0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2024-12-15 20:20:20 +00:00
Pekka Enberg 9ed72eb5ae Merge upstream SQLite 3.45.1
This merges the version-3.45.1 tag from upstream SQLite git repository
to libSQL with the following conflicts resolved:

Conflicts:
      README.md
      ext/jni/src/org/sqlite/jni/capi/ConfigSqllogCallback.java
      libsql-sqlite3/configure
      libsql-sqlite3/doc/jsonb.md
      libsql-sqlite3/ext/fts5/test/fts5faultH.test
      libsql-sqlite3/ext/fts5/test/fts5origintext.test
      libsql-sqlite3/ext/fts5/test/fts5origintext2.test
      libsql-sqlite3/ext/fts5/test/fts5origintext3.test
      libsql-sqlite3/ext/fts5/test/fts5origintext4.test
      libsql-sqlite3/ext/fts5/test/fts5origintext5.test
      libsql-sqlite3/ext/fts5/test/fts5secure8.test
      libsql-sqlite3/ext/fts5/test/fts5tokenizer2.test
      libsql-sqlite3/ext/fts5/test/fts5trigram2.test
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/annotation/Experimental.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/capi/ConfigSqlLogCallback.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/capi/ConfigSqllogCallback.java
      libsql-sqlite3/ext/jni/src/org/sqlite/jni/wrapper1/WindowFunction.java
      libsql-sqlite3/ext/wasm/GNUmakefile
      libsql-sqlite3/ext/wasm/batch-runner-sahpool.html
      libsql-sqlite3/ext/wasm/batch-runner-sahpool.js
      libsql-sqlite3/src/pager.c
      libsql-sqlite3/src/shell.c.in
      libsql-sqlite3/src/sqliteInt.h
      libsql-sqlite3/src/wal.c
      libsql-sqlite3/test/fts3integrity.test
      libsql-sqlite3/test/json/jsonb-q1.txt
      libsql-sqlite3/test/json106.test
      libsql-sqlite3/test/json107.test
      libsql-sqlite3/test/jsonb01.test
      libsql-sqlite3/test/mmapcorrupt.test
      libsql-sqlite3/test/releasetest_data.tcl
      libsql-sqlite3/test/shell9.test
      libsql-sqlite3/test/wapp.tcl
      libsql-sqlite3/test/wapptest.tcl
2024-07-25 13:45:06 +03:00

3258 lines
91 KiB
C

/*
** 2014 May 31
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
*/
#include "fts5Int.h"
#include "fts5parse.h"
#ifndef SQLITE_FTS5_MAX_EXPR_DEPTH
# define SQLITE_FTS5_MAX_EXPR_DEPTH 256
#endif
/*
** All token types in the generated fts5parse.h file are greater than 0.
*/
#define FTS5_EOF 0
#define FTS5_LARGEST_INT64 (0xffffffff|(((i64)0x7fffffff)<<32))
typedef struct Fts5ExprTerm Fts5ExprTerm;
/*
** Functions generated by lemon from fts5parse.y.
*/
void *sqlite3Fts5ParserAlloc(void *(*mallocProc)(u64));
void sqlite3Fts5ParserFree(void*, void (*freeProc)(void*));
void sqlite3Fts5Parser(void*, int, Fts5Token, Fts5Parse*);
#ifndef NDEBUG
#include <stdio.h>
void sqlite3Fts5ParserTrace(FILE*, char*);
#endif
int sqlite3Fts5ParserFallback(int);
struct Fts5Expr {
Fts5Index *pIndex;
Fts5Config *pConfig;
Fts5ExprNode *pRoot;
int bDesc; /* Iterate in descending rowid order */
int nPhrase; /* Number of phrases in expression */
Fts5ExprPhrase **apExprPhrase; /* Pointers to phrase objects */
};
/*
** eType:
** Expression node type. Always one of:
**
** FTS5_AND (nChild, apChild valid)
** FTS5_OR (nChild, apChild valid)
** FTS5_NOT (nChild, apChild valid)
** FTS5_STRING (pNear valid)
** FTS5_TERM (pNear valid)
**
** iHeight:
** Distance from this node to furthest leaf. This is always 0 for nodes
** of type FTS5_STRING and FTS5_TERM. For all other nodes it is one
** greater than the largest child value.
*/
struct Fts5ExprNode {
int eType; /* Node type */
int bEof; /* True at EOF */
int bNomatch; /* True if entry is not a match */
int iHeight; /* Distance to tree leaf nodes */
/* Next method for this node. */
int (*xNext)(Fts5Expr*, Fts5ExprNode*, int, i64);
i64 iRowid; /* Current rowid */
Fts5ExprNearset *pNear; /* For FTS5_STRING - cluster of phrases */
/* Child nodes. For a NOT node, this array always contains 2 entries. For
** AND or OR nodes, it contains 2 or more entries. */
int nChild; /* Number of child nodes */
Fts5ExprNode *apChild[1]; /* Array of child nodes */
};
#define Fts5NodeIsString(p) ((p)->eType==FTS5_TERM || (p)->eType==FTS5_STRING)
/*
** Invoke the xNext method of an Fts5ExprNode object. This macro should be
** used as if it has the same signature as the xNext() methods themselves.
*/
#define fts5ExprNodeNext(a,b,c,d) (b)->xNext((a), (b), (c), (d))
/*
** An instance of the following structure represents a single search term
** or term prefix.
*/
struct Fts5ExprTerm {
u8 bPrefix; /* True for a prefix term */
u8 bFirst; /* True if token must be first in column */
char *pTerm; /* Term data */
int nQueryTerm; /* Effective size of term in bytes */
int nFullTerm; /* Size of term in bytes incl. tokendata */
Fts5IndexIter *pIter; /* Iterator for this term */
Fts5ExprTerm *pSynonym; /* Pointer to first in list of synonyms */
};
/*
** A phrase. One or more terms that must appear in a contiguous sequence
** within a document for it to match.
*/
struct Fts5ExprPhrase {
Fts5ExprNode *pNode; /* FTS5_STRING node this phrase is part of */
Fts5Buffer poslist; /* Current position list */
int nTerm; /* Number of entries in aTerm[] */
Fts5ExprTerm aTerm[1]; /* Terms that make up this phrase */
};
/*
** One or more phrases that must appear within a certain token distance of
** each other within each matching document.
*/
struct Fts5ExprNearset {
int nNear; /* NEAR parameter */
Fts5Colset *pColset; /* Columns to search (NULL -> all columns) */
int nPhrase; /* Number of entries in aPhrase[] array */
Fts5ExprPhrase *apPhrase[1]; /* Array of phrase pointers */
};
/*
** Parse context.
*/
struct Fts5Parse {
Fts5Config *pConfig;
char *zErr;
int rc;
int nPhrase; /* Size of apPhrase array */
Fts5ExprPhrase **apPhrase; /* Array of all phrases */
Fts5ExprNode *pExpr; /* Result of a successful parse */
int bPhraseToAnd; /* Convert "a+b" to "a AND b" */
};
/*
** Check that the Fts5ExprNode.iHeight variables are set correctly in
** the expression tree passed as the only argument.
*/
#ifndef NDEBUG
static void assert_expr_depth_ok(int rc, Fts5ExprNode *p){
if( rc==SQLITE_OK ){
if( p->eType==FTS5_TERM || p->eType==FTS5_STRING || p->eType==0 ){
assert( p->iHeight==0 );
}else{
int ii;
int iMaxChild = 0;
for(ii=0; ii<p->nChild; ii++){
Fts5ExprNode *pChild = p->apChild[ii];
iMaxChild = MAX(iMaxChild, pChild->iHeight);
assert_expr_depth_ok(SQLITE_OK, pChild);
}
assert( p->iHeight==iMaxChild+1 );
}
}
}
#else
# define assert_expr_depth_ok(rc, p)
#endif
void sqlite3Fts5ParseError(Fts5Parse *pParse, const char *zFmt, ...){
va_list ap;
va_start(ap, zFmt);
if( pParse->rc==SQLITE_OK ){
assert( pParse->zErr==0 );
pParse->zErr = sqlite3_vmprintf(zFmt, ap);
pParse->rc = SQLITE_ERROR;
}
va_end(ap);
}
static int fts5ExprIsspace(char t){
return t==' ' || t=='\t' || t=='\n' || t=='\r';
}
/*
** Read the first token from the nul-terminated string at *pz.
*/
static int fts5ExprGetToken(
Fts5Parse *pParse,
const char **pz, /* IN/OUT: Pointer into buffer */
Fts5Token *pToken
){
const char *z = *pz;
int tok;
/* Skip past any whitespace */
while( fts5ExprIsspace(*z) ) z++;
pToken->p = z;
pToken->n = 1;
switch( *z ){
case '(': tok = FTS5_LP; break;
case ')': tok = FTS5_RP; break;
case '{': tok = FTS5_LCP; break;
case '}': tok = FTS5_RCP; break;
case ':': tok = FTS5_COLON; break;
case ',': tok = FTS5_COMMA; break;
case '+': tok = FTS5_PLUS; break;
case '*': tok = FTS5_STAR; break;
case '-': tok = FTS5_MINUS; break;
case '^': tok = FTS5_CARET; break;
case '\0': tok = FTS5_EOF; break;
case '"': {
const char *z2;
tok = FTS5_STRING;
for(z2=&z[1]; 1; z2++){
if( z2[0]=='"' ){
z2++;
if( z2[0]!='"' ) break;
}
if( z2[0]=='\0' ){
sqlite3Fts5ParseError(pParse, "unterminated string");
return FTS5_EOF;
}
}
pToken->n = (z2 - z);
break;
}
default: {
const char *z2;
if( sqlite3Fts5IsBareword(z[0])==0 ){
sqlite3Fts5ParseError(pParse, "fts5: syntax error near \"%.1s\"", z);
return FTS5_EOF;
}
tok = FTS5_STRING;
for(z2=&z[1]; sqlite3Fts5IsBareword(*z2); z2++);
pToken->n = (z2 - z);
if( pToken->n==2 && memcmp(pToken->p, "OR", 2)==0 ) tok = FTS5_OR;
if( pToken->n==3 && memcmp(pToken->p, "NOT", 3)==0 ) tok = FTS5_NOT;
if( pToken->n==3 && memcmp(pToken->p, "AND", 3)==0 ) tok = FTS5_AND;
break;
}
}
*pz = &pToken->p[pToken->n];
return tok;
}
static void *fts5ParseAlloc(u64 t){ return sqlite3_malloc64((sqlite3_int64)t);}
static void fts5ParseFree(void *p){ sqlite3_free(p); }
int sqlite3Fts5ExprNew(
Fts5Config *pConfig, /* FTS5 Configuration */
int bPhraseToAnd,
int iCol,
const char *zExpr, /* Expression text */
Fts5Expr **ppNew,
char **pzErr
){
Fts5Parse sParse;
Fts5Token token;
const char *z = zExpr;
int t; /* Next token type */
void *pEngine;
Fts5Expr *pNew;
*ppNew = 0;
*pzErr = 0;
memset(&sParse, 0, sizeof(sParse));
sParse.bPhraseToAnd = bPhraseToAnd;
pEngine = sqlite3Fts5ParserAlloc(fts5ParseAlloc);
if( pEngine==0 ){ return SQLITE_NOMEM; }
sParse.pConfig = pConfig;
do {
t = fts5ExprGetToken(&sParse, &z, &token);
sqlite3Fts5Parser(pEngine, t, token, &sParse);
}while( sParse.rc==SQLITE_OK && t!=FTS5_EOF );
sqlite3Fts5ParserFree(pEngine, fts5ParseFree);
assert_expr_depth_ok(sParse.rc, sParse.pExpr);
/* If the LHS of the MATCH expression was a user column, apply the
** implicit column-filter. */
if( iCol<pConfig->nCol && sParse.pExpr && sParse.rc==SQLITE_OK ){
int n = sizeof(Fts5Colset);
Fts5Colset *pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&sParse.rc, n);
if( pColset ){
pColset->nCol = 1;
pColset->aiCol[0] = iCol;
sqlite3Fts5ParseSetColset(&sParse, sParse.pExpr, pColset);
}
}
assert( sParse.rc!=SQLITE_OK || sParse.zErr==0 );
if( sParse.rc==SQLITE_OK ){
*ppNew = pNew = sqlite3_malloc(sizeof(Fts5Expr));
if( pNew==0 ){
sParse.rc = SQLITE_NOMEM;
sqlite3Fts5ParseNodeFree(sParse.pExpr);
}else{
if( !sParse.pExpr ){
const int nByte = sizeof(Fts5ExprNode);
pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&sParse.rc, nByte);
if( pNew->pRoot ){
pNew->pRoot->bEof = 1;
}
}else{
pNew->pRoot = sParse.pExpr;
}
pNew->pIndex = 0;
pNew->pConfig = pConfig;
pNew->apExprPhrase = sParse.apPhrase;
pNew->nPhrase = sParse.nPhrase;
pNew->bDesc = 0;
sParse.apPhrase = 0;
}
}else{
sqlite3Fts5ParseNodeFree(sParse.pExpr);
}
sqlite3_free(sParse.apPhrase);
*pzErr = sParse.zErr;
return sParse.rc;
}
/*
** Assuming that buffer z is at least nByte bytes in size and contains a
** valid utf-8 string, return the number of characters in the string.
*/
static int fts5ExprCountChar(const char *z, int nByte){
int nRet = 0;
int ii;
for(ii=0; ii<nByte; ii++){
if( (z[ii] & 0xC0)!=0x80 ) nRet++;
}
return nRet;
}
/*
** This function is only called when using the special 'trigram' tokenizer.
** Argument zText contains the text of a LIKE or GLOB pattern matched
** against column iCol. This function creates and compiles an FTS5 MATCH
** expression that will match a superset of the rows matched by the LIKE or
** GLOB. If successful, SQLITE_OK is returned. Otherwise, an SQLite error
** code.
*/
int sqlite3Fts5ExprPattern(
Fts5Config *pConfig, int bGlob, int iCol, const char *zText, Fts5Expr **pp
){
i64 nText = strlen(zText);
char *zExpr = (char*)sqlite3_malloc64(nText*4 + 1);
int rc = SQLITE_OK;
if( zExpr==0 ){
rc = SQLITE_NOMEM;
}else{
char aSpec[3];
int iOut = 0;
int i = 0;
int iFirst = 0;
if( bGlob==0 ){
aSpec[0] = '_';
aSpec[1] = '%';
aSpec[2] = 0;
}else{
aSpec[0] = '*';
aSpec[1] = '?';
aSpec[2] = '[';
}
while( i<=nText ){
if( i==nText
|| zText[i]==aSpec[0] || zText[i]==aSpec[1] || zText[i]==aSpec[2]
){
if( fts5ExprCountChar(&zText[iFirst], i-iFirst)>=3 ){
int jj;
zExpr[iOut++] = '"';
for(jj=iFirst; jj<i; jj++){
zExpr[iOut++] = zText[jj];
if( zText[jj]=='"' ) zExpr[iOut++] = '"';
}
zExpr[iOut++] = '"';
zExpr[iOut++] = ' ';
}
if( zText[i]==aSpec[2] ){
i += 2;
if( zText[i-1]=='^' ) i++;
while( i<nText && zText[i]!=']' ) i++;
}
iFirst = i+1;
}
i++;
}
if( iOut>0 ){
int bAnd = 0;
if( pConfig->eDetail!=FTS5_DETAIL_FULL ){
bAnd = 1;
if( pConfig->eDetail==FTS5_DETAIL_NONE ){
iCol = pConfig->nCol;
}
}
zExpr[iOut] = '\0';
rc = sqlite3Fts5ExprNew(pConfig, bAnd, iCol, zExpr, pp,pConfig->pzErrmsg);
}else{
*pp = 0;
}
sqlite3_free(zExpr);
}
return rc;
}
/*
** Free the expression node object passed as the only argument.
*/
void sqlite3Fts5ParseNodeFree(Fts5ExprNode *p){
if( p ){
int i;
for(i=0; i<p->nChild; i++){
sqlite3Fts5ParseNodeFree(p->apChild[i]);
}
sqlite3Fts5ParseNearsetFree(p->pNear);
sqlite3_free(p);
}
}
/*
** Free the expression object passed as the only argument.
*/
void sqlite3Fts5ExprFree(Fts5Expr *p){
if( p ){
sqlite3Fts5ParseNodeFree(p->pRoot);
sqlite3_free(p->apExprPhrase);
sqlite3_free(p);
}
}
int sqlite3Fts5ExprAnd(Fts5Expr **pp1, Fts5Expr *p2){
Fts5Parse sParse;
memset(&sParse, 0, sizeof(sParse));
if( *pp1 && p2 ){
Fts5Expr *p1 = *pp1;
int nPhrase = p1->nPhrase + p2->nPhrase;
p1->pRoot = sqlite3Fts5ParseNode(&sParse, FTS5_AND, p1->pRoot, p2->pRoot,0);
p2->pRoot = 0;
if( sParse.rc==SQLITE_OK ){
Fts5ExprPhrase **ap = (Fts5ExprPhrase**)sqlite3_realloc(
p1->apExprPhrase, nPhrase * sizeof(Fts5ExprPhrase*)
);
if( ap==0 ){
sParse.rc = SQLITE_NOMEM;
}else{
int i;
memmove(&ap[p2->nPhrase], ap, p1->nPhrase*sizeof(Fts5ExprPhrase*));
for(i=0; i<p2->nPhrase; i++){
ap[i] = p2->apExprPhrase[i];
}
p1->nPhrase = nPhrase;
p1->apExprPhrase = ap;
}
}
sqlite3_free(p2->apExprPhrase);
sqlite3_free(p2);
}else if( p2 ){
*pp1 = p2;
}
return sParse.rc;
}
/*
** Argument pTerm must be a synonym iterator. Return the current rowid
** that it points to.
*/
static i64 fts5ExprSynonymRowid(Fts5ExprTerm *pTerm, int bDesc, int *pbEof){
i64 iRet = 0;
int bRetValid = 0;
Fts5ExprTerm *p;
assert( pTerm );
assert( pTerm->pSynonym );
assert( bDesc==0 || bDesc==1 );
for(p=pTerm; p; p=p->pSynonym){
if( 0==sqlite3Fts5IterEof(p->pIter) ){
i64 iRowid = p->pIter->iRowid;
if( bRetValid==0 || (bDesc!=(iRowid<iRet)) ){
iRet = iRowid;
bRetValid = 1;
}
}
}
if( pbEof && bRetValid==0 ) *pbEof = 1;
return iRet;
}
/*
** Argument pTerm must be a synonym iterator.
*/
static int fts5ExprSynonymList(
Fts5ExprTerm *pTerm,
i64 iRowid,
Fts5Buffer *pBuf, /* Use this buffer for space if required */
u8 **pa, int *pn
){
Fts5PoslistReader aStatic[4];
Fts5PoslistReader *aIter = aStatic;
int nIter = 0;
int nAlloc = 4;
int rc = SQLITE_OK;
Fts5ExprTerm *p;
assert( pTerm->pSynonym );
for(p=pTerm; p; p=p->pSynonym){
Fts5IndexIter *pIter = p->pIter;
if( sqlite3Fts5IterEof(pIter)==0 && pIter->iRowid==iRowid ){
if( pIter->nData==0 ) continue;
if( nIter==nAlloc ){
sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * nAlloc * 2;
Fts5PoslistReader *aNew = (Fts5PoslistReader*)sqlite3_malloc64(nByte);
if( aNew==0 ){
rc = SQLITE_NOMEM;
goto synonym_poslist_out;
}
memcpy(aNew, aIter, sizeof(Fts5PoslistReader) * nIter);
nAlloc = nAlloc*2;
if( aIter!=aStatic ) sqlite3_free(aIter);
aIter = aNew;
}
sqlite3Fts5PoslistReaderInit(pIter->pData, pIter->nData, &aIter[nIter]);
assert( aIter[nIter].bEof==0 );
nIter++;
}
}
if( nIter==1 ){
*pa = (u8*)aIter[0].a;
*pn = aIter[0].n;
}else{
Fts5PoslistWriter writer = {0};
i64 iPrev = -1;
fts5BufferZero(pBuf);
while( 1 ){
int i;
i64 iMin = FTS5_LARGEST_INT64;
for(i=0; i<nIter; i++){
if( aIter[i].bEof==0 ){
if( aIter[i].iPos==iPrev ){
if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) continue;
}
if( aIter[i].iPos<iMin ){
iMin = aIter[i].iPos;
}
}
}
if( iMin==FTS5_LARGEST_INT64 || rc!=SQLITE_OK ) break;
rc = sqlite3Fts5PoslistWriterAppend(pBuf, &writer, iMin);
iPrev = iMin;
}
if( rc==SQLITE_OK ){
*pa = pBuf->p;
*pn = pBuf->n;
}
}
synonym_poslist_out:
if( aIter!=aStatic ) sqlite3_free(aIter);
return rc;
}
/*
** All individual term iterators in pPhrase are guaranteed to be valid and
** pointing to the same rowid when this function is called. This function
** checks if the current rowid really is a match, and if so populates
** the pPhrase->poslist buffer accordingly. Output parameter *pbMatch
** is set to true if this is really a match, or false otherwise.
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code
** otherwise. It is not considered an error code if the current rowid is
** not a match.
*/
static int fts5ExprPhraseIsMatch(
Fts5ExprNode *pNode, /* Node pPhrase belongs to */
Fts5ExprPhrase *pPhrase, /* Phrase object to initialize */
int *pbMatch /* OUT: Set to true if really a match */
){
Fts5PoslistWriter writer = {0};
Fts5PoslistReader aStatic[4];
Fts5PoslistReader *aIter = aStatic;
int i;
int rc = SQLITE_OK;
int bFirst = pPhrase->aTerm[0].bFirst;
fts5BufferZero(&pPhrase->poslist);
/* If the aStatic[] array is not large enough, allocate a large array
** using sqlite3_malloc(). This approach could be improved upon. */
if( pPhrase->nTerm>ArraySize(aStatic) ){
sqlite3_int64 nByte = sizeof(Fts5PoslistReader) * pPhrase->nTerm;
aIter = (Fts5PoslistReader*)sqlite3_malloc64(nByte);
if( !aIter ) return SQLITE_NOMEM;
}
memset(aIter, 0, sizeof(Fts5PoslistReader) * pPhrase->nTerm);
/* Initialize a term iterator for each term in the phrase */
for(i=0; i<pPhrase->nTerm; i++){
Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
int n = 0;
int bFlag = 0;
u8 *a = 0;
if( pTerm->pSynonym ){
Fts5Buffer buf = {0, 0, 0};
rc = fts5ExprSynonymList(pTerm, pNode->iRowid, &buf, &a, &n);
if( rc ){
sqlite3_free(a);
goto ismatch_out;
}
if( a==buf.p ) bFlag = 1;
}else{
a = (u8*)pTerm->pIter->pData;
n = pTerm->pIter->nData;
}
sqlite3Fts5PoslistReaderInit(a, n, &aIter[i]);
aIter[i].bFlag = (u8)bFlag;
if( aIter[i].bEof ) goto ismatch_out;
}
while( 1 ){
int bMatch;
i64 iPos = aIter[0].iPos;
do {
bMatch = 1;
for(i=0; i<pPhrase->nTerm; i++){
Fts5PoslistReader *pPos = &aIter[i];
i64 iAdj = iPos + i;
if( pPos->iPos!=iAdj ){
bMatch = 0;
while( pPos->iPos<iAdj ){
if( sqlite3Fts5PoslistReaderNext(pPos) ) goto ismatch_out;
}
if( pPos->iPos>iAdj ) iPos = pPos->iPos-i;
}
}
}while( bMatch==0 );
/* Append position iPos to the output */
if( bFirst==0 || FTS5_POS2OFFSET(iPos)==0 ){
rc = sqlite3Fts5PoslistWriterAppend(&pPhrase->poslist, &writer, iPos);
if( rc!=SQLITE_OK ) goto ismatch_out;
}
for(i=0; i<pPhrase->nTerm; i++){
if( sqlite3Fts5PoslistReaderNext(&aIter[i]) ) goto ismatch_out;
}
}
ismatch_out:
*pbMatch = (pPhrase->poslist.n>0);
for(i=0; i<pPhrase->nTerm; i++){
if( aIter[i].bFlag ) sqlite3_free((u8*)aIter[i].a);
}
if( aIter!=aStatic ) sqlite3_free(aIter);
return rc;
}
typedef struct Fts5LookaheadReader Fts5LookaheadReader;
struct Fts5LookaheadReader {
const u8 *a; /* Buffer containing position list */
int n; /* Size of buffer a[] in bytes */
int i; /* Current offset in position list */
i64 iPos; /* Current position */
i64 iLookahead; /* Next position */
};
#define FTS5_LOOKAHEAD_EOF (((i64)1) << 62)
static int fts5LookaheadReaderNext(Fts5LookaheadReader *p){
p->iPos = p->iLookahead;
if( sqlite3Fts5PoslistNext64(p->a, p->n, &p->i, &p->iLookahead) ){
p->iLookahead = FTS5_LOOKAHEAD_EOF;
}
return (p->iPos==FTS5_LOOKAHEAD_EOF);
}
static int fts5LookaheadReaderInit(
const u8 *a, int n, /* Buffer to read position list from */
Fts5LookaheadReader *p /* Iterator object to initialize */
){
memset(p, 0, sizeof(Fts5LookaheadReader));
p->a = a;
p->n = n;
fts5LookaheadReaderNext(p);
return fts5LookaheadReaderNext(p);
}
typedef struct Fts5NearTrimmer Fts5NearTrimmer;
struct Fts5NearTrimmer {
Fts5LookaheadReader reader; /* Input iterator */
Fts5PoslistWriter writer; /* Writer context */
Fts5Buffer *pOut; /* Output poslist */
};
/*
** The near-set object passed as the first argument contains more than
** one phrase. All phrases currently point to the same row. The
** Fts5ExprPhrase.poslist buffers are populated accordingly. This function
** tests if the current row contains instances of each phrase sufficiently
** close together to meet the NEAR constraint. Non-zero is returned if it
** does, or zero otherwise.
**
** If in/out parameter (*pRc) is set to other than SQLITE_OK when this
** function is called, it is a no-op. Or, if an error (e.g. SQLITE_NOMEM)
** occurs within this function (*pRc) is set accordingly before returning.
** The return value is undefined in both these cases.
**
** If no error occurs and non-zero (a match) is returned, the position-list
** of each phrase object is edited to contain only those entries that
** meet the constraint before returning.
*/
static int fts5ExprNearIsMatch(int *pRc, Fts5ExprNearset *pNear){
Fts5NearTrimmer aStatic[4];
Fts5NearTrimmer *a = aStatic;
Fts5ExprPhrase **apPhrase = pNear->apPhrase;
int i;
int rc = *pRc;
int bMatch;
assert( pNear->nPhrase>1 );
/* If the aStatic[] array is not large enough, allocate a large array
** using sqlite3_malloc(). This approach could be improved upon. */
if( pNear->nPhrase>ArraySize(aStatic) ){
sqlite3_int64 nByte = sizeof(Fts5NearTrimmer) * pNear->nPhrase;
a = (Fts5NearTrimmer*)sqlite3Fts5MallocZero(&rc, nByte);
}else{
memset(aStatic, 0, sizeof(aStatic));
}
if( rc!=SQLITE_OK ){
*pRc = rc;
return 0;
}
/* Initialize a lookahead iterator for each phrase. After passing the
** buffer and buffer size to the lookaside-reader init function, zero
** the phrase poslist buffer. The new poslist for the phrase (containing
** the same entries as the original with some entries removed on account
** of the NEAR constraint) is written over the original even as it is
** being read. This is safe as the entries for the new poslist are a
** subset of the old, so it is not possible for data yet to be read to
** be overwritten. */
for(i=0; i<pNear->nPhrase; i++){
Fts5Buffer *pPoslist = &apPhrase[i]->poslist;
fts5LookaheadReaderInit(pPoslist->p, pPoslist->n, &a[i].reader);
pPoslist->n = 0;
a[i].pOut = pPoslist;
}
while( 1 ){
int iAdv;
i64 iMin;
i64 iMax;
/* This block advances the phrase iterators until they point to a set of
** entries that together comprise a match. */
iMax = a[0].reader.iPos;
do {
bMatch = 1;
for(i=0; i<pNear->nPhrase; i++){
Fts5LookaheadReader *pPos = &a[i].reader;
iMin = iMax - pNear->apPhrase[i]->nTerm - pNear->nNear;
if( pPos->iPos<iMin || pPos->iPos>iMax ){
bMatch = 0;
while( pPos->iPos<iMin ){
if( fts5LookaheadReaderNext(pPos) ) goto ismatch_out;
}
if( pPos->iPos>iMax ) iMax = pPos->iPos;
}
}
}while( bMatch==0 );
/* Add an entry to each output position list */
for(i=0; i<pNear->nPhrase; i++){
i64 iPos = a[i].reader.iPos;
Fts5PoslistWriter *pWriter = &a[i].writer;
if( a[i].pOut->n==0 || iPos!=pWriter->iPrev ){
sqlite3Fts5PoslistWriterAppend(a[i].pOut, pWriter, iPos);
}
}
iAdv = 0;
iMin = a[0].reader.iLookahead;
for(i=0; i<pNear->nPhrase; i++){
if( a[i].reader.iLookahead < iMin ){
iMin = a[i].reader.iLookahead;
iAdv = i;
}
}
if( fts5LookaheadReaderNext(&a[iAdv].reader) ) goto ismatch_out;
}
ismatch_out: {
int bRet = a[0].pOut->n>0;
*pRc = rc;
if( a!=aStatic ) sqlite3_free(a);
return bRet;
}
}
/*
** Advance iterator pIter until it points to a value equal to or laster
** than the initial value of *piLast. If this means the iterator points
** to a value laster than *piLast, update *piLast to the new lastest value.
**
** If the iterator reaches EOF, set *pbEof to true before returning. If
** an error occurs, set *pRc to an error code. If either *pbEof or *pRc
** are set, return a non-zero value. Otherwise, return zero.
*/
static int fts5ExprAdvanceto(
Fts5IndexIter *pIter, /* Iterator to advance */
int bDesc, /* True if iterator is "rowid DESC" */
i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
int *pRc, /* OUT: Error code */
int *pbEof /* OUT: Set to true if EOF */
){
i64 iLast = *piLast;
i64 iRowid;
iRowid = pIter->iRowid;
if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
int rc = sqlite3Fts5IterNextFrom(pIter, iLast);
if( rc || sqlite3Fts5IterEof(pIter) ){
*pRc = rc;
*pbEof = 1;
return 1;
}
iRowid = pIter->iRowid;
assert( (bDesc==0 && iRowid>=iLast) || (bDesc==1 && iRowid<=iLast) );
}
*piLast = iRowid;
return 0;
}
static int fts5ExprSynonymAdvanceto(
Fts5ExprTerm *pTerm, /* Term iterator to advance */
int bDesc, /* True if iterator is "rowid DESC" */
i64 *piLast, /* IN/OUT: Lastest rowid seen so far */
int *pRc /* OUT: Error code */
){
int rc = SQLITE_OK;
i64 iLast = *piLast;
Fts5ExprTerm *p;
int bEof = 0;
for(p=pTerm; rc==SQLITE_OK && p; p=p->pSynonym){
if( sqlite3Fts5IterEof(p->pIter)==0 ){
i64 iRowid = p->pIter->iRowid;
if( (bDesc==0 && iLast>iRowid) || (bDesc && iLast<iRowid) ){
rc = sqlite3Fts5IterNextFrom(p->pIter, iLast);
}
}
}
if( rc!=SQLITE_OK ){
*pRc = rc;
bEof = 1;
}else{
*piLast = fts5ExprSynonymRowid(pTerm, bDesc, &bEof);
}
return bEof;
}
static int fts5ExprNearTest(
int *pRc,
Fts5Expr *pExpr, /* Expression that pNear is a part of */
Fts5ExprNode *pNode /* The "NEAR" node (FTS5_STRING) */
){
Fts5ExprNearset *pNear = pNode->pNear;
int rc = *pRc;
if( pExpr->pConfig->eDetail!=FTS5_DETAIL_FULL ){
Fts5ExprTerm *pTerm;
Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
pPhrase->poslist.n = 0;
for(pTerm=&pPhrase->aTerm[0]; pTerm; pTerm=pTerm->pSynonym){
Fts5IndexIter *pIter = pTerm->pIter;
if( sqlite3Fts5IterEof(pIter)==0 ){
if( pIter->iRowid==pNode->iRowid && pIter->nData>0 ){
pPhrase->poslist.n = 1;
}
}
}
return pPhrase->poslist.n;
}else{
int i;
/* Check that each phrase in the nearset matches the current row.
** Populate the pPhrase->poslist buffers at the same time. If any
** phrase is not a match, break out of the loop early. */
for(i=0; rc==SQLITE_OK && i<pNear->nPhrase; i++){
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
if( pPhrase->nTerm>1 || pPhrase->aTerm[0].pSynonym
|| pNear->pColset || pPhrase->aTerm[0].bFirst
){
int bMatch = 0;
rc = fts5ExprPhraseIsMatch(pNode, pPhrase, &bMatch);
if( bMatch==0 ) break;
}else{
Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
fts5BufferSet(&rc, &pPhrase->poslist, pIter->nData, pIter->pData);
}
}
*pRc = rc;
if( i==pNear->nPhrase && (i==1 || fts5ExprNearIsMatch(pRc, pNear)) ){
return 1;
}
return 0;
}
}
/*
** Initialize all term iterators in the pNear object. If any term is found
** to match no documents at all, return immediately without initializing any
** further iterators.
**
** If an error occurs, return an SQLite error code. Otherwise, return
** SQLITE_OK. It is not considered an error if some term matches zero
** documents.
*/
static int fts5ExprNearInitAll(
Fts5Expr *pExpr,
Fts5ExprNode *pNode
){
Fts5ExprNearset *pNear = pNode->pNear;
int i;
assert( pNode->bNomatch==0 );
for(i=0; i<pNear->nPhrase; i++){
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
if( pPhrase->nTerm==0 ){
pNode->bEof = 1;
return SQLITE_OK;
}else{
int j;
for(j=0; j<pPhrase->nTerm; j++){
Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
Fts5ExprTerm *p;
int bHit = 0;
for(p=pTerm; p; p=p->pSynonym){
int rc;
if( p->pIter ){
sqlite3Fts5IterClose(p->pIter);
p->pIter = 0;
}
rc = sqlite3Fts5IndexQuery(
pExpr->pIndex, p->pTerm, p->nQueryTerm,
(pTerm->bPrefix ? FTS5INDEX_QUERY_PREFIX : 0) |
(pExpr->bDesc ? FTS5INDEX_QUERY_DESC : 0),
pNear->pColset,
&p->pIter
);
assert( (rc==SQLITE_OK)==(p->pIter!=0) );
if( rc!=SQLITE_OK ) return rc;
if( 0==sqlite3Fts5IterEof(p->pIter) ){
bHit = 1;
}
}
if( bHit==0 ){
pNode->bEof = 1;
return SQLITE_OK;
}
}
}
}
pNode->bEof = 0;
return SQLITE_OK;
}
/*
** If pExpr is an ASC iterator, this function returns a value with the
** same sign as:
**
** (iLhs - iRhs)
**
** Otherwise, if this is a DESC iterator, the opposite is returned:
**
** (iRhs - iLhs)
*/
static int fts5RowidCmp(
Fts5Expr *pExpr,
i64 iLhs,
i64 iRhs
){
assert( pExpr->bDesc==0 || pExpr->bDesc==1 );
if( pExpr->bDesc==0 ){
if( iLhs<iRhs ) return -1;
return (iLhs > iRhs);
}else{
if( iLhs>iRhs ) return -1;
return (iLhs < iRhs);
}
}
static void fts5ExprSetEof(Fts5ExprNode *pNode){
int i;
pNode->bEof = 1;
pNode->bNomatch = 0;
for(i=0; i<pNode->nChild; i++){
fts5ExprSetEof(pNode->apChild[i]);
}
}
static void fts5ExprNodeZeroPoslist(Fts5ExprNode *pNode){
if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
Fts5ExprNearset *pNear = pNode->pNear;
int i;
for(i=0; i<pNear->nPhrase; i++){
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
pPhrase->poslist.n = 0;
}
}else{
int i;
for(i=0; i<pNode->nChild; i++){
fts5ExprNodeZeroPoslist(pNode->apChild[i]);
}
}
}
/*
** Compare the values currently indicated by the two nodes as follows:
**
** res = (*p1) - (*p2)
**
** Nodes that point to values that come later in the iteration order are
** considered to be larger. Nodes at EOF are the largest of all.
**
** This means that if the iteration order is ASC, then numerically larger
** rowids are considered larger. Or if it is the default DESC, numerically
** smaller rowids are larger.
*/
static int fts5NodeCompare(
Fts5Expr *pExpr,
Fts5ExprNode *p1,
Fts5ExprNode *p2
){
if( p2->bEof ) return -1;
if( p1->bEof ) return +1;
return fts5RowidCmp(pExpr, p1->iRowid, p2->iRowid);
}
/*
** All individual term iterators in pNear are guaranteed to be valid when
** this function is called. This function checks if all term iterators
** point to the same rowid, and if not, advances them until they do.
** If an EOF is reached before this happens, *pbEof is set to true before
** returning.
**
** SQLITE_OK is returned if an error occurs, or an SQLite error code
** otherwise. It is not considered an error code if an iterator reaches
** EOF.
*/
static int fts5ExprNodeTest_STRING(
Fts5Expr *pExpr, /* Expression pPhrase belongs to */
Fts5ExprNode *pNode
){
Fts5ExprNearset *pNear = pNode->pNear;
Fts5ExprPhrase *pLeft = pNear->apPhrase[0];
int rc = SQLITE_OK;
i64 iLast; /* Lastest rowid any iterator points to */
int i, j; /* Phrase and token index, respectively */
int bMatch; /* True if all terms are at the same rowid */
const int bDesc = pExpr->bDesc;
/* Check that this node should not be FTS5_TERM */
assert( pNear->nPhrase>1
|| pNear->apPhrase[0]->nTerm>1
|| pNear->apPhrase[0]->aTerm[0].pSynonym
|| pNear->apPhrase[0]->aTerm[0].bFirst
);
/* Initialize iLast, the "lastest" rowid any iterator points to. If the
** iterator skips through rowids in the default ascending order, this means
** the maximum rowid. Or, if the iterator is "ORDER BY rowid DESC", then it
** means the minimum rowid. */
if( pLeft->aTerm[0].pSynonym ){
iLast = fts5ExprSynonymRowid(&pLeft->aTerm[0], bDesc, 0);
}else{
iLast = pLeft->aTerm[0].pIter->iRowid;
}
do {
bMatch = 1;
for(i=0; i<pNear->nPhrase; i++){
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
for(j=0; j<pPhrase->nTerm; j++){
Fts5ExprTerm *pTerm = &pPhrase->aTerm[j];
if( pTerm->pSynonym ){
i64 iRowid = fts5ExprSynonymRowid(pTerm, bDesc, 0);
if( iRowid==iLast ) continue;
bMatch = 0;
if( fts5ExprSynonymAdvanceto(pTerm, bDesc, &iLast, &rc) ){
pNode->bNomatch = 0;
pNode->bEof = 1;
return rc;
}
}else{
Fts5IndexIter *pIter = pPhrase->aTerm[j].pIter;
if( pIter->iRowid==iLast || pIter->bEof ) continue;
bMatch = 0;
if( fts5ExprAdvanceto(pIter, bDesc, &iLast, &rc, &pNode->bEof) ){
return rc;
}
}
}
}
}while( bMatch==0 );
pNode->iRowid = iLast;
pNode->bNomatch = ((0==fts5ExprNearTest(&rc, pExpr, pNode)) && rc==SQLITE_OK);
assert( pNode->bEof==0 || pNode->bNomatch==0 );
return rc;
}
/*
** Advance the first term iterator in the first phrase of pNear. Set output
** variable *pbEof to true if it reaches EOF or if an error occurs.
**
** Return SQLITE_OK if successful, or an SQLite error code if an error
** occurs.
*/
static int fts5ExprNodeNext_STRING(
Fts5Expr *pExpr, /* Expression pPhrase belongs to */
Fts5ExprNode *pNode, /* FTS5_STRING or FTS5_TERM node */
int bFromValid,
i64 iFrom
){
Fts5ExprTerm *pTerm = &pNode->pNear->apPhrase[0]->aTerm[0];
int rc = SQLITE_OK;
pNode->bNomatch = 0;
if( pTerm->pSynonym ){
int bEof = 1;
Fts5ExprTerm *p;
/* Find the firstest rowid any synonym points to. */
i64 iRowid = fts5ExprSynonymRowid(pTerm, pExpr->bDesc, 0);
/* Advance each iterator that currently points to iRowid. Or, if iFrom
** is valid - each iterator that points to a rowid before iFrom. */
for(p=pTerm; p; p=p->pSynonym){
if( sqlite3Fts5IterEof(p->pIter)==0 ){
i64 ii = p->pIter->iRowid;
if( ii==iRowid
|| (bFromValid && ii!=iFrom && (ii>iFrom)==pExpr->bDesc)
){
if( bFromValid ){
rc = sqlite3Fts5IterNextFrom(p->pIter, iFrom);
}else{
rc = sqlite3Fts5IterNext(p->pIter);
}
if( rc!=SQLITE_OK ) break;
if( sqlite3Fts5IterEof(p->pIter)==0 ){
bEof = 0;
}
}else{
bEof = 0;
}
}
}
/* Set the EOF flag if either all synonym iterators are at EOF or an
** error has occurred. */
pNode->bEof = (rc || bEof);
}else{
Fts5IndexIter *pIter = pTerm->pIter;
assert( Fts5NodeIsString(pNode) );
if( bFromValid ){
rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
}else{
rc = sqlite3Fts5IterNext(pIter);
}
pNode->bEof = (rc || sqlite3Fts5IterEof(pIter));
}
if( pNode->bEof==0 ){
assert( rc==SQLITE_OK );
rc = fts5ExprNodeTest_STRING(pExpr, pNode);
}
return rc;
}
static int fts5ExprNodeTest_TERM(
Fts5Expr *pExpr, /* Expression that pNear is a part of */
Fts5ExprNode *pNode /* The "NEAR" node (FTS5_TERM) */
){
/* As this "NEAR" object is actually a single phrase that consists
** of a single term only, grab pointers into the poslist managed by the
** fts5_index.c iterator object. This is much faster than synthesizing
** a new poslist the way we have to for more complicated phrase or NEAR
** expressions. */
Fts5ExprPhrase *pPhrase = pNode->pNear->apPhrase[0];
Fts5IndexIter *pIter = pPhrase->aTerm[0].pIter;
assert( pNode->eType==FTS5_TERM );
assert( pNode->pNear->nPhrase==1 && pPhrase->nTerm==1 );
assert( pPhrase->aTerm[0].pSynonym==0 );
pPhrase->poslist.n = pIter->nData;
if( pExpr->pConfig->eDetail==FTS5_DETAIL_FULL ){
pPhrase->poslist.p = (u8*)pIter->pData;
}
pNode->iRowid = pIter->iRowid;
pNode->bNomatch = (pPhrase->poslist.n==0);
return SQLITE_OK;
}
/*
** xNext() method for a node of type FTS5_TERM.
*/
static int fts5ExprNodeNext_TERM(
Fts5Expr *pExpr,
Fts5ExprNode *pNode,
int bFromValid,
i64 iFrom
){
int rc;
Fts5IndexIter *pIter = pNode->pNear->apPhrase[0]->aTerm[0].pIter;
assert( pNode->bEof==0 );
if( bFromValid ){
rc = sqlite3Fts5IterNextFrom(pIter, iFrom);
}else{
rc = sqlite3Fts5IterNext(pIter);
}
if( rc==SQLITE_OK && sqlite3Fts5IterEof(pIter)==0 ){
rc = fts5ExprNodeTest_TERM(pExpr, pNode);
}else{
pNode->bEof = 1;
pNode->bNomatch = 0;
}
return rc;
}
static void fts5ExprNodeTest_OR(
Fts5Expr *pExpr, /* Expression of which pNode is a part */
Fts5ExprNode *pNode /* Expression node to test */
){
Fts5ExprNode *pNext = pNode->apChild[0];
int i;
for(i=1; i<pNode->nChild; i++){
Fts5ExprNode *pChild = pNode->apChild[i];
int cmp = fts5NodeCompare(pExpr, pNext, pChild);
if( cmp>0 || (cmp==0 && pChild->bNomatch==0) ){
pNext = pChild;
}
}
pNode->iRowid = pNext->iRowid;
pNode->bEof = pNext->bEof;
pNode->bNomatch = pNext->bNomatch;
}
static int fts5ExprNodeNext_OR(
Fts5Expr *pExpr,
Fts5ExprNode *pNode,
int bFromValid,
i64 iFrom
){
int i;
i64 iLast = pNode->iRowid;
for(i=0; i<pNode->nChild; i++){
Fts5ExprNode *p1 = pNode->apChild[i];
assert( p1->bEof || fts5RowidCmp(pExpr, p1->iRowid, iLast)>=0 );
if( p1->bEof==0 ){
if( (p1->iRowid==iLast)
|| (bFromValid && fts5RowidCmp(pExpr, p1->iRowid, iFrom)<0)
){
int rc = fts5ExprNodeNext(pExpr, p1, bFromValid, iFrom);
if( rc!=SQLITE_OK ){
pNode->bNomatch = 0;
return rc;
}
}
}
}
fts5ExprNodeTest_OR(pExpr, pNode);
return SQLITE_OK;
}
/*
** Argument pNode is an FTS5_AND node.
*/
static int fts5ExprNodeTest_AND(
Fts5Expr *pExpr, /* Expression pPhrase belongs to */
Fts5ExprNode *pAnd /* FTS5_AND node to advance */
){
int iChild;
i64 iLast = pAnd->iRowid;
int rc = SQLITE_OK;
int bMatch;
assert( pAnd->bEof==0 );
do {
pAnd->bNomatch = 0;
bMatch = 1;
for(iChild=0; iChild<pAnd->nChild; iChild++){
Fts5ExprNode *pChild = pAnd->apChild[iChild];
int cmp = fts5RowidCmp(pExpr, iLast, pChild->iRowid);
if( cmp>0 ){
/* Advance pChild until it points to iLast or laster */
rc = fts5ExprNodeNext(pExpr, pChild, 1, iLast);
if( rc!=SQLITE_OK ){
pAnd->bNomatch = 0;
return rc;
}
}
/* If the child node is now at EOF, so is the parent AND node. Otherwise,
** the child node is guaranteed to have advanced at least as far as
** rowid iLast. So if it is not at exactly iLast, pChild->iRowid is the
** new lastest rowid seen so far. */
assert( pChild->bEof || fts5RowidCmp(pExpr, iLast, pChild->iRowid)<=0 );
if( pChild->bEof ){
fts5ExprSetEof(pAnd);
bMatch = 1;
break;
}else if( iLast!=pChild->iRowid ){
bMatch = 0;
iLast = pChild->iRowid;
}
if( pChild->bNomatch ){
pAnd->bNomatch = 1;
}
}
}while( bMatch==0 );
if( pAnd->bNomatch && pAnd!=pExpr->pRoot ){
fts5ExprNodeZeroPoslist(pAnd);
}
pAnd->iRowid = iLast;
return SQLITE_OK;
}
static int fts5ExprNodeNext_AND(
Fts5Expr *pExpr,
Fts5ExprNode *pNode,
int bFromValid,
i64 iFrom
){
int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
if( rc==SQLITE_OK ){
rc = fts5ExprNodeTest_AND(pExpr, pNode);
}else{
pNode->bNomatch = 0;
}
return rc;
}
static int fts5ExprNodeTest_NOT(
Fts5Expr *pExpr, /* Expression pPhrase belongs to */
Fts5ExprNode *pNode /* FTS5_NOT node to advance */
){
int rc = SQLITE_OK;
Fts5ExprNode *p1 = pNode->apChild[0];
Fts5ExprNode *p2 = pNode->apChild[1];
assert( pNode->nChild==2 );
while( rc==SQLITE_OK && p1->bEof==0 ){
int cmp = fts5NodeCompare(pExpr, p1, p2);
if( cmp>0 ){
rc = fts5ExprNodeNext(pExpr, p2, 1, p1->iRowid);
cmp = fts5NodeCompare(pExpr, p1, p2);
}
assert( rc!=SQLITE_OK || cmp<=0 );
if( cmp || p2->bNomatch ) break;
rc = fts5ExprNodeNext(pExpr, p1, 0, 0);
}
pNode->bEof = p1->bEof;
pNode->bNomatch = p1->bNomatch;
pNode->iRowid = p1->iRowid;
if( p1->bEof ){
fts5ExprNodeZeroPoslist(p2);
}
return rc;
}
static int fts5ExprNodeNext_NOT(
Fts5Expr *pExpr,
Fts5ExprNode *pNode,
int bFromValid,
i64 iFrom
){
int rc = fts5ExprNodeNext(pExpr, pNode->apChild[0], bFromValid, iFrom);
if( rc==SQLITE_OK ){
rc = fts5ExprNodeTest_NOT(pExpr, pNode);
}
if( rc!=SQLITE_OK ){
pNode->bNomatch = 0;
}
return rc;
}
/*
** If pNode currently points to a match, this function returns SQLITE_OK
** without modifying it. Otherwise, pNode is advanced until it does point
** to a match or EOF is reached.
*/
static int fts5ExprNodeTest(
Fts5Expr *pExpr, /* Expression of which pNode is a part */
Fts5ExprNode *pNode /* Expression node to test */
){
int rc = SQLITE_OK;
if( pNode->bEof==0 ){
switch( pNode->eType ){
case FTS5_STRING: {
rc = fts5ExprNodeTest_STRING(pExpr, pNode);
break;
}
case FTS5_TERM: {
rc = fts5ExprNodeTest_TERM(pExpr, pNode);
break;
}
case FTS5_AND: {
rc = fts5ExprNodeTest_AND(pExpr, pNode);
break;
}
case FTS5_OR: {
fts5ExprNodeTest_OR(pExpr, pNode);
break;
}
default: assert( pNode->eType==FTS5_NOT ); {
rc = fts5ExprNodeTest_NOT(pExpr, pNode);
break;
}
}
}
return rc;
}
/*
** Set node pNode, which is part of expression pExpr, to point to the first
** match. If there are no matches, set the Node.bEof flag to indicate EOF.
**
** Return an SQLite error code if an error occurs, or SQLITE_OK otherwise.
** It is not an error if there are no matches.
*/
static int fts5ExprNodeFirst(Fts5Expr *pExpr, Fts5ExprNode *pNode){
int rc = SQLITE_OK;
pNode->bEof = 0;
pNode->bNomatch = 0;
if( Fts5NodeIsString(pNode) ){
/* Initialize all term iterators in the NEAR object. */
rc = fts5ExprNearInitAll(pExpr, pNode);
}else if( pNode->xNext==0 ){
pNode->bEof = 1;
}else{
int i;
int nEof = 0;
for(i=0; i<pNode->nChild && rc==SQLITE_OK; i++){
Fts5ExprNode *pChild = pNode->apChild[i];
rc = fts5ExprNodeFirst(pExpr, pNode->apChild[i]);
assert( pChild->bEof==0 || pChild->bEof==1 );
nEof += pChild->bEof;
}
pNode->iRowid = pNode->apChild[0]->iRowid;
switch( pNode->eType ){
case FTS5_AND:
if( nEof>0 ) fts5ExprSetEof(pNode);
break;
case FTS5_OR:
if( pNode->nChild==nEof ) fts5ExprSetEof(pNode);
break;
default:
assert( pNode->eType==FTS5_NOT );
pNode->bEof = pNode->apChild[0]->bEof;
break;
}
}
if( rc==SQLITE_OK ){
rc = fts5ExprNodeTest(pExpr, pNode);
}
return rc;
}
/*
** Begin iterating through the set of documents in index pIdx matched by
** the MATCH expression passed as the first argument. If the "bDesc"
** parameter is passed a non-zero value, iteration is in descending rowid
** order. Or, if it is zero, in ascending order.
**
** If iterating in ascending rowid order (bDesc==0), the first document
** visited is that with the smallest rowid that is larger than or equal
** to parameter iFirst. Or, if iterating in ascending order (bDesc==1),
** then the first document visited must have a rowid smaller than or
** equal to iFirst.
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
int sqlite3Fts5ExprFirst(Fts5Expr *p, Fts5Index *pIdx, i64 iFirst, int bDesc){
Fts5ExprNode *pRoot = p->pRoot;
int rc; /* Return code */
p->pIndex = pIdx;
p->bDesc = bDesc;
rc = fts5ExprNodeFirst(p, pRoot);
/* If not at EOF but the current rowid occurs earlier than iFirst in
** the iteration order, move to document iFirst or later. */
if( rc==SQLITE_OK
&& 0==pRoot->bEof
&& fts5RowidCmp(p, pRoot->iRowid, iFirst)<0
){
rc = fts5ExprNodeNext(p, pRoot, 1, iFirst);
}
/* If the iterator is not at a real match, skip forward until it is. */
while( pRoot->bNomatch && rc==SQLITE_OK ){
assert( pRoot->bEof==0 );
rc = fts5ExprNodeNext(p, pRoot, 0, 0);
}
return rc;
}
/*
** Move to the next document
**
** Return SQLITE_OK if successful, or an SQLite error code otherwise. It
** is not considered an error if the query does not match any documents.
*/
int sqlite3Fts5ExprNext(Fts5Expr *p, i64 iLast){
int rc;
Fts5ExprNode *pRoot = p->pRoot;
assert( pRoot->bEof==0 && pRoot->bNomatch==0 );
do {
rc = fts5ExprNodeNext(p, pRoot, 0, 0);
assert( pRoot->bNomatch==0 || (rc==SQLITE_OK && pRoot->bEof==0) );
}while( pRoot->bNomatch );
if( fts5RowidCmp(p, pRoot->iRowid, iLast)>0 ){
pRoot->bEof = 1;
}
return rc;
}
int sqlite3Fts5ExprEof(Fts5Expr *p){
return p->pRoot->bEof;
}
i64 sqlite3Fts5ExprRowid(Fts5Expr *p){
return p->pRoot->iRowid;
}
static int fts5ParseStringFromToken(Fts5Token *pToken, char **pz){
int rc = SQLITE_OK;
*pz = sqlite3Fts5Strndup(&rc, pToken->p, pToken->n);
return rc;
}
/*
** Free the phrase object passed as the only argument.
*/
static void fts5ExprPhraseFree(Fts5ExprPhrase *pPhrase){
if( pPhrase ){
int i;
for(i=0; i<pPhrase->nTerm; i++){
Fts5ExprTerm *pSyn;
Fts5ExprTerm *pNext;
Fts5ExprTerm *pTerm = &pPhrase->aTerm[i];
sqlite3_free(pTerm->pTerm);
sqlite3Fts5IterClose(pTerm->pIter);
for(pSyn=pTerm->pSynonym; pSyn; pSyn=pNext){
pNext = pSyn->pSynonym;
sqlite3Fts5IterClose(pSyn->pIter);
fts5BufferFree((Fts5Buffer*)&pSyn[1]);
sqlite3_free(pSyn);
}
}
if( pPhrase->poslist.nSpace>0 ) fts5BufferFree(&pPhrase->poslist);
sqlite3_free(pPhrase);
}
}
/*
** Set the "bFirst" flag on the first token of the phrase passed as the
** only argument.
*/
void sqlite3Fts5ParseSetCaret(Fts5ExprPhrase *pPhrase){
if( pPhrase && pPhrase->nTerm ){
pPhrase->aTerm[0].bFirst = 1;
}
}
/*
** If argument pNear is NULL, then a new Fts5ExprNearset object is allocated
** and populated with pPhrase. Or, if pNear is not NULL, phrase pPhrase is
** appended to it and the results returned.
**
** If an OOM error occurs, both the pNear and pPhrase objects are freed and
** NULL returned.
*/
Fts5ExprNearset *sqlite3Fts5ParseNearset(
Fts5Parse *pParse, /* Parse context */
Fts5ExprNearset *pNear, /* Existing nearset, or NULL */
Fts5ExprPhrase *pPhrase /* Recently parsed phrase */
){
const int SZALLOC = 8;
Fts5ExprNearset *pRet = 0;
if( pParse->rc==SQLITE_OK ){
if( pPhrase==0 ){
return pNear;
}
if( pNear==0 ){
sqlite3_int64 nByte;
nByte = sizeof(Fts5ExprNearset) + SZALLOC * sizeof(Fts5ExprPhrase*);
pRet = sqlite3_malloc64(nByte);
if( pRet==0 ){
pParse->rc = SQLITE_NOMEM;
}else{
memset(pRet, 0, (size_t)nByte);
}
}else if( (pNear->nPhrase % SZALLOC)==0 ){
int nNew = pNear->nPhrase + SZALLOC;
sqlite3_int64 nByte;
nByte = sizeof(Fts5ExprNearset) + nNew * sizeof(Fts5ExprPhrase*);
pRet = (Fts5ExprNearset*)sqlite3_realloc64(pNear, nByte);
if( pRet==0 ){
pParse->rc = SQLITE_NOMEM;
}
}else{
pRet = pNear;
}
}
if( pRet==0 ){
assert( pParse->rc!=SQLITE_OK );
sqlite3Fts5ParseNearsetFree(pNear);
sqlite3Fts5ParsePhraseFree(pPhrase);
}else{
if( pRet->nPhrase>0 ){
Fts5ExprPhrase *pLast = pRet->apPhrase[pRet->nPhrase-1];
assert( pParse!=0 );
assert( pParse->apPhrase!=0 );
assert( pParse->nPhrase>=2 );
assert( pLast==pParse->apPhrase[pParse->nPhrase-2] );
if( pPhrase->nTerm==0 ){
fts5ExprPhraseFree(pPhrase);
pRet->nPhrase--;
pParse->nPhrase--;
pPhrase = pLast;
}else if( pLast->nTerm==0 ){
fts5ExprPhraseFree(pLast);
pParse->apPhrase[pParse->nPhrase-2] = pPhrase;
pParse->nPhrase--;
pRet->nPhrase--;
}
}
pRet->apPhrase[pRet->nPhrase++] = pPhrase;
}
return pRet;
}
typedef struct TokenCtx TokenCtx;
struct TokenCtx {
Fts5ExprPhrase *pPhrase;
Fts5Config *pConfig;
int rc;
};
/*
** Callback for tokenizing terms used by ParseTerm().
*/
static int fts5ParseTokenize(
void *pContext, /* Pointer to Fts5InsertCtx object */
int tflags, /* Mask of FTS5_TOKEN_* flags */
const char *pToken, /* Buffer containing token */
int nToken, /* Size of token in bytes */
int iUnused1, /* Start offset of token */
int iUnused2 /* End offset of token */
){
int rc = SQLITE_OK;
const int SZALLOC = 8;
TokenCtx *pCtx = (TokenCtx*)pContext;
Fts5ExprPhrase *pPhrase = pCtx->pPhrase;
UNUSED_PARAM2(iUnused1, iUnused2);
/* If an error has already occurred, this is a no-op */
if( pCtx->rc!=SQLITE_OK ) return pCtx->rc;
if( nToken>FTS5_MAX_TOKEN_SIZE ) nToken = FTS5_MAX_TOKEN_SIZE;
if( pPhrase && pPhrase->nTerm>0 && (tflags & FTS5_TOKEN_COLOCATED) ){
Fts5ExprTerm *pSyn;
sqlite3_int64 nByte = sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer) + nToken+1;
pSyn = (Fts5ExprTerm*)sqlite3_malloc64(nByte);
if( pSyn==0 ){
rc = SQLITE_NOMEM;
}else{
memset(pSyn, 0, (size_t)nByte);
pSyn->pTerm = ((char*)pSyn) + sizeof(Fts5ExprTerm) + sizeof(Fts5Buffer);
pSyn->nFullTerm = pSyn->nQueryTerm = nToken;
if( pCtx->pConfig->bTokendata ){
pSyn->nQueryTerm = (int)strlen(pSyn->pTerm);
}
memcpy(pSyn->pTerm, pToken, nToken);
pSyn->pSynonym = pPhrase->aTerm[pPhrase->nTerm-1].pSynonym;
pPhrase->aTerm[pPhrase->nTerm-1].pSynonym = pSyn;
}
}else{
Fts5ExprTerm *pTerm;
if( pPhrase==0 || (pPhrase->nTerm % SZALLOC)==0 ){
Fts5ExprPhrase *pNew;
int nNew = SZALLOC + (pPhrase ? pPhrase->nTerm : 0);
pNew = (Fts5ExprPhrase*)sqlite3_realloc64(pPhrase,
sizeof(Fts5ExprPhrase) + sizeof(Fts5ExprTerm) * nNew
);
if( pNew==0 ){
rc = SQLITE_NOMEM;
}else{
if( pPhrase==0 ) memset(pNew, 0, sizeof(Fts5ExprPhrase));
pCtx->pPhrase = pPhrase = pNew;
pNew->nTerm = nNew - SZALLOC;
}
}
if( rc==SQLITE_OK ){
pTerm = &pPhrase->aTerm[pPhrase->nTerm++];
memset(pTerm, 0, sizeof(Fts5ExprTerm));
pTerm->pTerm = sqlite3Fts5Strndup(&rc, pToken, nToken);
pTerm->nFullTerm = pTerm->nQueryTerm = nToken;
if( pCtx->pConfig->bTokendata && rc==SQLITE_OK ){
pTerm->nQueryTerm = (int)strlen(pTerm->pTerm);
}
}
}
pCtx->rc = rc;
return rc;
}
/*
** Free the phrase object passed as the only argument.
*/
void sqlite3Fts5ParsePhraseFree(Fts5ExprPhrase *pPhrase){
fts5ExprPhraseFree(pPhrase);
}
/*
** Free the phrase object passed as the second argument.
*/
void sqlite3Fts5ParseNearsetFree(Fts5ExprNearset *pNear){
if( pNear ){
int i;
for(i=0; i<pNear->nPhrase; i++){
fts5ExprPhraseFree(pNear->apPhrase[i]);
}
sqlite3_free(pNear->pColset);
sqlite3_free(pNear);
}
}
void sqlite3Fts5ParseFinished(Fts5Parse *pParse, Fts5ExprNode *p){
assert( pParse->pExpr==0 );
pParse->pExpr = p;
}
static int parseGrowPhraseArray(Fts5Parse *pParse){
if( (pParse->nPhrase % 8)==0 ){
sqlite3_int64 nByte = sizeof(Fts5ExprPhrase*) * (pParse->nPhrase + 8);
Fts5ExprPhrase **apNew;
apNew = (Fts5ExprPhrase**)sqlite3_realloc64(pParse->apPhrase, nByte);
if( apNew==0 ){
pParse->rc = SQLITE_NOMEM;
return SQLITE_NOMEM;
}
pParse->apPhrase = apNew;
}
return SQLITE_OK;
}
/*
** This function is called by the parser to process a string token. The
** string may or may not be quoted. In any case it is tokenized and a
** phrase object consisting of all tokens returned.
*/
Fts5ExprPhrase *sqlite3Fts5ParseTerm(
Fts5Parse *pParse, /* Parse context */
Fts5ExprPhrase *pAppend, /* Phrase to append to */
Fts5Token *pToken, /* String to tokenize */
int bPrefix /* True if there is a trailing "*" */
){
Fts5Config *pConfig = pParse->pConfig;
TokenCtx sCtx; /* Context object passed to callback */
int rc; /* Tokenize return code */
char *z = 0;
memset(&sCtx, 0, sizeof(TokenCtx));
sCtx.pPhrase = pAppend;
sCtx.pConfig = pConfig;
rc = fts5ParseStringFromToken(pToken, &z);
if( rc==SQLITE_OK ){
int flags = FTS5_TOKENIZE_QUERY | (bPrefix ? FTS5_TOKENIZE_PREFIX : 0);
int n;
sqlite3Fts5Dequote(z);
n = (int)strlen(z);
rc = sqlite3Fts5Tokenize(pConfig, flags, z, n, &sCtx, fts5ParseTokenize);
}
sqlite3_free(z);
if( rc || (rc = sCtx.rc) ){
pParse->rc = rc;
fts5ExprPhraseFree(sCtx.pPhrase);
sCtx.pPhrase = 0;
}else{
if( pAppend==0 ){
if( parseGrowPhraseArray(pParse) ){
fts5ExprPhraseFree(sCtx.pPhrase);
return 0;
}
pParse->nPhrase++;
}
if( sCtx.pPhrase==0 ){
/* This happens when parsing a token or quoted phrase that contains
** no token characters at all. (e.g ... MATCH '""'). */
sCtx.pPhrase = sqlite3Fts5MallocZero(&pParse->rc, sizeof(Fts5ExprPhrase));
}else if( sCtx.pPhrase->nTerm ){
sCtx.pPhrase->aTerm[sCtx.pPhrase->nTerm-1].bPrefix = (u8)bPrefix;
}
pParse->apPhrase[pParse->nPhrase-1] = sCtx.pPhrase;
}
return sCtx.pPhrase;
}
/*
** Create a new FTS5 expression by cloning phrase iPhrase of the
** expression passed as the second argument.
*/
int sqlite3Fts5ExprClonePhrase(
Fts5Expr *pExpr,
int iPhrase,
Fts5Expr **ppNew
){
int rc = SQLITE_OK; /* Return code */
Fts5ExprPhrase *pOrig = 0; /* The phrase extracted from pExpr */
Fts5Expr *pNew = 0; /* Expression to return via *ppNew */
TokenCtx sCtx = {0,0,0}; /* Context object for fts5ParseTokenize */
if( iPhrase<0 || iPhrase>=pExpr->nPhrase ){
rc = SQLITE_RANGE;
}else{
pOrig = pExpr->apExprPhrase[iPhrase];
pNew = (Fts5Expr*)sqlite3Fts5MallocZero(&rc, sizeof(Fts5Expr));
}
if( rc==SQLITE_OK ){
pNew->apExprPhrase = (Fts5ExprPhrase**)sqlite3Fts5MallocZero(&rc,
sizeof(Fts5ExprPhrase*));
}
if( rc==SQLITE_OK ){
pNew->pRoot = (Fts5ExprNode*)sqlite3Fts5MallocZero(&rc,
sizeof(Fts5ExprNode));
}
if( rc==SQLITE_OK ){
pNew->pRoot->pNear = (Fts5ExprNearset*)sqlite3Fts5MallocZero(&rc,
sizeof(Fts5ExprNearset) + sizeof(Fts5ExprPhrase*));
}
if( rc==SQLITE_OK && ALWAYS(pOrig!=0) ){
Fts5Colset *pColsetOrig = pOrig->pNode->pNear->pColset;
if( pColsetOrig ){
sqlite3_int64 nByte;
Fts5Colset *pColset;
nByte = sizeof(Fts5Colset) + (pColsetOrig->nCol-1) * sizeof(int);
pColset = (Fts5Colset*)sqlite3Fts5MallocZero(&rc, nByte);
if( pColset ){
memcpy(pColset, pColsetOrig, (size_t)nByte);
}
pNew->pRoot->pNear->pColset = pColset;
}
}
if( rc==SQLITE_OK ){
if( pOrig->nTerm ){
int i; /* Used to iterate through phrase terms */
sCtx.pConfig = pExpr->pConfig;
for(i=0; rc==SQLITE_OK && i<pOrig->nTerm; i++){
int tflags = 0;
Fts5ExprTerm *p;
for(p=&pOrig->aTerm[i]; p && rc==SQLITE_OK; p=p->pSynonym){
rc = fts5ParseTokenize((void*)&sCtx,tflags,p->pTerm,p->nFullTerm,0,0);
tflags = FTS5_TOKEN_COLOCATED;
}
if( rc==SQLITE_OK ){
sCtx.pPhrase->aTerm[i].bPrefix = pOrig->aTerm[i].bPrefix;
sCtx.pPhrase->aTerm[i].bFirst = pOrig->aTerm[i].bFirst;
}
}
}else{
/* This happens when parsing a token or quoted phrase that contains
** no token characters at all. (e.g ... MATCH '""'). */
sCtx.pPhrase = sqlite3Fts5MallocZero(&rc, sizeof(Fts5ExprPhrase));
}
}
if( rc==SQLITE_OK && ALWAYS(sCtx.pPhrase) ){
/* All the allocations succeeded. Put the expression object together. */
pNew->pIndex = pExpr->pIndex;
pNew->pConfig = pExpr->pConfig;
pNew->nPhrase = 1;
pNew->apExprPhrase[0] = sCtx.pPhrase;
pNew->pRoot->pNear->apPhrase[0] = sCtx.pPhrase;
pNew->pRoot->pNear->nPhrase = 1;
sCtx.pPhrase->pNode = pNew->pRoot;
if( pOrig->nTerm==1
&& pOrig->aTerm[0].pSynonym==0
&& pOrig->aTerm[0].bFirst==0
){
pNew->pRoot->eType = FTS5_TERM;
pNew->pRoot->xNext = fts5ExprNodeNext_TERM;
}else{
pNew->pRoot->eType = FTS5_STRING;
pNew->pRoot->xNext = fts5ExprNodeNext_STRING;
}
}else{
sqlite3Fts5ExprFree(pNew);
fts5ExprPhraseFree(sCtx.pPhrase);
pNew = 0;
}
*ppNew = pNew;
return rc;
}
/*
** Token pTok has appeared in a MATCH expression where the NEAR operator
** is expected. If token pTok does not contain "NEAR", store an error
** in the pParse object.
*/
void sqlite3Fts5ParseNear(Fts5Parse *pParse, Fts5Token *pTok){
if( pTok->n!=4 || memcmp("NEAR", pTok->p, 4) ){
sqlite3Fts5ParseError(
pParse, "fts5: syntax error near \"%.*s\"", pTok->n, pTok->p
);
}
}
void sqlite3Fts5ParseSetDistance(
Fts5Parse *pParse,
Fts5ExprNearset *pNear,
Fts5Token *p
){
if( pNear ){
int nNear = 0;
int i;
if( p->n ){
for(i=0; i<p->n; i++){
char c = (char)p->p[i];
if( c<'0' || c>'9' ){
sqlite3Fts5ParseError(
pParse, "expected integer, got \"%.*s\"", p->n, p->p
);
return;
}
nNear = nNear * 10 + (p->p[i] - '0');
}
}else{
nNear = FTS5_DEFAULT_NEARDIST;
}
pNear->nNear = nNear;
}
}
/*
** The second argument passed to this function may be NULL, or it may be
** an existing Fts5Colset object. This function returns a pointer to
** a new colset object containing the contents of (p) with new value column
** number iCol appended.
**
** If an OOM error occurs, store an error code in pParse and return NULL.
** The old colset object (if any) is not freed in this case.
*/
static Fts5Colset *fts5ParseColset(
Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
Fts5Colset *p, /* Existing colset object */
int iCol /* New column to add to colset object */
){
int nCol = p ? p->nCol : 0; /* Num. columns already in colset object */
Fts5Colset *pNew; /* New colset object to return */
assert( pParse->rc==SQLITE_OK );
assert( iCol>=0 && iCol<pParse->pConfig->nCol );
pNew = sqlite3_realloc64(p, sizeof(Fts5Colset) + sizeof(int)*nCol);
if( pNew==0 ){
pParse->rc = SQLITE_NOMEM;
}else{
int *aiCol = pNew->aiCol;
int i, j;
for(i=0; i<nCol; i++){
if( aiCol[i]==iCol ) return pNew;
if( aiCol[i]>iCol ) break;
}
for(j=nCol; j>i; j--){
aiCol[j] = aiCol[j-1];
}
aiCol[i] = iCol;
pNew->nCol = nCol+1;
#ifndef NDEBUG
/* Check that the array is in order and contains no duplicate entries. */
for(i=1; i<pNew->nCol; i++) assert( pNew->aiCol[i]>pNew->aiCol[i-1] );
#endif
}
return pNew;
}
/*
** Allocate and return an Fts5Colset object specifying the inverse of
** the colset passed as the second argument. Free the colset passed
** as the second argument before returning.
*/
Fts5Colset *sqlite3Fts5ParseColsetInvert(Fts5Parse *pParse, Fts5Colset *p){
Fts5Colset *pRet;
int nCol = pParse->pConfig->nCol;
pRet = (Fts5Colset*)sqlite3Fts5MallocZero(&pParse->rc,
sizeof(Fts5Colset) + sizeof(int)*nCol
);
if( pRet ){
int i;
int iOld = 0;
for(i=0; i<nCol; i++){
if( iOld>=p->nCol || p->aiCol[iOld]!=i ){
pRet->aiCol[pRet->nCol++] = i;
}else{
iOld++;
}
}
}
sqlite3_free(p);
return pRet;
}
Fts5Colset *sqlite3Fts5ParseColset(
Fts5Parse *pParse, /* Store SQLITE_NOMEM here if required */
Fts5Colset *pColset, /* Existing colset object */
Fts5Token *p
){
Fts5Colset *pRet = 0;
int iCol;
char *z; /* Dequoted copy of token p */
z = sqlite3Fts5Strndup(&pParse->rc, p->p, p->n);
if( pParse->rc==SQLITE_OK ){
Fts5Config *pConfig = pParse->pConfig;
sqlite3Fts5Dequote(z);
for(iCol=0; iCol<pConfig->nCol; iCol++){
if( 0==sqlite3_stricmp(pConfig->azCol[iCol], z) ) break;
}
if( iCol==pConfig->nCol ){
sqlite3Fts5ParseError(pParse, "no such column: %s", z);
}else{
pRet = fts5ParseColset(pParse, pColset, iCol);
}
sqlite3_free(z);
}
if( pRet==0 ){
assert( pParse->rc!=SQLITE_OK );
sqlite3_free(pColset);
}
return pRet;
}
/*
** If argument pOrig is NULL, or if (*pRc) is set to anything other than
** SQLITE_OK when this function is called, NULL is returned.
**
** Otherwise, a copy of (*pOrig) is made into memory obtained from
** sqlite3Fts5MallocZero() and a pointer to it returned. If the allocation
** fails, (*pRc) is set to SQLITE_NOMEM and NULL is returned.
*/
static Fts5Colset *fts5CloneColset(int *pRc, Fts5Colset *pOrig){
Fts5Colset *pRet;
if( pOrig ){
sqlite3_int64 nByte = sizeof(Fts5Colset) + (pOrig->nCol-1) * sizeof(int);
pRet = (Fts5Colset*)sqlite3Fts5MallocZero(pRc, nByte);
if( pRet ){
memcpy(pRet, pOrig, (size_t)nByte);
}
}else{
pRet = 0;
}
return pRet;
}
/*
** Remove from colset pColset any columns that are not also in colset pMerge.
*/
static void fts5MergeColset(Fts5Colset *pColset, Fts5Colset *pMerge){
int iIn = 0; /* Next input in pColset */
int iMerge = 0; /* Next input in pMerge */
int iOut = 0; /* Next output slot in pColset */
while( iIn<pColset->nCol && iMerge<pMerge->nCol ){
int iDiff = pColset->aiCol[iIn] - pMerge->aiCol[iMerge];
if( iDiff==0 ){
pColset->aiCol[iOut++] = pMerge->aiCol[iMerge];
iMerge++;
iIn++;
}else if( iDiff>0 ){
iMerge++;
}else{
iIn++;
}
}
pColset->nCol = iOut;
}
/*
** Recursively apply colset pColset to expression node pNode and all of
** its decendents. If (*ppFree) is not NULL, it contains a spare copy
** of pColset. This function may use the spare copy and set (*ppFree) to
** zero, or it may create copies of pColset using fts5CloneColset().
*/
static void fts5ParseSetColset(
Fts5Parse *pParse,
Fts5ExprNode *pNode,
Fts5Colset *pColset,
Fts5Colset **ppFree
){
if( pParse->rc==SQLITE_OK ){
assert( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING
|| pNode->eType==FTS5_AND || pNode->eType==FTS5_OR
|| pNode->eType==FTS5_NOT || pNode->eType==FTS5_EOF
);
if( pNode->eType==FTS5_STRING || pNode->eType==FTS5_TERM ){
Fts5ExprNearset *pNear = pNode->pNear;
if( pNear->pColset ){
fts5MergeColset(pNear->pColset, pColset);
if( pNear->pColset->nCol==0 ){
pNode->eType = FTS5_EOF;
pNode->xNext = 0;
}
}else if( *ppFree ){
pNear->pColset = pColset;
*ppFree = 0;
}else{
pNear->pColset = fts5CloneColset(&pParse->rc, pColset);
}
}else{
int i;
assert( pNode->eType!=FTS5_EOF || pNode->nChild==0 );
for(i=0; i<pNode->nChild; i++){
fts5ParseSetColset(pParse, pNode->apChild[i], pColset, ppFree);
}
}
}
}
/*
** Apply colset pColset to expression node pExpr and all of its descendents.
*/
void sqlite3Fts5ParseSetColset(
Fts5Parse *pParse,
Fts5ExprNode *pExpr,
Fts5Colset *pColset
){
Fts5Colset *pFree = pColset;
if( pParse->pConfig->eDetail==FTS5_DETAIL_NONE ){
sqlite3Fts5ParseError(pParse,
"fts5: column queries are not supported (detail=none)"
);
}else{
fts5ParseSetColset(pParse, pExpr, pColset, &pFree);
}
sqlite3_free(pFree);
}
static void fts5ExprAssignXNext(Fts5ExprNode *pNode){
switch( pNode->eType ){
case FTS5_STRING: {
Fts5ExprNearset *pNear = pNode->pNear;
if( pNear->nPhrase==1 && pNear->apPhrase[0]->nTerm==1
&& pNear->apPhrase[0]->aTerm[0].pSynonym==0
&& pNear->apPhrase[0]->aTerm[0].bFirst==0
){
pNode->eType = FTS5_TERM;
pNode->xNext = fts5ExprNodeNext_TERM;
}else{
pNode->xNext = fts5ExprNodeNext_STRING;
}
break;
};
case FTS5_OR: {
pNode->xNext = fts5ExprNodeNext_OR;
break;
};
case FTS5_AND: {
pNode->xNext = fts5ExprNodeNext_AND;
break;
};
default: assert( pNode->eType==FTS5_NOT ); {
pNode->xNext = fts5ExprNodeNext_NOT;
break;
};
}
}
static void fts5ExprAddChildren(Fts5ExprNode *p, Fts5ExprNode *pSub){
int ii = p->nChild;
if( p->eType!=FTS5_NOT && pSub->eType==p->eType ){
int nByte = sizeof(Fts5ExprNode*) * pSub->nChild;
memcpy(&p->apChild[p->nChild], pSub->apChild, nByte);
p->nChild += pSub->nChild;
sqlite3_free(pSub);
}else{
p->apChild[p->nChild++] = pSub;
}
for( ; ii<p->nChild; ii++){
p->iHeight = MAX(p->iHeight, p->apChild[ii]->iHeight + 1);
}
}
/*
** This function is used when parsing LIKE or GLOB patterns against
** trigram indexes that specify either detail=column or detail=none.
** It converts a phrase:
**
** abc + def + ghi
**
** into an AND tree:
**
** abc AND def AND ghi
*/
static Fts5ExprNode *fts5ParsePhraseToAnd(
Fts5Parse *pParse,
Fts5ExprNearset *pNear
){
int nTerm = pNear->apPhrase[0]->nTerm;
int ii;
int nByte;
Fts5ExprNode *pRet;
assert( pNear->nPhrase==1 );
assert( pParse->bPhraseToAnd );
nByte = sizeof(Fts5ExprNode) + nTerm*sizeof(Fts5ExprNode*);
pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
if( pRet ){
pRet->eType = FTS5_AND;
pRet->nChild = nTerm;
pRet->iHeight = 1;
fts5ExprAssignXNext(pRet);
pParse->nPhrase--;
for(ii=0; ii<nTerm; ii++){
Fts5ExprPhrase *pPhrase = (Fts5ExprPhrase*)sqlite3Fts5MallocZero(
&pParse->rc, sizeof(Fts5ExprPhrase)
);
if( pPhrase ){
if( parseGrowPhraseArray(pParse) ){
fts5ExprPhraseFree(pPhrase);
}else{
Fts5ExprTerm *p = &pNear->apPhrase[0]->aTerm[ii];
Fts5ExprTerm *pTo = &pPhrase->aTerm[0];
pParse->apPhrase[pParse->nPhrase++] = pPhrase;
pPhrase->nTerm = 1;
pTo->pTerm = sqlite3Fts5Strndup(&pParse->rc, p->pTerm, p->nFullTerm);
pTo->nQueryTerm = p->nQueryTerm;
pTo->nFullTerm = p->nFullTerm;
pRet->apChild[ii] = sqlite3Fts5ParseNode(pParse, FTS5_STRING,
0, 0, sqlite3Fts5ParseNearset(pParse, 0, pPhrase)
);
}
}
}
if( pParse->rc ){
sqlite3Fts5ParseNodeFree(pRet);
pRet = 0;
}else{
sqlite3Fts5ParseNearsetFree(pNear);
}
}
return pRet;
}
/*
** Allocate and return a new expression object. If anything goes wrong (i.e.
** OOM error), leave an error code in pParse and return NULL.
*/
Fts5ExprNode *sqlite3Fts5ParseNode(
Fts5Parse *pParse, /* Parse context */
int eType, /* FTS5_STRING, AND, OR or NOT */
Fts5ExprNode *pLeft, /* Left hand child expression */
Fts5ExprNode *pRight, /* Right hand child expression */
Fts5ExprNearset *pNear /* For STRING expressions, the near cluster */
){
Fts5ExprNode *pRet = 0;
if( pParse->rc==SQLITE_OK ){
int nChild = 0; /* Number of children of returned node */
sqlite3_int64 nByte; /* Bytes of space to allocate for this node */
assert( (eType!=FTS5_STRING && !pNear)
|| (eType==FTS5_STRING && !pLeft && !pRight)
);
if( eType==FTS5_STRING && pNear==0 ) return 0;
if( eType!=FTS5_STRING && pLeft==0 ) return pRight;
if( eType!=FTS5_STRING && pRight==0 ) return pLeft;
if( eType==FTS5_STRING
&& pParse->bPhraseToAnd
&& pNear->apPhrase[0]->nTerm>1
){
pRet = fts5ParsePhraseToAnd(pParse, pNear);
}else{
if( eType==FTS5_NOT ){
nChild = 2;
}else if( eType==FTS5_AND || eType==FTS5_OR ){
nChild = 2;
if( pLeft->eType==eType ) nChild += pLeft->nChild-1;
if( pRight->eType==eType ) nChild += pRight->nChild-1;
}
nByte = sizeof(Fts5ExprNode) + sizeof(Fts5ExprNode*)*(nChild-1);
pRet = (Fts5ExprNode*)sqlite3Fts5MallocZero(&pParse->rc, nByte);
if( pRet ){
pRet->eType = eType;
pRet->pNear = pNear;
fts5ExprAssignXNext(pRet);
if( eType==FTS5_STRING ){
int iPhrase;
for(iPhrase=0; iPhrase<pNear->nPhrase; iPhrase++){
pNear->apPhrase[iPhrase]->pNode = pRet;
if( pNear->apPhrase[iPhrase]->nTerm==0 ){
pRet->xNext = 0;
pRet->eType = FTS5_EOF;
}
}
if( pParse->pConfig->eDetail!=FTS5_DETAIL_FULL ){
Fts5ExprPhrase *pPhrase = pNear->apPhrase[0];
if( pNear->nPhrase!=1
|| pPhrase->nTerm>1
|| (pPhrase->nTerm>0 && pPhrase->aTerm[0].bFirst)
){
sqlite3Fts5ParseError(pParse,
"fts5: %s queries are not supported (detail!=full)",
pNear->nPhrase==1 ? "phrase": "NEAR"
);
sqlite3_free(pRet);
pRet = 0;
}
}
}else{
fts5ExprAddChildren(pRet, pLeft);
fts5ExprAddChildren(pRet, pRight);
if( pRet->iHeight>SQLITE_FTS5_MAX_EXPR_DEPTH ){
sqlite3Fts5ParseError(pParse,
"fts5 expression tree is too large (maximum depth %d)",
SQLITE_FTS5_MAX_EXPR_DEPTH
);
sqlite3_free(pRet);
pRet = 0;
}
}
}
}
}
if( pRet==0 ){
assert( pParse->rc!=SQLITE_OK );
sqlite3Fts5ParseNodeFree(pLeft);
sqlite3Fts5ParseNodeFree(pRight);
sqlite3Fts5ParseNearsetFree(pNear);
}
return pRet;
}
Fts5ExprNode *sqlite3Fts5ParseImplicitAnd(
Fts5Parse *pParse, /* Parse context */
Fts5ExprNode *pLeft, /* Left hand child expression */
Fts5ExprNode *pRight /* Right hand child expression */
){
Fts5ExprNode *pRet = 0;
Fts5ExprNode *pPrev;
if( pParse->rc ){
sqlite3Fts5ParseNodeFree(pLeft);
sqlite3Fts5ParseNodeFree(pRight);
}else{
assert( pLeft->eType==FTS5_STRING
|| pLeft->eType==FTS5_TERM
|| pLeft->eType==FTS5_EOF
|| pLeft->eType==FTS5_AND
);
assert( pRight->eType==FTS5_STRING
|| pRight->eType==FTS5_TERM
|| pRight->eType==FTS5_EOF
);
if( pLeft->eType==FTS5_AND ){
pPrev = pLeft->apChild[pLeft->nChild-1];
}else{
pPrev = pLeft;
}
assert( pPrev->eType==FTS5_STRING
|| pPrev->eType==FTS5_TERM
|| pPrev->eType==FTS5_EOF
);
if( pRight->eType==FTS5_EOF ){
assert( pParse->apPhrase[pParse->nPhrase-1]==pRight->pNear->apPhrase[0] );
sqlite3Fts5ParseNodeFree(pRight);
pRet = pLeft;
pParse->nPhrase--;
}
else if( pPrev->eType==FTS5_EOF ){
Fts5ExprPhrase **ap;
if( pPrev==pLeft ){
pRet = pRight;
}else{
pLeft->apChild[pLeft->nChild-1] = pRight;
pRet = pLeft;
}
ap = &pParse->apPhrase[pParse->nPhrase-1-pRight->pNear->nPhrase];
assert( ap[0]==pPrev->pNear->apPhrase[0] );
memmove(ap, &ap[1], sizeof(Fts5ExprPhrase*)*pRight->pNear->nPhrase);
pParse->nPhrase--;
sqlite3Fts5ParseNodeFree(pPrev);
}
else{
pRet = sqlite3Fts5ParseNode(pParse, FTS5_AND, pLeft, pRight, 0);
}
}
return pRet;
}
#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
static char *fts5ExprTermPrint(Fts5ExprTerm *pTerm){
sqlite3_int64 nByte = 0;
Fts5ExprTerm *p;
char *zQuoted;
/* Determine the maximum amount of space required. */
for(p=pTerm; p; p=p->pSynonym){
nByte += pTerm->nQueryTerm * 2 + 3 + 2;
}
zQuoted = sqlite3_malloc64(nByte);
if( zQuoted ){
int i = 0;
for(p=pTerm; p; p=p->pSynonym){
char *zIn = p->pTerm;
char *zEnd = &zIn[p->nQueryTerm];
zQuoted[i++] = '"';
while( zIn<zEnd ){
if( *zIn=='"' ) zQuoted[i++] = '"';
zQuoted[i++] = *zIn++;
}
zQuoted[i++] = '"';
if( p->pSynonym ) zQuoted[i++] = '|';
}
if( pTerm->bPrefix ){
zQuoted[i++] = ' ';
zQuoted[i++] = '*';
}
zQuoted[i++] = '\0';
}
return zQuoted;
}
static char *fts5PrintfAppend(char *zApp, const char *zFmt, ...){
char *zNew;
va_list ap;
va_start(ap, zFmt);
zNew = sqlite3_vmprintf(zFmt, ap);
va_end(ap);
if( zApp && zNew ){
char *zNew2 = sqlite3_mprintf("%s%s", zApp, zNew);
sqlite3_free(zNew);
zNew = zNew2;
}
sqlite3_free(zApp);
return zNew;
}
/*
** Compose a tcl-readable representation of expression pExpr. Return a
** pointer to a buffer containing that representation. It is the
** responsibility of the caller to at some point free the buffer using
** sqlite3_free().
*/
static char *fts5ExprPrintTcl(
Fts5Config *pConfig,
const char *zNearsetCmd,
Fts5ExprNode *pExpr
){
char *zRet = 0;
if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
Fts5ExprNearset *pNear = pExpr->pNear;
int i;
int iTerm;
zRet = fts5PrintfAppend(zRet, "%s ", zNearsetCmd);
if( zRet==0 ) return 0;
if( pNear->pColset ){
int *aiCol = pNear->pColset->aiCol;
int nCol = pNear->pColset->nCol;
if( nCol==1 ){
zRet = fts5PrintfAppend(zRet, "-col %d ", aiCol[0]);
}else{
zRet = fts5PrintfAppend(zRet, "-col {%d", aiCol[0]);
for(i=1; i<pNear->pColset->nCol; i++){
zRet = fts5PrintfAppend(zRet, " %d", aiCol[i]);
}
zRet = fts5PrintfAppend(zRet, "} ");
}
if( zRet==0 ) return 0;
}
if( pNear->nPhrase>1 ){
zRet = fts5PrintfAppend(zRet, "-near %d ", pNear->nNear);
if( zRet==0 ) return 0;
}
zRet = fts5PrintfAppend(zRet, "--");
if( zRet==0 ) return 0;
for(i=0; i<pNear->nPhrase; i++){
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
zRet = fts5PrintfAppend(zRet, " {");
for(iTerm=0; zRet && iTerm<pPhrase->nTerm; iTerm++){
Fts5ExprTerm *p = &pPhrase->aTerm[iTerm];
zRet = fts5PrintfAppend(zRet, "%s%.*s", iTerm==0?"":" ",
p->nQueryTerm, p->pTerm
);
if( pPhrase->aTerm[iTerm].bPrefix ){
zRet = fts5PrintfAppend(zRet, "*");
}
}
if( zRet ) zRet = fts5PrintfAppend(zRet, "}");
if( zRet==0 ) return 0;
}
}else if( pExpr->eType==0 ){
zRet = sqlite3_mprintf("{}");
}else{
char const *zOp = 0;
int i;
switch( pExpr->eType ){
case FTS5_AND: zOp = "AND"; break;
case FTS5_NOT: zOp = "NOT"; break;
default:
assert( pExpr->eType==FTS5_OR );
zOp = "OR";
break;
}
zRet = sqlite3_mprintf("%s", zOp);
for(i=0; zRet && i<pExpr->nChild; i++){
char *z = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->apChild[i]);
if( !z ){
sqlite3_free(zRet);
zRet = 0;
}else{
zRet = fts5PrintfAppend(zRet, " [%z]", z);
}
}
}
return zRet;
}
static char *fts5ExprPrint(Fts5Config *pConfig, Fts5ExprNode *pExpr){
char *zRet = 0;
if( pExpr->eType==0 ){
return sqlite3_mprintf("\"\"");
}else
if( pExpr->eType==FTS5_STRING || pExpr->eType==FTS5_TERM ){
Fts5ExprNearset *pNear = pExpr->pNear;
int i;
int iTerm;
if( pNear->pColset ){
int ii;
Fts5Colset *pColset = pNear->pColset;
if( pColset->nCol>1 ) zRet = fts5PrintfAppend(zRet, "{");
for(ii=0; ii<pColset->nCol; ii++){
zRet = fts5PrintfAppend(zRet, "%s%s",
pConfig->azCol[pColset->aiCol[ii]], ii==pColset->nCol-1 ? "" : " "
);
}
if( zRet ){
zRet = fts5PrintfAppend(zRet, "%s : ", pColset->nCol>1 ? "}" : "");
}
if( zRet==0 ) return 0;
}
if( pNear->nPhrase>1 ){
zRet = fts5PrintfAppend(zRet, "NEAR(");
if( zRet==0 ) return 0;
}
for(i=0; i<pNear->nPhrase; i++){
Fts5ExprPhrase *pPhrase = pNear->apPhrase[i];
if( i!=0 ){
zRet = fts5PrintfAppend(zRet, " ");
if( zRet==0 ) return 0;
}
for(iTerm=0; iTerm<pPhrase->nTerm; iTerm++){
char *zTerm = fts5ExprTermPrint(&pPhrase->aTerm[iTerm]);
if( zTerm ){
zRet = fts5PrintfAppend(zRet, "%s%s", iTerm==0?"":" + ", zTerm);
sqlite3_free(zTerm);
}
if( zTerm==0 || zRet==0 ){
sqlite3_free(zRet);
return 0;
}
}
}
if( pNear->nPhrase>1 ){
zRet = fts5PrintfAppend(zRet, ", %d)", pNear->nNear);
if( zRet==0 ) return 0;
}
}else{
char const *zOp = 0;
int i;
switch( pExpr->eType ){
case FTS5_AND: zOp = " AND "; break;
case FTS5_NOT: zOp = " NOT "; break;
default:
assert( pExpr->eType==FTS5_OR );
zOp = " OR ";
break;
}
for(i=0; i<pExpr->nChild; i++){
char *z = fts5ExprPrint(pConfig, pExpr->apChild[i]);
if( z==0 ){
sqlite3_free(zRet);
zRet = 0;
}else{
int e = pExpr->apChild[i]->eType;
int b = (e!=FTS5_STRING && e!=FTS5_TERM && e!=FTS5_EOF);
zRet = fts5PrintfAppend(zRet, "%s%s%z%s",
(i==0 ? "" : zOp),
(b?"(":""), z, (b?")":"")
);
}
if( zRet==0 ) break;
}
}
return zRet;
}
/*
** The implementation of user-defined scalar functions fts5_expr() (bTcl==0)
** and fts5_expr_tcl() (bTcl!=0).
*/
static void fts5ExprFunction(
sqlite3_context *pCtx, /* Function call context */
int nArg, /* Number of args */
sqlite3_value **apVal, /* Function arguments */
int bTcl
){
Fts5Global *pGlobal = (Fts5Global*)sqlite3_user_data(pCtx);
sqlite3 *db = sqlite3_context_db_handle(pCtx);
const char *zExpr = 0;
char *zErr = 0;
Fts5Expr *pExpr = 0;
int rc;
int i;
const char **azConfig; /* Array of arguments for Fts5Config */
const char *zNearsetCmd = "nearset";
int nConfig; /* Size of azConfig[] */
Fts5Config *pConfig = 0;
int iArg = 1;
if( nArg<1 ){
zErr = sqlite3_mprintf("wrong number of arguments to function %s",
bTcl ? "fts5_expr_tcl" : "fts5_expr"
);
sqlite3_result_error(pCtx, zErr, -1);
sqlite3_free(zErr);
return;
}
if( bTcl && nArg>1 ){
zNearsetCmd = (const char*)sqlite3_value_text(apVal[1]);
iArg = 2;
}
nConfig = 3 + (nArg-iArg);
azConfig = (const char**)sqlite3_malloc64(sizeof(char*) * nConfig);
if( azConfig==0 ){
sqlite3_result_error_nomem(pCtx);
return;
}
azConfig[0] = 0;
azConfig[1] = "main";
azConfig[2] = "tbl";
for(i=3; iArg<nArg; iArg++){
const char *z = (const char*)sqlite3_value_text(apVal[iArg]);
azConfig[i++] = (z ? z : "");
}
zExpr = (const char*)sqlite3_value_text(apVal[0]);
if( zExpr==0 ) zExpr = "";
rc = sqlite3Fts5ConfigParse(pGlobal, db, nConfig, azConfig, &pConfig, &zErr);
if( rc==SQLITE_OK ){
rc = sqlite3Fts5ExprNew(pConfig, 0, pConfig->nCol, zExpr, &pExpr, &zErr);
}
if( rc==SQLITE_OK ){
char *zText;
if( pExpr->pRoot->xNext==0 ){
zText = sqlite3_mprintf("");
}else if( bTcl ){
zText = fts5ExprPrintTcl(pConfig, zNearsetCmd, pExpr->pRoot);
}else{
zText = fts5ExprPrint(pConfig, pExpr->pRoot);
}
if( zText==0 ){
rc = SQLITE_NOMEM;
}else{
sqlite3_result_text(pCtx, zText, -1, SQLITE_TRANSIENT);
sqlite3_free(zText);
}
}
if( rc!=SQLITE_OK ){
if( zErr ){
sqlite3_result_error(pCtx, zErr, -1);
sqlite3_free(zErr);
}else{
sqlite3_result_error_code(pCtx, rc);
}
}
sqlite3_free((void *)azConfig);
sqlite3Fts5ConfigFree(pConfig);
sqlite3Fts5ExprFree(pExpr);
}
static void fts5ExprFunctionHr(
sqlite3_context *pCtx, /* Function call context */
int nArg, /* Number of args */
sqlite3_value **apVal /* Function arguments */
){
fts5ExprFunction(pCtx, nArg, apVal, 0);
}
static void fts5ExprFunctionTcl(
sqlite3_context *pCtx, /* Function call context */
int nArg, /* Number of args */
sqlite3_value **apVal /* Function arguments */
){
fts5ExprFunction(pCtx, nArg, apVal, 1);
}
/*
** The implementation of an SQLite user-defined-function that accepts a
** single integer as an argument. If the integer is an alpha-numeric
** unicode code point, 1 is returned. Otherwise 0.
*/
static void fts5ExprIsAlnum(
sqlite3_context *pCtx, /* Function call context */
int nArg, /* Number of args */
sqlite3_value **apVal /* Function arguments */
){
int iCode;
u8 aArr[32];
if( nArg!=1 ){
sqlite3_result_error(pCtx,
"wrong number of arguments to function fts5_isalnum", -1
);
return;
}
memset(aArr, 0, sizeof(aArr));
sqlite3Fts5UnicodeCatParse("L*", aArr);
sqlite3Fts5UnicodeCatParse("N*", aArr);
sqlite3Fts5UnicodeCatParse("Co", aArr);
iCode = sqlite3_value_int(apVal[0]);
sqlite3_result_int(pCtx, aArr[sqlite3Fts5UnicodeCategory((u32)iCode)]);
}
static void fts5ExprFold(
sqlite3_context *pCtx, /* Function call context */
int nArg, /* Number of args */
sqlite3_value **apVal /* Function arguments */
){
if( nArg!=1 && nArg!=2 ){
sqlite3_result_error(pCtx,
"wrong number of arguments to function fts5_fold", -1
);
}else{
int iCode;
int bRemoveDiacritics = 0;
iCode = sqlite3_value_int(apVal[0]);
if( nArg==2 ) bRemoveDiacritics = sqlite3_value_int(apVal[1]);
sqlite3_result_int(pCtx, sqlite3Fts5UnicodeFold(iCode, bRemoveDiacritics));
}
}
#endif /* if SQLITE_TEST || SQLITE_FTS5_DEBUG */
/*
** This is called during initialization to register the fts5_expr() scalar
** UDF with the SQLite handle passed as the only argument.
*/
int sqlite3Fts5ExprInit(Fts5Global *pGlobal, sqlite3 *db){
#if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
struct Fts5ExprFunc {
const char *z;
void (*x)(sqlite3_context*,int,sqlite3_value**);
} aFunc[] = {
{ "fts5_expr", fts5ExprFunctionHr },
{ "fts5_expr_tcl", fts5ExprFunctionTcl },
{ "fts5_isalnum", fts5ExprIsAlnum },
{ "fts5_fold", fts5ExprFold },
};
int i;
int rc = SQLITE_OK;
void *pCtx = (void*)pGlobal;
for(i=0; rc==SQLITE_OK && i<ArraySize(aFunc); i++){
struct Fts5ExprFunc *p = &aFunc[i];
rc = sqlite3_create_function(db, p->z, -1, SQLITE_UTF8, pCtx, p->x, 0, 0);
}
#else
int rc = SQLITE_OK;
UNUSED_PARAM2(pGlobal,db);
#endif
/* Avoid warnings indicating that sqlite3Fts5ParserTrace() and
** sqlite3Fts5ParserFallback() are unused */
#ifndef NDEBUG
(void)sqlite3Fts5ParserTrace;
#endif
(void)sqlite3Fts5ParserFallback;
return rc;
}
/*
** Return the number of phrases in expression pExpr.
*/
int sqlite3Fts5ExprPhraseCount(Fts5Expr *pExpr){
return (pExpr ? pExpr->nPhrase : 0);
}
/*
** Return the number of terms in the iPhrase'th phrase in pExpr.
*/
int sqlite3Fts5ExprPhraseSize(Fts5Expr *pExpr, int iPhrase){
if( iPhrase<0 || iPhrase>=pExpr->nPhrase ) return 0;
return pExpr->apExprPhrase[iPhrase]->nTerm;
}
/*
** This function is used to access the current position list for phrase
** iPhrase.
*/
int sqlite3Fts5ExprPoslist(Fts5Expr *pExpr, int iPhrase, const u8 **pa){
int nRet;
Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
Fts5ExprNode *pNode = pPhrase->pNode;
if( pNode->bEof==0 && pNode->iRowid==pExpr->pRoot->iRowid ){
*pa = pPhrase->poslist.p;
nRet = pPhrase->poslist.n;
}else{
*pa = 0;
nRet = 0;
}
return nRet;
}
struct Fts5PoslistPopulator {
Fts5PoslistWriter writer;
int bOk; /* True if ok to populate */
int bMiss;
};
/*
** Clear the position lists associated with all phrases in the expression
** passed as the first argument. Argument bLive is true if the expression
** might be pointing to a real entry, otherwise it has just been reset.
**
** At present this function is only used for detail=col and detail=none
** fts5 tables. This implies that all phrases must be at most 1 token
** in size, as phrase matches are not supported without detail=full.
*/
Fts5PoslistPopulator *sqlite3Fts5ExprClearPoslists(Fts5Expr *pExpr, int bLive){
Fts5PoslistPopulator *pRet;
pRet = sqlite3_malloc64(sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
if( pRet ){
int i;
memset(pRet, 0, sizeof(Fts5PoslistPopulator)*pExpr->nPhrase);
for(i=0; i<pExpr->nPhrase; i++){
Fts5Buffer *pBuf = &pExpr->apExprPhrase[i]->poslist;
Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
assert( pExpr->apExprPhrase[i]->nTerm<=1 );
if( bLive &&
(pBuf->n==0 || pNode->iRowid!=pExpr->pRoot->iRowid || pNode->bEof)
){
pRet[i].bMiss = 1;
}else{
pBuf->n = 0;
}
}
}
return pRet;
}
struct Fts5ExprCtx {
Fts5Expr *pExpr;
Fts5PoslistPopulator *aPopulator;
i64 iOff;
};
typedef struct Fts5ExprCtx Fts5ExprCtx;
/*
** TODO: Make this more efficient!
*/
static int fts5ExprColsetTest(Fts5Colset *pColset, int iCol){
int i;
for(i=0; i<pColset->nCol; i++){
if( pColset->aiCol[i]==iCol ) return 1;
}
return 0;
}
/*
** pToken is a buffer nToken bytes in size that may or may not contain
** an embedded 0x00 byte. If it does, return the number of bytes in
** the buffer before the 0x00. If it does not, return nToken.
*/
static int fts5QueryTerm(const char *pToken, int nToken){
int ii;
for(ii=0; ii<nToken && pToken[ii]; ii++){}
return ii;
}
static int fts5ExprPopulatePoslistsCb(
void *pCtx, /* Copy of 2nd argument to xTokenize() */
int tflags, /* Mask of FTS5_TOKEN_* flags */
const char *pToken, /* Pointer to buffer containing token */
int nToken, /* Size of token in bytes */
int iUnused1, /* Byte offset of token within input text */
int iUnused2 /* Byte offset of end of token within input text */
){
Fts5ExprCtx *p = (Fts5ExprCtx*)pCtx;
Fts5Expr *pExpr = p->pExpr;
int i;
int nQuery = nToken;
i64 iRowid = pExpr->pRoot->iRowid;
UNUSED_PARAM2(iUnused1, iUnused2);
if( nQuery>FTS5_MAX_TOKEN_SIZE ) nQuery = FTS5_MAX_TOKEN_SIZE;
if( pExpr->pConfig->bTokendata ){
nQuery = fts5QueryTerm(pToken, nQuery);
}
if( (tflags & FTS5_TOKEN_COLOCATED)==0 ) p->iOff++;
for(i=0; i<pExpr->nPhrase; i++){
Fts5ExprTerm *pT;
if( p->aPopulator[i].bOk==0 ) continue;
for(pT=&pExpr->apExprPhrase[i]->aTerm[0]; pT; pT=pT->pSynonym){
if( (pT->nQueryTerm==nQuery || (pT->nQueryTerm<nQuery && pT->bPrefix))
&& memcmp(pT->pTerm, pToken, pT->nQueryTerm)==0
){
int rc = sqlite3Fts5PoslistWriterAppend(
&pExpr->apExprPhrase[i]->poslist, &p->aPopulator[i].writer, p->iOff
);
if( rc==SQLITE_OK && pExpr->pConfig->bTokendata && !pT->bPrefix ){
int iCol = p->iOff>>32;
int iTokOff = p->iOff & 0x7FFFFFFF;
rc = sqlite3Fts5IndexIterWriteTokendata(
pT->pIter, pToken, nToken, iRowid, iCol, iTokOff
);
}
if( rc ) return rc;
break;
}
}
}
return SQLITE_OK;
}
int sqlite3Fts5ExprPopulatePoslists(
Fts5Config *pConfig,
Fts5Expr *pExpr,
Fts5PoslistPopulator *aPopulator,
int iCol,
const char *z, int n
){
int i;
Fts5ExprCtx sCtx;
sCtx.pExpr = pExpr;
sCtx.aPopulator = aPopulator;
sCtx.iOff = (((i64)iCol) << 32) - 1;
for(i=0; i<pExpr->nPhrase; i++){
Fts5ExprNode *pNode = pExpr->apExprPhrase[i]->pNode;
Fts5Colset *pColset = pNode->pNear->pColset;
if( (pColset && 0==fts5ExprColsetTest(pColset, iCol))
|| aPopulator[i].bMiss
){
aPopulator[i].bOk = 0;
}else{
aPopulator[i].bOk = 1;
}
}
return sqlite3Fts5Tokenize(pConfig,
FTS5_TOKENIZE_DOCUMENT, z, n, (void*)&sCtx, fts5ExprPopulatePoslistsCb
);
}
static void fts5ExprClearPoslists(Fts5ExprNode *pNode){
if( pNode->eType==FTS5_TERM || pNode->eType==FTS5_STRING ){
pNode->pNear->apPhrase[0]->poslist.n = 0;
}else{
int i;
for(i=0; i<pNode->nChild; i++){
fts5ExprClearPoslists(pNode->apChild[i]);
}
}
}
static int fts5ExprCheckPoslists(Fts5ExprNode *pNode, i64 iRowid){
pNode->iRowid = iRowid;
pNode->bEof = 0;
switch( pNode->eType ){
case FTS5_TERM:
case FTS5_STRING:
return (pNode->pNear->apPhrase[0]->poslist.n>0);
case FTS5_AND: {
int i;
for(i=0; i<pNode->nChild; i++){
if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid)==0 ){
fts5ExprClearPoslists(pNode);
return 0;
}
}
break;
}
case FTS5_OR: {
int i;
int bRet = 0;
for(i=0; i<pNode->nChild; i++){
if( fts5ExprCheckPoslists(pNode->apChild[i], iRowid) ){
bRet = 1;
}
}
return bRet;
}
default: {
assert( pNode->eType==FTS5_NOT );
if( 0==fts5ExprCheckPoslists(pNode->apChild[0], iRowid)
|| 0!=fts5ExprCheckPoslists(pNode->apChild[1], iRowid)
){
fts5ExprClearPoslists(pNode);
return 0;
}
break;
}
}
return 1;
}
void sqlite3Fts5ExprCheckPoslists(Fts5Expr *pExpr, i64 iRowid){
fts5ExprCheckPoslists(pExpr->pRoot, iRowid);
}
/*
** This function is only called for detail=columns tables.
*/
int sqlite3Fts5ExprPhraseCollist(
Fts5Expr *pExpr,
int iPhrase,
const u8 **ppCollist,
int *pnCollist
){
Fts5ExprPhrase *pPhrase = pExpr->apExprPhrase[iPhrase];
Fts5ExprNode *pNode = pPhrase->pNode;
int rc = SQLITE_OK;
assert( iPhrase>=0 && iPhrase<pExpr->nPhrase );
assert( pExpr->pConfig->eDetail==FTS5_DETAIL_COLUMNS );
if( pNode->bEof==0
&& pNode->iRowid==pExpr->pRoot->iRowid
&& pPhrase->poslist.n>0
){
Fts5ExprTerm *pTerm = &pPhrase->aTerm[0];
if( pTerm->pSynonym ){
Fts5Buffer *pBuf = (Fts5Buffer*)&pTerm->pSynonym[1];
rc = fts5ExprSynonymList(
pTerm, pNode->iRowid, pBuf, (u8**)ppCollist, pnCollist
);
}else{
*ppCollist = pPhrase->aTerm[0].pIter->pData;
*pnCollist = pPhrase->aTerm[0].pIter->nData;
}
}else{
*ppCollist = 0;
*pnCollist = 0;
}
return rc;
}
/*
** Does the work of the fts5_api.xQueryToken() API method.
*/
int sqlite3Fts5ExprQueryToken(
Fts5Expr *pExpr,
int iPhrase,
int iToken,
const char **ppOut,
int *pnOut
){
Fts5ExprPhrase *pPhrase = 0;
if( iPhrase<0 || iPhrase>=pExpr->nPhrase ){
return SQLITE_RANGE;
}
pPhrase = pExpr->apExprPhrase[iPhrase];
if( iToken<0 || iToken>=pPhrase->nTerm ){
return SQLITE_RANGE;
}
*ppOut = pPhrase->aTerm[iToken].pTerm;
*pnOut = pPhrase->aTerm[iToken].nFullTerm;
return SQLITE_OK;
}
/*
** Does the work of the fts5_api.xInstToken() API method.
*/
int sqlite3Fts5ExprInstToken(
Fts5Expr *pExpr,
i64 iRowid,
int iPhrase,
int iCol,
int iOff,
int iToken,
const char **ppOut,
int *pnOut
){
Fts5ExprPhrase *pPhrase = 0;
Fts5ExprTerm *pTerm = 0;
int rc = SQLITE_OK;
if( iPhrase<0 || iPhrase>=pExpr->nPhrase ){
return SQLITE_RANGE;
}
pPhrase = pExpr->apExprPhrase[iPhrase];
if( iToken<0 || iToken>=pPhrase->nTerm ){
return SQLITE_RANGE;
}
pTerm = &pPhrase->aTerm[iToken];
if( pTerm->bPrefix==0 ){
if( pExpr->pConfig->bTokendata ){
rc = sqlite3Fts5IterToken(
pTerm->pIter, iRowid, iCol, iOff+iToken, ppOut, pnOut
);
}else{
*ppOut = pTerm->pTerm;
*pnOut = pTerm->nFullTerm;
}
}
return rc;
}
/*
** Clear the token mappings for all Fts5IndexIter objects mannaged by
** the expression passed as the only argument.
*/
void sqlite3Fts5ExprClearTokens(Fts5Expr *pExpr){
int ii;
for(ii=0; ii<pExpr->nPhrase; ii++){
Fts5ExprTerm *pT;
for(pT=&pExpr->apExprPhrase[ii]->aTerm[0]; pT; pT=pT->pSynonym){
sqlite3Fts5IndexIterClearTokendata(pT->pIter);
}
}
}