0
0
mirror of https://github.com/tursodatabase/libsql.git synced 2025-05-20 12:38:12 +00:00
Files

242 lines
6.9 KiB
C
Raw Permalink Normal View History

// Originally from the sha1 SQLite exension, Public Domain
// https://sqlite.org/src/file/ext/misc/sha1.c
// Modified by Anton Zhiyanov, https://github.com/nalgeon/sqlean/, MIT License
#include <assert.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include "crypto/sha1.h"
#define SHA_ROT(x, l, r) ((x) << (l) | (x) >> (r))
#define rol(x, k) SHA_ROT(x, k, 32 - (k))
#define ror(x, k) SHA_ROT(x, 32 - (k), k)
#define blk0le(i) (block[i] = (ror(block[i], 8) & 0xFF00FF00) | (rol(block[i], 8) & 0x00FF00FF))
#define blk0be(i) block[i]
#define blk(i) \
(block[i & 15] = \
rol(block[(i + 13) & 15] ^ block[(i + 8) & 15] ^ block[(i + 2) & 15] ^ block[i & 15], 1))
/*
* (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1
*
* Rl0() for little-endian and Rb0() for big-endian. Endianness is
* determined at run-time.
*/
#define Rl0(v, w, x, y, z, i) \
z += ((w & (x ^ y)) ^ y) + blk0le(i) + 0x5A827999 + rol(v, 5); \
w = ror(w, 2);
#define Rb0(v, w, x, y, z, i) \
z += ((w & (x ^ y)) ^ y) + blk0be(i) + 0x5A827999 + rol(v, 5); \
w = ror(w, 2);
#define R1(v, w, x, y, z, i) \
z += ((w & (x ^ y)) ^ y) + blk(i) + 0x5A827999 + rol(v, 5); \
w = ror(w, 2);
#define R2(v, w, x, y, z, i) \
z += (w ^ x ^ y) + blk(i) + 0x6ED9EBA1 + rol(v, 5); \
w = ror(w, 2);
#define R3(v, w, x, y, z, i) \
z += (((w | x) & y) | (w & x)) + blk(i) + 0x8F1BBCDC + rol(v, 5); \
w = ror(w, 2);
#define R4(v, w, x, y, z, i) \
z += (w ^ x ^ y) + blk(i) + 0xCA62C1D6 + rol(v, 5); \
w = ror(w, 2);
/*
* Hash a single 512-bit block. This is the core of the algorithm.
*/
void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]) {
unsigned int qq[5]; /* a, b, c, d, e; */
static int one = 1;
unsigned int block[16];
memcpy(block, buffer, 64);
memcpy(qq, state, 5 * sizeof(unsigned int));
#define a qq[0]
#define b qq[1]
#define c qq[2]
#define d qq[3]
#define e qq[4]
/* Copy ctx->state[] to working vars */
/*
a = state[0];
b = state[1];
c = state[2];
d = state[3];
e = state[4];
*/
/* 4 rounds of 20 operations each. Loop unrolled. */
if (1 == *(unsigned char*)&one) {
Rl0(a, b, c, d, e, 0);
Rl0(e, a, b, c, d, 1);
Rl0(d, e, a, b, c, 2);
Rl0(c, d, e, a, b, 3);
Rl0(b, c, d, e, a, 4);
Rl0(a, b, c, d, e, 5);
Rl0(e, a, b, c, d, 6);
Rl0(d, e, a, b, c, 7);
Rl0(c, d, e, a, b, 8);
Rl0(b, c, d, e, a, 9);
Rl0(a, b, c, d, e, 10);
Rl0(e, a, b, c, d, 11);
Rl0(d, e, a, b, c, 12);
Rl0(c, d, e, a, b, 13);
Rl0(b, c, d, e, a, 14);
Rl0(a, b, c, d, e, 15);
} else {
Rb0(a, b, c, d, e, 0);
Rb0(e, a, b, c, d, 1);
Rb0(d, e, a, b, c, 2);
Rb0(c, d, e, a, b, 3);
Rb0(b, c, d, e, a, 4);
Rb0(a, b, c, d, e, 5);
Rb0(e, a, b, c, d, 6);
Rb0(d, e, a, b, c, 7);
Rb0(c, d, e, a, b, 8);
Rb0(b, c, d, e, a, 9);
Rb0(a, b, c, d, e, 10);
Rb0(e, a, b, c, d, 11);
Rb0(d, e, a, b, c, 12);
Rb0(c, d, e, a, b, 13);
Rb0(b, c, d, e, a, 14);
Rb0(a, b, c, d, e, 15);
}
R1(e, a, b, c, d, 16);
R1(d, e, a, b, c, 17);
R1(c, d, e, a, b, 18);
R1(b, c, d, e, a, 19);
R2(a, b, c, d, e, 20);
R2(e, a, b, c, d, 21);
R2(d, e, a, b, c, 22);
R2(c, d, e, a, b, 23);
R2(b, c, d, e, a, 24);
R2(a, b, c, d, e, 25);
R2(e, a, b, c, d, 26);
R2(d, e, a, b, c, 27);
R2(c, d, e, a, b, 28);
R2(b, c, d, e, a, 29);
R2(a, b, c, d, e, 30);
R2(e, a, b, c, d, 31);
R2(d, e, a, b, c, 32);
R2(c, d, e, a, b, 33);
R2(b, c, d, e, a, 34);
R2(a, b, c, d, e, 35);
R2(e, a, b, c, d, 36);
R2(d, e, a, b, c, 37);
R2(c, d, e, a, b, 38);
R2(b, c, d, e, a, 39);
R3(a, b, c, d, e, 40);
R3(e, a, b, c, d, 41);
R3(d, e, a, b, c, 42);
R3(c, d, e, a, b, 43);
R3(b, c, d, e, a, 44);
R3(a, b, c, d, e, 45);
R3(e, a, b, c, d, 46);
R3(d, e, a, b, c, 47);
R3(c, d, e, a, b, 48);
R3(b, c, d, e, a, 49);
R3(a, b, c, d, e, 50);
R3(e, a, b, c, d, 51);
R3(d, e, a, b, c, 52);
R3(c, d, e, a, b, 53);
R3(b, c, d, e, a, 54);
R3(a, b, c, d, e, 55);
R3(e, a, b, c, d, 56);
R3(d, e, a, b, c, 57);
R3(c, d, e, a, b, 58);
R3(b, c, d, e, a, 59);
R4(a, b, c, d, e, 60);
R4(e, a, b, c, d, 61);
R4(d, e, a, b, c, 62);
R4(c, d, e, a, b, 63);
R4(b, c, d, e, a, 64);
R4(a, b, c, d, e, 65);
R4(e, a, b, c, d, 66);
R4(d, e, a, b, c, 67);
R4(c, d, e, a, b, 68);
R4(b, c, d, e, a, 69);
R4(a, b, c, d, e, 70);
R4(e, a, b, c, d, 71);
R4(d, e, a, b, c, 72);
R4(c, d, e, a, b, 73);
R4(b, c, d, e, a, 74);
R4(a, b, c, d, e, 75);
R4(e, a, b, c, d, 76);
R4(d, e, a, b, c, 77);
R4(c, d, e, a, b, 78);
R4(b, c, d, e, a, 79);
/* Add the working vars back into context.state[] */
state[0] += a;
state[1] += b;
state[2] += c;
state[3] += d;
state[4] += e;
#undef a
#undef b
#undef c
#undef d
#undef e
}
/* Initialize a SHA1 context */
void* sha1_init() {
/* SHA1 initialization constants */
SHA1Context* ctx;
ctx = malloc(sizeof(SHA1Context));
ctx->state[0] = 0x67452301;
ctx->state[1] = 0xEFCDAB89;
ctx->state[2] = 0x98BADCFE;
ctx->state[3] = 0x10325476;
ctx->state[4] = 0xC3D2E1F0;
ctx->count[0] = ctx->count[1] = 0;
return ctx;
}
/* Add new content to the SHA1 hash */
void sha1_update(SHA1Context* ctx, const unsigned char* data, size_t len) {
unsigned int i, j;
j = ctx->count[0];
if ((ctx->count[0] += len << 3) < j) {
ctx->count[1] += (len >> 29) + 1;
}
j = (j >> 3) & 63;
if ((j + len) > 63) {
(void)memcpy(&ctx->buffer[j], data, (i = 64 - j));
SHA1Transform(ctx->state, ctx->buffer);
for (; i + 63 < len; i += 64) {
SHA1Transform(ctx->state, &data[i]);
}
j = 0;
} else {
i = 0;
}
(void)memcpy(&ctx->buffer[j], &data[i], len - i);
}
int sha1_final(SHA1Context* ctx, unsigned char hash[]) {
unsigned int i;
unsigned char finalcount[8];
for (i = 0; i < 8; i++) {
finalcount[i] = (unsigned char)((ctx->count[(i >= 4 ? 0 : 1)] >> ((3 - (i & 3)) * 8)) &
255); /* Endian independent */
}
sha1_update(ctx, (const unsigned char*)"\200", 1);
while ((ctx->count[0] & 504) != 448) {
sha1_update(ctx, (const unsigned char*)"\0", 1);
}
sha1_update(ctx, finalcount, 8); /* Should cause a SHA1Transform() */
for (i = 0; i < 20; i++) {
hash[i] = (unsigned char)((ctx->state[i >> 2] >> ((3 - (i & 3)) * 8)) & 255);
}
free(ctx);
return SHA1_BLOCK_SIZE;
}