1
0
mirror of https://github.com/physwizz/a155-U-u1.git synced 2025-07-14 08:44:45 +00:00
Files
a155-U-u1/kernel-5.10/drivers/rtc/rtc-mt6397.c
physwizz 99537be4e2 first
2024-03-11 06:53:12 +11:00

1205 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2014-2015 MediaTek Inc.
* Author: Tianping.Fang <tianping.fang@mediatek.com>
*/
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/mfd/mt6397/core.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/mfd/mt6397/rtc.h>
#include <linux/mod_devicetable.h>
#include <linux/nvmem-provider.h>
#include <linux/sched_clock.h>
#ifdef SUPPORT_EOSC_CALI
#include <linux/mfd/mt6359p/registers.h>
#endif
#ifdef SUPPORT_PWR_OFF_ALARM
#include <linux/notifier.h>
#include <linux/suspend.h>
#include <linux/completion.h>
#include <linux/workqueue.h>
#include <linux/jiffies.h>
#include <linux/cpumask.h>
#include <linux/reboot.h>
#endif
/*debug information*/
static int rtc_show_time;
static int rtc_show_alarm = 1;
module_param(rtc_show_time, int, 0644);
module_param(rtc_show_alarm, int, 0644);
static int mtk_rtc_write_trigger(struct mt6397_rtc *rtc);
static u16 rtc_pwron_reg[RTC_OFFSET_COUNT][3] = {
{RTC_PWRON_SEC, RTC_PWRON_SEC_MASK, RTC_PWRON_SEC_SHIFT},
{RTC_PWRON_MIN, RTC_PWRON_MIN_MASK, RTC_PWRON_MIN_SHIFT},
{RTC_PWRON_HOU, RTC_PWRON_HOU_MASK, RTC_PWRON_HOU_SHIFT},
{RTC_PWRON_DOM, RTC_PWRON_DOM_MASK, RTC_PWRON_DOM_SHIFT},
{0, 0, 0},
{RTC_PWRON_MTH, RTC_PWRON_MTH_MASK, RTC_PWRON_MTH_SHIFT},
{RTC_PWRON_YEA, RTC_PWRON_YEA_MASK, RTC_PWRON_YEA_SHIFT},
};
static const struct reg_field mtk_rtc_spare_reg_fields[SPARE_RG_MAX] = {
[SPARE_AL_HOU] = REG_FIELD(RTC_AL_HOU, 8, 15),
[SPARE_AL_MTH] = REG_FIELD(RTC_AL_MTH, 8, 15),
[SPARE_SPAR0] = REG_FIELD(RTC_SPAR0, 0, 7),
#ifdef SUPPORT_PWR_OFF_ALARM
[SPARE_KPOC] = REG_FIELD(RTC_PDN1, 14, 14),
#endif
};
#ifdef SUPPORT_EOSC_CALI
static const struct reg_field mt6359_cali_reg_fields[CALI_FILED_MAX] = {
[RTC_EOSC32_CK_PDN] = REG_FIELD(MT6359P_SCK_TOP_CKPDN_CON0, 2, 2),
[EOSC_CALI_TD] = REG_FIELD(MT6359P_RTC_AL_DOW, 5, 7),
[RTC_K_EOSC_RSV] = REG_FIELD(MT6359P_RTC_AL_YEA, 8, 10),
};
static int rtc_eosc_cali_td;
module_param(rtc_eosc_cali_td, int, 0644);
static void mtk_rtc_enable_k_eosc(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
u32 td;
if (!rtc->cali_is_supported)
return;
/* Truning on eosc cali mode clock */
regmap_field_write(rtc->cali[RTC_EOSC32_CK_PDN], 0);
if (rtc_eosc_cali_td) {
dev_notice(dev, "%s: rtc_eosc_cali_td = %d\n",
__func__, rtc_eosc_cali_td);
switch (rtc_eosc_cali_td) {
case 1:
td = EOSC_CALI_TD_01_SEC;
break;
case 2:
td = EOSC_CALI_TD_02_SEC;
break;
case 4:
td = EOSC_CALI_TD_04_SEC;
break;
case 16:
td = EOSC_CALI_TD_16_SEC;
break;
default:
td = EOSC_CALI_TD_08_SEC;
break;
}
regmap_field_write(rtc->cali[EOSC_CALI_TD], td);
}
if (rtc->data->eosc_cali_version == EOSC_CALI_MT6359P_SERIES)
regmap_field_write(rtc->cali[RTC_K_EOSC_RSV], EOSC_SOL_2);
mtk_rtc_write_trigger(rtc);
}
static int mtk_rtc_config_eosc_cali(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int i;
for (i = 0; i < CALI_FILED_MAX; i++) {
rtc->cali[i] = devm_regmap_field_alloc(dev, rtc->regmap,
rtc->data->cali_reg_fields[i]);
if (IS_ERR(rtc->cali[i])) {
dev_err(rtc->rtc_dev->dev.parent,
"cali regmap field[%d] err= %ld\n",
i, PTR_ERR(rtc->cali[i]));
return PTR_ERR(rtc->cali[i]);
}
}
rtc->cali_is_supported = true;
return 0;
}
#endif
#ifdef SUPPORT_PWR_OFF_ALARM
static u32 bootmode = NORMAL_BOOT;
static struct wakeup_source *mt6397_rtc_suspend_lock;
static bool rtc_pm_notifier_registered;
static bool kpoc_alarm;
static unsigned long rtc_pm_status;
#if IS_ENABLED(CONFIG_PM)
#define PM_DUMMY 0xFFFF
static int rtc_pm_event(struct notifier_block *notifier, unsigned long pm_event,
void *unused)
{
struct mt6397_rtc *rtc = container_of(notifier,
struct mt6397_rtc, pm_nb);
dev_notice(rtc->rtc_dev->dev.parent, "%s = %lu\n", __func__, pm_event);
switch (pm_event) {
case PM_SUSPEND_PREPARE:
rtc_pm_status = PM_SUSPEND_PREPARE;
return NOTIFY_DONE;
case PM_POST_SUSPEND:
rtc_pm_status = PM_POST_SUSPEND;
break;
default:
rtc_pm_status = PM_DUMMY;
break;
}
if (kpoc_alarm) {
dev_notice(rtc->rtc_dev->dev.parent,
"%s trigger reboot\n", __func__);
complete(&rtc->comp);
kpoc_alarm = false;
}
return NOTIFY_DONE;
}
#endif /* CONFIG_PM */
static void rtc_mark_kpoc(struct mt6397_rtc *rtc)
{
mutex_lock(&rtc->lock);
regmap_field_write(rtc->spare[SPARE_KPOC], 1);
mtk_rtc_write_trigger(rtc);
mutex_unlock(&rtc->lock);
}
static void mtk_rtc_work_queue(struct work_struct *work)
{
struct mt6397_rtc *rtc = container_of(work, struct mt6397_rtc, work);
unsigned long ret;
unsigned int msecs;
ret = wait_for_completion_timeout(&rtc->comp, msecs_to_jiffies(30000));
if (!ret) {
dev_notice(rtc->rtc_dev->dev.parent, "%s timeout\n", __func__);
BUG_ON(1);
} else {
msecs = jiffies_to_msecs(ret);
dev_notice(rtc->rtc_dev->dev.parent,
"%s timeleft= %d\n", __func__, msecs);
rtc_mark_kpoc(rtc);
kernel_restart("kpoc");
}
}
static void mtk_rtc_reboot(struct mt6397_rtc *rtc)
{
__pm_stay_awake(mt6397_rtc_suspend_lock);
init_completion(&rtc->comp);
schedule_work_on(cpumask_first(cpu_online_mask), &rtc->work);
if (!rtc_pm_notifier_registered)
goto reboot;
if (rtc_pm_status != PM_SUSPEND_PREPARE)
goto reboot;
kpoc_alarm = true;
dev_notice(rtc->rtc_dev->dev.parent, "%s:wait\n", __func__);
return;
reboot:
dev_notice(rtc->rtc_dev->dev.parent, "%s:trigger\n", __func__);
complete(&rtc->comp);
}
static void mtk_rtc_update_pwron_alarm_flag(struct mt6397_rtc *rtc)
{
int ret;
dev_notice(rtc->rtc_dev->dev.parent, "%s\n", __func__);
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN1,
RTC_PDN1_PWRON_TIME, 0);
if (ret < 0)
goto exit;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN2,
RTC_PDN2_PWRON_ALARM, RTC_PDN2_PWRON_ALARM);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
return;
exit:
dev_err(rtc->rtc_dev->dev.parent, "%s error\n", __func__);
}
static int mtk_rtc_restore_alarm(struct mt6397_rtc *rtc, struct rtc_time *tm)
{
int ret;
u16 data[RTC_OFFSET_COUNT] = { 0 };
ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
data[RTC_OFFSET_SEC] = ((data[RTC_OFFSET_SEC] & ~(RTC_AL_SEC_MASK)) |
(tm->tm_sec & RTC_AL_SEC_MASK));
data[RTC_OFFSET_MIN] = ((data[RTC_OFFSET_MIN] & ~(RTC_AL_MIN_MASK)) |
(tm->tm_min & RTC_AL_MIN_MASK));
data[RTC_OFFSET_HOUR] = ((data[RTC_OFFSET_HOUR] & ~(RTC_AL_HOU_MASK)) |
(tm->tm_hour & RTC_AL_HOU_MASK));
data[RTC_OFFSET_DOM] = ((data[RTC_OFFSET_DOM] & ~(RTC_AL_DOM_MASK)) |
(tm->tm_mday & RTC_AL_DOM_MASK));
data[RTC_OFFSET_MTH] = ((data[RTC_OFFSET_MTH] & ~(RTC_AL_MTH_MASK)) |
(tm->tm_mon & RTC_AL_MTH_MASK));
data[RTC_OFFSET_YEAR] = ((data[RTC_OFFSET_YEAR] & ~(RTC_AL_YEA_MASK)) |
(tm->tm_year & RTC_AL_YEA_MASK));
dev_notice(rtc->rtc_dev->dev.parent,
"restore al time = %04d/%02d/%02d %02d:%02d:%02d\n",
tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
ret = regmap_bulk_write(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_AL_MASK,
RTC_AL_MASK_DOW);
if (ret < 0)
goto exit;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN,
RTC_IRQ_EN_ONESHOT_AL,
RTC_IRQ_EN_ONESHOT_AL);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
return ret;
exit:
dev_err(rtc->rtc_dev->dev.parent, "%s error\n", __func__);
return ret;
}
bool mtk_rtc_is_pwron_alarm(struct mt6397_rtc *rtc,
struct rtc_time *nowtm, struct rtc_time *tm)
{
u32 pdn1 = 0, spar1 = 0, pdn2 = 0, spar0 = 0;
int ret, sec = 0;
u16 data[RTC_OFFSET_COUNT] = { 0 };
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_PDN1, &pdn1);
if (ret < 0)
goto exit;
dev_notice(rtc->rtc_dev->dev.parent, "pdn1 = 0x%x\n", pdn1);
if (pdn1 & RTC_PDN1_PWRON_TIME) {/* power-on time is available */
/*get current rtc time*/
do {
ret = regmap_bulk_read(rtc->regmap,
rtc->addr_base + RTC_TC_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
nowtm->tm_sec = data[RTC_OFFSET_SEC] & RTC_TC_SEC_MASK;
nowtm->tm_min = data[RTC_OFFSET_MIN] & RTC_TC_MIN_MASK;
nowtm->tm_hour =
data[RTC_OFFSET_HOUR] & RTC_TC_HOU_MASK;
nowtm->tm_mday = data[RTC_OFFSET_DOM] & RTC_TC_DOM_MASK;
nowtm->tm_mon = data[RTC_OFFSET_MTH] & RTC_TC_MTH_MASK;
nowtm->tm_year =
data[RTC_OFFSET_YEAR] & RTC_TC_YEA_MASK;
ret = regmap_read(rtc->regmap,
rtc->addr_base + RTC_TC_SEC, &sec);
if (ret < 0)
goto exit;
sec &= RTC_TC_SEC_MASK;
} while (sec < nowtm->tm_sec);
dev_notice(rtc->rtc_dev->dev.parent,
"get now time = %04d/%02d/%02d %02d:%02d:%02d\n",
nowtm->tm_year + RTC_MIN_YEAR, nowtm->tm_mon,
nowtm->tm_mday, nowtm->tm_hour,
nowtm->tm_min, nowtm->tm_sec);
/*get power on time from SPARE */
ret = regmap_read(rtc->regmap,
rtc->addr_base + RTC_SPAR0, &spar0);
if (ret < 0)
goto exit;
ret = regmap_read(rtc->regmap,
rtc->addr_base + RTC_SPAR1, &spar1);
if (ret < 0)
goto exit;
ret = regmap_read(rtc->regmap,
rtc->addr_base + RTC_PDN2, &pdn2);
if (ret < 0)
goto exit;
dev_notice(rtc->rtc_dev->dev.parent,
"spar0=0x%x, spar1=0x%x, pdn2=0x%x\n",
spar0, spar1, pdn2);
tm->tm_sec =
(spar0 & RTC_PWRON_SEC_MASK) >> RTC_PWRON_SEC_SHIFT;
tm->tm_min =
(spar1 & RTC_PWRON_MIN_MASK) >> RTC_PWRON_MIN_SHIFT;
tm->tm_hour =
(spar1 & RTC_PWRON_HOU_MASK) >> RTC_PWRON_HOU_SHIFT;
tm->tm_mday =
(spar1 & RTC_PWRON_DOM_MASK) >> RTC_PWRON_DOM_SHIFT;
tm->tm_mon =
(pdn2 & RTC_PWRON_MTH_MASK) >> RTC_PWRON_MTH_SHIFT;
tm->tm_year =
(pdn2 & RTC_PWRON_YEA_MASK) >> RTC_PWRON_YEA_SHIFT;
dev_notice(rtc->rtc_dev->dev.parent,
"get pwron time = %04d/%02d/%02d %02d:%02d:%02d\n",
tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
return true;
}
return false;
exit:
dev_err(rtc->rtc_dev->dev.parent, "%s error\n", __func__);
return false;
}
#endif
static int mtk_rtc_write_trigger(struct mt6397_rtc *rtc)
{
int ret;
u32 data;
ret = regmap_write(rtc->regmap, rtc->addr_base + rtc->data->wrtgr, 1);
if (ret < 0)
return ret;
ret = regmap_read_poll_timeout(rtc->regmap,
rtc->addr_base + RTC_BBPU, data,
!(data & RTC_BBPU_CBUSY),
MTK_RTC_POLL_DELAY_US,
MTK_RTC_POLL_TIMEOUT);
if (ret < 0)
dev_err(rtc->rtc_dev->dev.parent,
"failed to write WRTGR: %d\n", ret);
return ret;
}
static int rtc_nvram_read(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct mt6397_rtc *rtc = dev_get_drvdata(priv);
unsigned int ival;
int ret;
u8 *buf = val;
mutex_lock(&rtc->lock);
for (; bytes; bytes--) {
ret = regmap_field_read(rtc->spare[offset++], &ival);
if (ret)
goto out;
*buf++ = (u8)ival;
}
out:
mutex_unlock(&rtc->lock);
return ret;
}
static int rtc_nvram_write(void *priv, unsigned int offset, void *val,
size_t bytes)
{
struct mt6397_rtc *rtc = dev_get_drvdata(priv);
unsigned int ival;
int ret;
u8 *buf = val;
mutex_lock(&rtc->lock);
for (; bytes; bytes--) {
ival = *buf++;
ret = regmap_field_write(rtc->spare[offset++], ival);
if (ret)
goto out;
}
mtk_rtc_write_trigger(rtc);
out:
mutex_unlock(&rtc->lock);
return ret;
}
static void mtk_rtc_reset_bbpu_alarm_status(struct mt6397_rtc *rtc)
{
u32 bbpu;
int ret;
bbpu = RTC_BBPU_KEY | RTC_BBPU_PWREN | RTC_BBPU_RESET_AL;
ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_BBPU, bbpu);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
return;
exit:
dev_err(rtc->rtc_dev->dev.parent, "%s error\n", __func__);
}
#ifndef USER_BUILD_KERNEL
void mtk_rtc_lp_exception(struct mt6397_rtc *rtc)
{
u32 bbpu = 0, irqsta = 0, irqen = 0, osc32 = 0;
u32 pwrkey1 = 0, pwrkey2 = 0, prot = 0, con = 0, sec1 = 0, sec2 = 0;
regmap_read(rtc->regmap,
rtc->addr_base + RTC_BBPU, &bbpu);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_IRQ_STA, &irqsta);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN, &irqen);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_OSC32CON, &osc32);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_POWERKEY1, &pwrkey1);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_POWERKEY2, &pwrkey2);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_PROT, &prot);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_CON, &con);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_TC_SEC, &sec1);
mdelay(2000);
regmap_read(rtc->regmap,
rtc->addr_base + RTC_TC_SEC, &sec2);
dev_emerg(rtc->rtc_dev->dev.parent, "!!! 32K WAS STOPPED !!!\n"
"RTC_BBPU = 0x%x\n"
"RTC_IRQ_STA = 0x%x\n"
"RTC_IRQ_EN = 0x%x\n"
"RTC_OSC32CON = 0x%x\n"
"RTC_POWERKEY1 = 0x%x\n"
"RTC_POWERKEY2 = 0x%x\n"
"RTC_PROT = 0x%x\n"
"RTC_CON = 0x%x\n"
"RTC_TC_SEC = %02d\n"
"RTC_TC_SEC = %02d\n",
bbpu, irqsta, irqen, osc32, pwrkey1, pwrkey2, prot, con, sec1,
sec2);
}
#endif
static int mtk_rtc_is_alarm_irq(struct mt6397_rtc *rtc)
{
u32 irqsta = 0, bbpu;
int ret;
/* read clear */
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_STA, &irqsta);
if ((ret == 0) && (irqsta & RTC_IRQ_STA_AL)) {
bbpu = RTC_BBPU_KEY | RTC_BBPU_PWREN;
ret = regmap_write(rtc->regmap,
rtc->addr_base + RTC_BBPU, bbpu);
if (ret < 0)
dev_err(rtc->rtc_dev->dev.parent,
"%s error\n", __func__);
mtk_rtc_write_trigger(rtc);
return RTC_ALSTA;
}
#ifndef USER_BUILD_KERNEL
if ((ret == 0) && (irqsta & RTC_IRQ_STA_LP))
mtk_rtc_lp_exception(rtc);
#endif
return RTC_NONE;
}
static irqreturn_t mtk_rtc_irq_handler_thread(int irq, void *data)
{
struct mt6397_rtc *rtc = data;
bool pwron_alm = false;
int status = RTC_NONE;
#ifdef SUPPORT_PWR_OFF_ALARM
bool pwron_alarm = false;
struct rtc_time nowtm, tm;
#endif
mutex_lock(&rtc->lock);
status = mtk_rtc_is_alarm_irq(rtc);
dev_notice(rtc->rtc_dev->dev.parent, "%s:%d\n", __func__, status);
if (status == RTC_NONE) {
mutex_unlock(&rtc->lock);
return IRQ_NONE;
}
if (status == RTC_LPSTA) {
mutex_unlock(&rtc->lock);
return IRQ_HANDLED;
}
mtk_rtc_reset_bbpu_alarm_status(rtc);
#ifdef SUPPORT_PWR_OFF_ALARM
pwron_alarm = mtk_rtc_is_pwron_alarm(rtc, &nowtm, &tm);
nowtm.tm_year += RTC_MIN_YEAR;
tm.tm_year += RTC_MIN_YEAR;
if (pwron_alarm) {
time64_t now_time, time;
now_time =
mktime64(nowtm.tm_year, nowtm.tm_mon, nowtm.tm_mday,
nowtm.tm_hour, nowtm.tm_min, nowtm.tm_sec);
if (now_time == -1) {
mutex_unlock(&rtc->lock);
goto out;
}
time =
mktime64(tm.tm_year, tm.tm_mon, tm.tm_mday, tm.tm_hour,
tm.tm_min, tm.tm_sec);
if (time == -1) {
mutex_unlock(&rtc->lock);
goto out;
}
/* power on */
if (now_time >= time - 1 && now_time <= time + 4) {
if (bootmode == KERNEL_POWER_OFF_CHARGING_BOOT ||
bootmode == LOW_POWER_OFF_CHARGING_BOOT) {
mtk_rtc_reboot(rtc);
mutex_unlock(&rtc->lock);
disable_irq_nosync(rtc->irq);
goto out;
} else {
mtk_rtc_update_pwron_alarm_flag(rtc);
pwron_alm = true;
}
} else if (now_time < time) { /* set power-on alarm */
time -= 1;
rtc_time64_to_tm(time, &tm);
tm.tm_year -= RTC_MIN_YEAR_OFFSET;
tm.tm_mon += 1;
mtk_rtc_restore_alarm(rtc, &tm);
}
}
#endif
mutex_unlock(&rtc->lock);
out:
if (rtc->rtc_dev != NULL)
rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
if (rtc_show_alarm)
dev_notice(rtc->rtc_dev->dev.parent, "%s time is up\n",
pwron_alm ? "power-on" : "alarm");
return IRQ_HANDLED;
}
static int __mtk_rtc_read_time(struct mt6397_rtc *rtc,
struct rtc_time *tm, int *sec)
{
int ret;
u16 data[RTC_OFFSET_COUNT] = { 0 };
mutex_lock(&rtc->lock);
ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
tm->tm_sec = data[RTC_OFFSET_SEC] & RTC_TC_SEC_MASK;
tm->tm_min = data[RTC_OFFSET_MIN] & RTC_TC_MIN_MASK;
tm->tm_hour = data[RTC_OFFSET_HOUR] & RTC_TC_HOU_MASK;
tm->tm_mday = data[RTC_OFFSET_DOM] & RTC_TC_DOM_MASK;
tm->tm_mon = data[RTC_OFFSET_MTH] & RTC_TC_MTH_MASK;
tm->tm_year = data[RTC_OFFSET_YEAR] & RTC_TC_YEA_MASK;
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_TC_SEC, sec);
*sec &= RTC_TC_SEC_MASK;
exit:
mutex_unlock(&rtc->lock);
return ret;
}
static void mtk_rtc_set_pwron_time(struct mt6397_rtc *rtc, struct rtc_time *tm)
{
u32 data[RTC_OFFSET_COUNT];
int ret, i;
data[RTC_OFFSET_SEC] =
((tm->tm_sec << RTC_PWRON_SEC_SHIFT) & RTC_PWRON_SEC_MASK);
data[RTC_OFFSET_MIN] =
((tm->tm_min << RTC_PWRON_MIN_SHIFT) & RTC_PWRON_MIN_MASK);
data[RTC_OFFSET_HOUR] =
((tm->tm_hour << RTC_PWRON_HOU_SHIFT) & RTC_PWRON_HOU_MASK);
data[RTC_OFFSET_DOM] =
((tm->tm_mday << RTC_PWRON_DOM_SHIFT) & RTC_PWRON_DOM_MASK);
data[RTC_OFFSET_MTH] =
((tm->tm_mon << RTC_PWRON_MTH_SHIFT) & RTC_PWRON_MTH_MASK);
data[RTC_OFFSET_YEAR] =
((tm->tm_year << RTC_PWRON_YEA_SHIFT) & RTC_PWRON_YEA_MASK);
for (i = RTC_OFFSET_SEC; i < RTC_OFFSET_COUNT; i++) {
if (i == RTC_OFFSET_DOW)
continue;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + rtc_pwron_reg[i][RTC_REG],
rtc_pwron_reg[i][RTC_MASK], data[i]);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
}
return;
exit:
dev_err(rtc->rtc_dev->dev.parent, "%s error\n", __func__);
}
void mtk_rtc_save_pwron_time(struct mt6397_rtc *rtc,
bool enable, struct rtc_time *tm)
{
u32 pdn1 = 0;
int ret;
/* set power on time */
mtk_rtc_set_pwron_time(rtc, tm);
/* update power on alarm related flags */
if (enable)
pdn1 = RTC_PDN1_PWRON_TIME;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN1,
RTC_PDN1_PWRON_TIME, pdn1);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
return;
exit:
dev_err(rtc->rtc_dev->dev.parent, "%s error\n", __func__);
}
static int mtk_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
time64_t time;
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int days, sec, ret;
unsigned long long timeout = sched_clock() + 500000000;
do {
ret = __mtk_rtc_read_time(rtc, tm, &sec);
if (ret < 0)
goto exit;
if (sched_clock() > timeout) {
pr_notice("%s, time out\n", __func__);
break;
}
} while (sec < tm->tm_sec);
/* HW register use 7 bits to store year data, minus
* RTC_MIN_YEAR_OFFSET before write year data to register, and plus
* RTC_MIN_YEAR_OFFSET back after read year from register
*/
tm->tm_year += RTC_MIN_YEAR_OFFSET;
/* HW register start mon from one, but tm_mon start from zero. */
tm->tm_mon--;
time = rtc_tm_to_time64(tm);
/* rtc_tm_to_time64 covert Gregorian date to seconds since
* 01-01-1970 00:00:00, and this date is Thursday.
*/
days = div_s64(time, 86400);
tm->tm_wday = (days + 4) % 7;
if (rtc_show_time) {
dev_notice(rtc->rtc_dev->dev.parent,
"read tc time = %04d/%02d/%02d (%d) %02d:%02d:%02d\n",
tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1,
tm->tm_mday, tm->tm_wday, tm->tm_hour,
tm->tm_min, tm->tm_sec);
}
exit:
return ret;
}
static int mtk_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u16 data[RTC_OFFSET_COUNT];
dev_notice(rtc->rtc_dev->dev.parent,
"set tc time = %04d/%02d/%02d %02d:%02d:%02d\n",
tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec);
tm->tm_year -= RTC_MIN_YEAR_OFFSET;
tm->tm_mon++;
data[RTC_OFFSET_SEC] = tm->tm_sec;
data[RTC_OFFSET_MIN] = tm->tm_min;
data[RTC_OFFSET_HOUR] = tm->tm_hour;
data[RTC_OFFSET_DOM] = tm->tm_mday;
data[RTC_OFFSET_MTH] = tm->tm_mon;
data[RTC_OFFSET_YEAR] = tm->tm_year;
mutex_lock(&rtc->lock);
ret = regmap_bulk_write(rtc->regmap, rtc->addr_base + RTC_TC_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
/* Time register write to hardware after call trigger function */
ret = mtk_rtc_write_trigger(rtc);
exit:
mutex_unlock(&rtc->lock);
return ret;
}
static int mtk_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct rtc_time *tm = &alm->time;
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
u32 irqen = 0, pdn2 = 0;
int ret;
u16 data[RTC_OFFSET_COUNT] = { 0 };
mutex_lock(&rtc->lock);
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_IRQ_EN, &irqen);
if (ret < 0)
goto err_exit;
ret = regmap_read(rtc->regmap, rtc->addr_base + RTC_PDN2, &pdn2);
if (ret < 0)
goto err_exit;
ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto err_exit;
alm->enabled = !!(irqen & RTC_IRQ_EN_AL);
alm->pending = !!(pdn2 & RTC_PDN2_PWRON_ALARM);
mutex_unlock(&rtc->lock);
tm->tm_sec = data[RTC_OFFSET_SEC] & RTC_AL_SEC_MASK;
tm->tm_min = data[RTC_OFFSET_MIN] & RTC_AL_MIN_MASK;
tm->tm_hour = data[RTC_OFFSET_HOUR] & RTC_AL_HOU_MASK;
tm->tm_mday = data[RTC_OFFSET_DOM] & RTC_AL_DOM_MASK;
tm->tm_mon = data[RTC_OFFSET_MTH] & RTC_AL_MTH_MASK;
tm->tm_year = data[RTC_OFFSET_YEAR] & RTC_AL_YEA_MASK;
tm->tm_year += RTC_MIN_YEAR_OFFSET;
tm->tm_mon--;
dev_notice(rtc->rtc_dev->dev.parent,
"read al time = %04d/%02d/%02d %02d:%02d:%02d (%d)\n",
tm->tm_year + RTC_BASE_YEAR, tm->tm_mon + 1, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, alm->enabled);
return 0;
err_exit:
mutex_unlock(&rtc->lock);
return ret;
}
static int mtk_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct rtc_time *tm = &alm->time;
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
int ret;
u16 data[RTC_OFFSET_COUNT];
ktime_t target;
if (alm->enabled == 1) {
/* Add one more second to postpone wake time. */
target = rtc_tm_to_ktime(*tm);
target = ktime_add_ns(target, NSEC_PER_SEC);
*tm = rtc_ktime_to_tm(target);
}
tm->tm_year -= RTC_MIN_YEAR_OFFSET;
tm->tm_mon++;
dev_notice(rtc->rtc_dev->dev.parent,
"set al time = %04d/%02d/%02d %02d:%02d:%02d (%d)\n",
tm->tm_year + RTC_MIN_YEAR, tm->tm_mon, tm->tm_mday,
tm->tm_hour, tm->tm_min, tm->tm_sec, alm->enabled);
mutex_lock(&rtc->lock);
switch (alm->enabled) {
case 3:
/* enable power-on alarm with logo */
mtk_rtc_save_pwron_time(rtc, true, tm);
break;
case 4:
/* disable power-on alarm */
mtk_rtc_save_pwron_time(rtc, false, tm);
break;
default:
break;
}
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_PDN2, RTC_PDN2_PWRON_ALARM, 0);
if (ret < 0)
goto exit;
mtk_rtc_write_trigger(rtc);
ret = regmap_bulk_read(rtc->regmap, rtc->addr_base + RTC_AL_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
data[RTC_OFFSET_SEC] = ((data[RTC_OFFSET_SEC] & ~(RTC_AL_SEC_MASK)) |
(tm->tm_sec & RTC_AL_SEC_MASK));
data[RTC_OFFSET_MIN] = ((data[RTC_OFFSET_MIN] & ~(RTC_AL_MIN_MASK)) |
(tm->tm_min & RTC_AL_MIN_MASK));
data[RTC_OFFSET_HOUR] = ((data[RTC_OFFSET_HOUR] & ~(RTC_AL_HOU_MASK)) |
(tm->tm_hour & RTC_AL_HOU_MASK));
data[RTC_OFFSET_DOM] = ((data[RTC_OFFSET_DOM] & ~(RTC_AL_DOM_MASK)) |
(tm->tm_mday & RTC_AL_DOM_MASK));
data[RTC_OFFSET_MTH] = ((data[RTC_OFFSET_MTH] & ~(RTC_AL_MTH_MASK)) |
(tm->tm_mon & RTC_AL_MTH_MASK));
data[RTC_OFFSET_YEAR] = ((data[RTC_OFFSET_YEAR] & ~(RTC_AL_YEA_MASK)) |
(tm->tm_year & RTC_AL_YEA_MASK));
if (alm->enabled) {
ret = regmap_bulk_write(rtc->regmap,
rtc->addr_base + RTC_AL_SEC,
data, RTC_OFFSET_COUNT);
if (ret < 0)
goto exit;
ret = regmap_write(rtc->regmap, rtc->addr_base + RTC_AL_MASK,
RTC_AL_MASK_DOW);
if (ret < 0)
goto exit;
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN,
RTC_IRQ_EN_ONESHOT_AL,
RTC_IRQ_EN_ONESHOT_AL);
if (ret < 0)
goto exit;
} else {
ret = regmap_update_bits(rtc->regmap,
rtc->addr_base + RTC_IRQ_EN,
RTC_IRQ_EN_ONESHOT_AL, 0);
if (ret < 0)
goto exit;
}
/* All alarm time register write to hardware after calling
* mtk_rtc_write_trigger. This can avoid race condition if alarm
* occur happen during writing alarm time register.
*/
ret = mtk_rtc_write_trigger(rtc);
exit:
mutex_unlock(&rtc->lock);
return ret;
}
int alarm_set_power_on(struct device *dev, struct rtc_wkalrm *alm)
{
int err = 0;
struct rtc_time tm;
time64_t now, scheduled;
err = rtc_valid_tm(&alm->time);
if (err != 0)
return err;
scheduled = rtc_tm_to_time64(&alm->time);
err = mtk_rtc_read_time(dev, &tm);
if (err != 0)
return err;
now = rtc_tm_to_time64(&tm);
if (scheduled <= now)
alm->enabled = 4;
else
alm->enabled = 3;
mtk_rtc_set_alarm(dev, alm);
return err;
}
static int mtk_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
{
void __user *uarg = (void __user *) arg;
int err = 0;
struct rtc_wkalrm alm;
switch (cmd) {
case RTC_POFF_ALM_SET:
if (copy_from_user(&alm.time, uarg, sizeof(alm.time)))
return -EFAULT;
err = alarm_set_power_on(dev, &alm);
break;
default:
err = -EINVAL;
break;
}
return err;
}
static const struct rtc_class_ops mtk_rtc_ops = {
.ioctl = mtk_rtc_ioctl,
.read_time = mtk_rtc_read_time,
.set_time = mtk_rtc_set_time,
.read_alarm = mtk_rtc_read_alarm,
.set_alarm = mtk_rtc_set_alarm,
};
static int mtk_rtc_set_spare(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
struct reg_field tmp[SPARE_RG_MAX];
int i, ret;
struct nvmem_config nvmem_cfg = {
.name = "mtk_rtc_nvmem",
.word_size = SPARE_REG_WIDTH,
.stride = 1,
.size = SPARE_RG_MAX * SPARE_REG_WIDTH,
.reg_read = rtc_nvram_read,
.reg_write = rtc_nvram_write,
.priv = dev,
};
memcpy(tmp, rtc->data->spare_reg_fields, sizeof(tmp));
for (i = 0; i < SPARE_RG_MAX; i++) {
tmp[i].reg += rtc->addr_base;
rtc->spare[i] = devm_regmap_field_alloc(rtc->rtc_dev->dev.parent,
rtc->regmap,
tmp[i]);
if (IS_ERR(rtc->spare[i])) {
dev_err(rtc->rtc_dev->dev.parent,
"spare regmap field[%d] err= %ld\n",
i, PTR_ERR(rtc->spare[i]));
return PTR_ERR(rtc->spare[i]);
}
}
ret = rtc_nvmem_register(rtc->rtc_dev, &nvmem_cfg);
if (ret)
dev_err(rtc->rtc_dev->dev.parent, "nvmem register failed\n");
return ret;
}
static int mtk_rtc_probe(struct platform_device *pdev)
{
struct resource *res;
struct mt6397_chip *mt6397_chip = dev_get_drvdata(pdev->dev.parent);
struct mt6397_rtc *rtc;
int ret;
#ifdef SUPPORT_PWR_OFF_ALARM
struct device_node *of_chosen = NULL;
struct tag_bootmode *tag = NULL;
#endif
rtc = devm_kzalloc(&pdev->dev, sizeof(struct mt6397_rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -EINVAL;
rtc->addr_base = res->start;
rtc->data = of_device_get_match_data(&pdev->dev);
rtc->irq = platform_get_irq(pdev, 0);
if (rtc->irq < 0)
return rtc->irq;
rtc->regmap = mt6397_chip->regmap;
mutex_init(&rtc->lock);
platform_set_drvdata(pdev, rtc);
rtc->rtc_dev = devm_rtc_allocate_device(&pdev->dev);
if (IS_ERR(rtc->rtc_dev))
return PTR_ERR(rtc->rtc_dev);
#ifdef SUPPORT_PWR_OFF_ALARM
mt6397_rtc_suspend_lock =
wakeup_source_register(NULL, "mt6397-rtc suspend wakelock");
of_chosen = of_find_node_by_path("/chosen");
if (!of_chosen)
of_chosen = of_find_node_by_path("/chosen@0");
if (of_chosen) {
tag = (struct tag_bootmode *)of_get_property(
of_chosen, "atag,boot", NULL);
if (!tag)
dev_err(&pdev->dev,
"%s: failed to get atag,boot\n", __func__);
else {
dev_notice(&pdev->dev,
"%s, bootmode:%d\n", __func__, tag->bootmode);
bootmode = tag->bootmode;
}
} else
dev_err(&pdev->dev,
"%s: failed to get /chosen and /chosen@0\n", __func__);
#if IS_ENABLED(CONFIG_PM)
rtc->pm_nb.notifier_call = rtc_pm_event;
rtc->pm_nb.priority = 0;
if (register_pm_notifier(&rtc->pm_nb))
dev_err(&pdev->dev, "rtc pm faile\n");
else
rtc_pm_notifier_registered = true;
#endif /* CONFIG_PM */
INIT_WORK(&rtc->work, mtk_rtc_work_queue);
#endif
ret = devm_request_threaded_irq(&pdev->dev, rtc->irq, NULL,
mtk_rtc_irq_handler_thread,
IRQF_ONESHOT | IRQF_TRIGGER_HIGH,
"mt6397-rtc", rtc);
if (ret) {
dev_err(&pdev->dev, "Failed to request alarm IRQ: %d: %d\n",
rtc->irq, ret);
return ret;
}
device_init_wakeup(&pdev->dev, 1);
rtc->rtc_dev->ops = &mtk_rtc_ops;
if (rtc->data->spare_reg_fields)
if (mtk_rtc_set_spare(&pdev->dev))
dev_err(&pdev->dev, "spare is not supported\n");
#ifdef SUPPORT_EOSC_CALI
if (rtc->data->cali_reg_fields)
if (mtk_rtc_config_eosc_cali(&pdev->dev))
dev_err(&pdev->dev, "config eosc cali failed\n");
#endif
return rtc_register_device(rtc->rtc_dev);
}
static void mtk_rtc_shutdown(struct platform_device *pdev)
{
#ifdef SUPPORT_EOSC_CALI
mtk_rtc_enable_k_eosc(&pdev->dev);
#endif
}
#if IS_ENABLED(CONFIG_PM_SLEEP)
static int mt6397_rtc_suspend(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(rtc->irq);
return 0;
}
static int mt6397_rtc_resume(struct device *dev)
{
struct mt6397_rtc *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(rtc->irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(mt6397_pm_ops, mt6397_rtc_suspend,
mt6397_rtc_resume);
static const struct mtk_rtc_data mt6358_rtc_data = {
.wrtgr = RTC_WRTGR_MT6358,
.spare_reg_fields = mtk_rtc_spare_reg_fields,
};
static const struct mtk_rtc_data mt6397_rtc_data = {
.wrtgr = RTC_WRTGR_MT6397,
};
static const struct mtk_rtc_data mt6359p_rtc_data = {
.wrtgr = RTC_WRTGR_MT6358,
.spare_reg_fields = mtk_rtc_spare_reg_fields,
#ifdef SUPPORT_EOSC_CALI
.cali_reg_fields = mt6359_cali_reg_fields,
.eosc_cali_version = EOSC_CALI_MT6359P_SERIES,
#endif
};
static const struct of_device_id mt6397_rtc_of_match[] = {
{ .compatible = "mediatek,mt6323-rtc", .data = &mt6397_rtc_data },
{ .compatible = "mediatek,mt6358-rtc", .data = &mt6358_rtc_data },
{ .compatible = "mediatek,mt6359p-rtc", .data = &mt6359p_rtc_data },
{ .compatible = "mediatek,mt6397-rtc", .data = &mt6397_rtc_data },
{ }
};
MODULE_DEVICE_TABLE(of, mt6397_rtc_of_match);
static struct platform_driver mtk_rtc_driver = {
.driver = {
.name = "mt6397-rtc",
.of_match_table = mt6397_rtc_of_match,
.pm = &mt6397_pm_ops,
},
.probe = mtk_rtc_probe,
.shutdown = mtk_rtc_shutdown,
};
module_platform_driver(mtk_rtc_driver);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Tianping Fang <tianping.fang@mediatek.com>");
MODULE_DESCRIPTION("RTC Driver for MediaTek MT6397 PMIC");