: %s", argv[i]);
xDiff = changeset_one_table;
neverUseTransaction = 1;
}else
if( strcmp(z,"debug")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
g.fDebug = strtol(argv[++i], 0, 0);
}else
if( strcmp(z,"help")==0 ){
showHelp();
return 0;
}else
#ifndef SQLITE_OMIT_LOAD_EXTENSION
if( strcmp(z,"lib")==0 || strcmp(z,"L")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
azExt = realloc(azExt, sizeof(azExt[0])*(nExt+1));
if( azExt==0 ) cmdlineError("out of memory");
azExt[nExt++] = argv[++i];
}else
#endif
if( strcmp(z,"primarykey")==0 ){
g.bSchemaPK = 1;
}else
if( strcmp(z,"rbu")==0 ){
xDiff = rbudiff_one_table;
}else
if( strcmp(z,"schema")==0 ){
g.bSchemaOnly = 1;
}else
if( strcmp(z,"summary")==0 ){
xDiff = summarize_one_table;
}else
if( strcmp(z,"table")==0 ){
if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]);
zTab = argv[++i];
g.bSchemaCompare =
sqlite3_stricmp(zTab, "sqlite_schema")==0
|| sqlite3_stricmp(zTab, "sqlite_master")==0;
}else
if( strcmp(z,"transaction")==0 ){
useTransaction = 1;
}else
if( strcmp(z,"vtab")==0 ){
g.bHandleVtab = 1;
}else
{
cmdlineError("unknown option: %s", argv[i]);
}
}else if( zDb1==0 ){
zDb1 = argv[i];
}else if( zDb2==0 ){
zDb2 = argv[i];
}else{
cmdlineError("unknown argument: %s", argv[i]);
}
}
if( zDb2==0 ){
cmdlineError("two database arguments required");
}
if( g.bSchemaOnly && g.bSchemaCompare ){
cmdlineError("The --schema option is useless with --table %s .", zTab);
}
rc = sqlite3_open(zDb1, &g.db);
if( rc ){
cmdlineError("cannot open database file \"%s\"", zDb1);
}
rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_schema", 0, 0, &zErrMsg);
if( rc || zErrMsg ){
cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1);
}
#ifndef SQLITE_OMIT_LOAD_EXTENSION
sqlite3_enable_load_extension(g.db, 1);
for(i=0; i<nExt; i++){
rc = sqlite3_load_extension(g.db, azExt[i], 0, &zErrMsg);
if( rc || zErrMsg ){
cmdlineError("error loading %s: %s", azExt[i], zErrMsg);
}
}
free(azExt);
#endif
zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2);
rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg);
sqlite3_free(zSql);
zSql = 0;
if( rc || zErrMsg ){
cmdlineError("cannot attach database \"%s\"", zDb2);
}
rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_schema", 0, 0, &zErrMsg);
if( rc || zErrMsg ){
cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2);
}
if( neverUseTransaction ) useTransaction = 0;
if( useTransaction ) Wfprintf(out, "BEGIN TRANSACTION;\n");
if( xDiff==rbudiff_one_table ){
Wfprintf(out, "CREATE TABLE IF NOT EXISTS rbu_count"
"(tbl TEXT PRIMARY KEY COLLATE NOCASE, cnt INTEGER) "
"WITHOUT ROWID;\n"
);
}
if( zTab ){
xDiff(zTab, out);
}else{
/* Handle tables one by one */
pStmt = db_prepare("%s", all_tables_sql() );
while( SQLITE_ROW==sqlite3_step(pStmt) ){
xDiff((const char*)sqlite3_column_text(pStmt,0), out);
}
sqlite3_finalize(pStmt);
}
if( useTransaction ) Wfprintf(stdout,"COMMIT;\n");
/* TBD: Handle trigger differences */
/* TBD: Handle view differences */
sqlite3_close(g.db);
return 0;
}