1
0
mirror of https://gitlab.com/cznic/sqlite.git synced 2024-11-24 02:26:14 +00:00
go-sqlite/testdata/tcl/whereL.test
2023-02-23 14:46:00 +01:00

213 lines
6.0 KiB
Plaintext

# 2018-07-26
#
# The author disclaims copyright to this source code. In place of
# a legal notice, here is a blessing:
#
# May you do good and not evil.
# May you find forgiveness for yourself and forgive others.
# May you share freely, never taking more than you give.
#
#***********************************************************************
# This file implements regression tests for SQLite library. The
# focus of this file is testing the WHERE-clause constant propagation
# optimization.
#
set testdir [file dirname $argv0]
source $testdir/tester.tcl
set ::testprefix whereL
do_execsql_test 100 {
CREATE TABLE t1(a INT PRIMARY KEY, b, c, d, e);
CREATE TABLE t2(a INT PRIMARY KEY, f, g, h, i);
CREATE TABLE t3(a INT PRIMARY KEY, j, k, l, m);
CREATE VIEW v4 AS SELECT * FROM t2 UNION ALL SELECT * FROM t3;
}
do_eqp_test 110 {
SELECT * FROM t1, v4 WHERE t1.a=?1 AND v4.a=t1.a;
} {
QUERY PLAN
`--COMPOUND QUERY
|--LEFT-MOST SUBQUERY
| |--SEARCH t1 USING INDEX sqlite_autoindex_t1_1 (a=?)
| `--SEARCH t2 USING INDEX sqlite_autoindex_t2_1 (a=?)
`--UNION ALL
|--SEARCH t1 USING INDEX sqlite_autoindex_t1_1 (a=?)
`--SEARCH t3 USING INDEX sqlite_autoindex_t3_1 (a=?)
}
# The scan of the t1 table goes first since that enables the ORDER BY
# sort to be omitted. This would not be possible without constant
# propagation because without it the t1 table would depend on t3.
#
do_eqp_test 120 {
SELECT * FROM t1, t2, t3
WHERE t1.a=t2.a AND t2.a=t3.j AND t3.j=5
ORDER BY t1.a;
} {
QUERY PLAN
|--SEARCH t1 USING INDEX sqlite_autoindex_t1_1 (a=?)
|--SEARCH t2 USING INDEX sqlite_autoindex_t2_1 (a=?)
`--SCAN t3
}
# Constant propagation in the face of collating sequences:
#
do_execsql_test 200 {
CREATE TABLE c3(x COLLATE binary, y COLLATE nocase, z COLLATE binary);
CREATE INDEX c3x ON c3(x);
INSERT INTO c3 VALUES('ABC', 'ABC', 'abc');
SELECT * FROM c3 WHERE x=y AND y=z AND z='abc';
} {ABC ABC abc}
# If the constants are blindly propagated, as shown in the following
# query, the wrong answer results:
#
do_execsql_test 201 {
SELECT * FROM c3 WHERE x='abc' AND y='abc' AND z='abc';
} {}
# Constant propagation caused an incorrect answer in the following
# query. (Reported by Bentley system on 2018-08-09.)
#
do_execsql_test 300 {
CREATE TABLE A(id INTEGER PRIMARY KEY, label TEXT);
CREATE TABLE B(id INTEGER PRIMARY KEY, label TEXT, Aid INTEGER);
CREATE TABLE C(
id INTEGER PRIMARY KEY,
xx INTEGER NOT NULL,
yy INTEGER,
zz INTEGER
);
CREATE UNIQUE INDEX x2 ON C(yy);
CREATE UNIQUE INDEX x4 ON C(yy, zz);
INSERT INTO A(id) VALUES(1);
INSERT INTO B(id) VALUES(2);
INSERT INTO C(id,xx,yy,zz) VALUES(99,50,1,2);
SELECT 1
FROM A,
(SELECT id,xx,yy,zz FROM C) subq,
B
WHERE A.id='1'
AND A.id=subq.yy
AND B.id=subq.zz;
} {1}
do_execsql_test 301 {
SELECT 1
FROM A,
(SELECT id,xx,yy,zz FROM C) subq,
B
WHERE A.id=1
AND A.id=subq.yy
AND B.id=subq.zz;
} {1}
do_execsql_test 302 {
SELECT 1
FROM A,
(SELECT id,yy,zz FROM C) subq,
B
WHERE A.id='1'
AND A.id=subq.yy
AND B.id=subq.zz;
} {1}
# 2018-10-25: Ticket [cf5ed20f]
# Incorrect join result with duplicate WHERE clause constraint.
#
do_execsql_test 400 {
CREATE TABLE x(a, b, c);
CREATE TABLE y(a, b);
INSERT INTO x VALUES (1, 0, 1);
INSERT INTO y VALUES (1, 2);
SELECT x.a FROM x JOIN y ON x.c = y.a WHERE x.b = 1 AND x.b = 1;
} {}
# 2020-01-07: ticket 82ac75ba0093e5dc
# Incorrect join result due to mishandling of affinity in constant
# propagation.
#
reset_db
do_execsql_test 500 {
PRAGMA automatic_index=OFF;
CREATE TABLE t0(c0);
INSERT INTO t0 VALUES('0');
CREATE VIEW v0(c0) AS SELECT CAST(0 AS INT) FROM t0;
SELECT 200, * FROM t0, v0 WHERE 0 = t0.c0 AND t0.c0 = v0.c0;
} {}
do_execsql_test 510 {
SELECT 200, * FROM t0, v0 WHERE t0.c0 = 0 AND t0.c0 = v0.c0;
} {}
do_execsql_test 520 {
SELECT 200, * FROM t0, v0 WHERE 0 = t0.c0 AND v0.c0 = t0.c0;
} {}
do_execsql_test 530 {
SELECT 200, * FROM t0, v0 WHERE t0.c0 = 0 AND v0.c0 = t0.c0;
} {}
# 2020-02-13: ticket 1dcb4d44964846ad
# A problem introduced while making optimizations on the fixes above.
#
reset_db
do_execsql_test 600 {
CREATE TABLE t1(x TEXT);
CREATE TABLE t2(y TEXT);
INSERT INTO t1 VALUES('good'),('bad');
INSERT INTO t2 VALUES('good'),('bad');
SELECT * FROM t1 JOIN t2 ON x=y
WHERE x='good' AND y='good';
} {good good}
# 2020-04-24: Another test case for the previous (1dcb4d44964846ad)
# ticket. The test case comes from
# https://stackoverflow.com/questions/61399253/sqlite3-different-result-in-console-compared-to-python-script/
# Output verified against postgresql.
#
do_execsql_test 610 {
CREATE TABLE tableA(
ID int,
RunYearMonth int
);
INSERT INTO tableA VALUES(1,202003),(2,202003),(3,202003),(4,202004),
(5,202004),(6,202004),(7,202004),(8,202004);
CREATE TABLE tableB (
ID int,
RunYearMonth int
);
INSERT INTO tableB VALUES(1,202004),(2,202004),(3,202004),(4,202004),
(5,202004);
SELECT *
FROM (
SELECT *
FROM tableA
WHERE RunYearMonth = 202004
) AS A
INNER JOIN (
SELECT *
FROM tableB
WHERE RunYearMonth = 202004
) AS B
ON A.ID = B.ID
AND A.RunYearMonth = B.RunYearMonth;
} {4 202004 4 202004 5 202004 5 202004}
# 2023-02-10 https://sqlite.org/forum/forumpost/0a539c76db3b9e29
# The original constant propagation implementation caused a performance
# regression. Because "abs(v)" was rewritten into "abs(1)" it no longer
# matches the indexed column and the index is not used.
#
reset_db
do_execsql_test 700 {
CREATE TABLE t1(v INTEGER);
WITH RECURSIVE c(x) AS (VALUES(-10) UNION ALL SELECT x+1 FROM c WHERE x<10)
INSERT INTO t1(v) SELECT x FROM c;
CREATE INDEX idx ON t1( abs(v) );
SELECT v FROM t1 WHERE abs(v)=1 and v=1;
} 1
do_eqp_test 710 {
SELECT v FROM t1 WHERE abs(v)=1 and v=1;
} {
QUERY PLAN
`--SEARCH t1 USING INDEX idx (<expr>=?)
}
finish_test