1
0
mirror of https://github.com/physwizz/a155-U-u1.git synced 2024-11-19 13:27:49 +00:00
a155-U-u1/kernel-5.10/drivers/net/ethernet/qlogic/qed/qed_dev.c
2024-03-11 06:53:12 +11:00

5334 lines
140 KiB
C

// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause)
/* QLogic qed NIC Driver
* Copyright (c) 2015-2017 QLogic Corporation
* Copyright (c) 2019-2020 Marvell International Ltd.
*/
#include <linux/types.h>
#include <asm/byteorder.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/vmalloc.h>
#include <linux/etherdevice.h>
#include <linux/qed/qed_chain.h>
#include <linux/qed/qed_if.h>
#include "qed.h"
#include "qed_cxt.h"
#include "qed_dcbx.h"
#include "qed_dev_api.h"
#include "qed_fcoe.h"
#include "qed_hsi.h"
#include "qed_hw.h"
#include "qed_init_ops.h"
#include "qed_int.h"
#include "qed_iscsi.h"
#include "qed_ll2.h"
#include "qed_mcp.h"
#include "qed_ooo.h"
#include "qed_reg_addr.h"
#include "qed_sp.h"
#include "qed_sriov.h"
#include "qed_vf.h"
#include "qed_rdma.h"
static DEFINE_SPINLOCK(qm_lock);
/******************** Doorbell Recovery *******************/
/* The doorbell recovery mechanism consists of a list of entries which represent
* doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
* entity needs to register with the mechanism and provide the parameters
* describing it's doorbell, including a location where last used doorbell data
* can be found. The doorbell execute function will traverse the list and
* doorbell all of the registered entries.
*/
struct qed_db_recovery_entry {
struct list_head list_entry;
void __iomem *db_addr;
void *db_data;
enum qed_db_rec_width db_width;
enum qed_db_rec_space db_space;
u8 hwfn_idx;
};
/* Display a single doorbell recovery entry */
static void qed_db_recovery_dp_entry(struct qed_hwfn *p_hwfn,
struct qed_db_recovery_entry *db_entry,
char *action)
{
DP_VERBOSE(p_hwfn,
QED_MSG_SPQ,
"(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
action,
db_entry,
db_entry->db_addr,
db_entry->db_data,
db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
db_entry->db_space == DB_REC_USER ? "user" : "kernel",
db_entry->hwfn_idx);
}
/* Doorbell address sanity (address within doorbell bar range) */
static bool qed_db_rec_sanity(struct qed_dev *cdev,
void __iomem *db_addr,
enum qed_db_rec_width db_width,
void *db_data)
{
u32 width = (db_width == DB_REC_WIDTH_32B) ? 32 : 64;
/* Make sure doorbell address is within the doorbell bar */
if (db_addr < cdev->doorbells ||
(u8 __iomem *)db_addr + width >
(u8 __iomem *)cdev->doorbells + cdev->db_size) {
WARN(true,
"Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
db_addr,
cdev->doorbells,
(u8 __iomem *)cdev->doorbells + cdev->db_size);
return false;
}
/* ake sure doorbell data pointer is not null */
if (!db_data) {
WARN(true, "Illegal doorbell data pointer: %p", db_data);
return false;
}
return true;
}
/* Find hwfn according to the doorbell address */
static struct qed_hwfn *qed_db_rec_find_hwfn(struct qed_dev *cdev,
void __iomem *db_addr)
{
struct qed_hwfn *p_hwfn;
/* In CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
if (cdev->num_hwfns > 1)
p_hwfn = db_addr < cdev->hwfns[1].doorbells ?
&cdev->hwfns[0] : &cdev->hwfns[1];
else
p_hwfn = QED_LEADING_HWFN(cdev);
return p_hwfn;
}
/* Add a new entry to the doorbell recovery mechanism */
int qed_db_recovery_add(struct qed_dev *cdev,
void __iomem *db_addr,
void *db_data,
enum qed_db_rec_width db_width,
enum qed_db_rec_space db_space)
{
struct qed_db_recovery_entry *db_entry;
struct qed_hwfn *p_hwfn;
/* Shortcircuit VFs, for now */
if (IS_VF(cdev)) {
DP_VERBOSE(cdev,
QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
return 0;
}
/* Sanitize doorbell address */
if (!qed_db_rec_sanity(cdev, db_addr, db_width, db_data))
return -EINVAL;
/* Obtain hwfn from doorbell address */
p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
/* Create entry */
db_entry = kzalloc(sizeof(*db_entry), GFP_KERNEL);
if (!db_entry) {
DP_NOTICE(cdev, "Failed to allocate a db recovery entry\n");
return -ENOMEM;
}
/* Populate entry */
db_entry->db_addr = db_addr;
db_entry->db_data = db_data;
db_entry->db_width = db_width;
db_entry->db_space = db_space;
db_entry->hwfn_idx = p_hwfn->my_id;
/* Display */
qed_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
/* Protect the list */
spin_lock_bh(&p_hwfn->db_recovery_info.lock);
list_add_tail(&db_entry->list_entry, &p_hwfn->db_recovery_info.list);
spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
return 0;
}
/* Remove an entry from the doorbell recovery mechanism */
int qed_db_recovery_del(struct qed_dev *cdev,
void __iomem *db_addr, void *db_data)
{
struct qed_db_recovery_entry *db_entry = NULL;
struct qed_hwfn *p_hwfn;
int rc = -EINVAL;
/* Shortcircuit VFs, for now */
if (IS_VF(cdev)) {
DP_VERBOSE(cdev,
QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
return 0;
}
/* Obtain hwfn from doorbell address */
p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
/* Protect the list */
spin_lock_bh(&p_hwfn->db_recovery_info.lock);
list_for_each_entry(db_entry,
&p_hwfn->db_recovery_info.list, list_entry) {
/* search according to db_data addr since db_addr is not unique (roce) */
if (db_entry->db_data == db_data) {
qed_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
list_del(&db_entry->list_entry);
rc = 0;
break;
}
}
spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
if (rc == -EINVAL)
DP_NOTICE(p_hwfn,
"Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
db_data, db_addr);
else
kfree(db_entry);
return rc;
}
/* Initialize the doorbell recovery mechanism */
static int qed_db_recovery_setup(struct qed_hwfn *p_hwfn)
{
DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Setting up db recovery\n");
/* Make sure db_size was set in cdev */
if (!p_hwfn->cdev->db_size) {
DP_ERR(p_hwfn->cdev, "db_size not set\n");
return -EINVAL;
}
INIT_LIST_HEAD(&p_hwfn->db_recovery_info.list);
spin_lock_init(&p_hwfn->db_recovery_info.lock);
p_hwfn->db_recovery_info.db_recovery_counter = 0;
return 0;
}
/* Destroy the doorbell recovery mechanism */
static void qed_db_recovery_teardown(struct qed_hwfn *p_hwfn)
{
struct qed_db_recovery_entry *db_entry = NULL;
DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Tearing down db recovery\n");
if (!list_empty(&p_hwfn->db_recovery_info.list)) {
DP_VERBOSE(p_hwfn,
QED_MSG_SPQ,
"Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
while (!list_empty(&p_hwfn->db_recovery_info.list)) {
db_entry =
list_first_entry(&p_hwfn->db_recovery_info.list,
struct qed_db_recovery_entry,
list_entry);
qed_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
list_del(&db_entry->list_entry);
kfree(db_entry);
}
}
p_hwfn->db_recovery_info.db_recovery_counter = 0;
}
/* Print the content of the doorbell recovery mechanism */
void qed_db_recovery_dp(struct qed_hwfn *p_hwfn)
{
struct qed_db_recovery_entry *db_entry = NULL;
DP_NOTICE(p_hwfn,
"Displaying doorbell recovery database. Counter was %d\n",
p_hwfn->db_recovery_info.db_recovery_counter);
/* Protect the list */
spin_lock_bh(&p_hwfn->db_recovery_info.lock);
list_for_each_entry(db_entry,
&p_hwfn->db_recovery_info.list, list_entry) {
qed_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
}
spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
}
/* Ring the doorbell of a single doorbell recovery entry */
static void qed_db_recovery_ring(struct qed_hwfn *p_hwfn,
struct qed_db_recovery_entry *db_entry)
{
/* Print according to width */
if (db_entry->db_width == DB_REC_WIDTH_32B) {
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
"ringing doorbell address %p data %x\n",
db_entry->db_addr,
*(u32 *)db_entry->db_data);
} else {
DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
"ringing doorbell address %p data %llx\n",
db_entry->db_addr,
*(u64 *)(db_entry->db_data));
}
/* Sanity */
if (!qed_db_rec_sanity(p_hwfn->cdev, db_entry->db_addr,
db_entry->db_width, db_entry->db_data))
return;
/* Flush the write combined buffer. Since there are multiple doorbelling
* entities using the same address, if we don't flush, a transaction
* could be lost.
*/
wmb();
/* Ring the doorbell */
if (db_entry->db_width == DB_REC_WIDTH_32B)
DIRECT_REG_WR(db_entry->db_addr,
*(u32 *)(db_entry->db_data));
else
DIRECT_REG_WR64(db_entry->db_addr,
*(u64 *)(db_entry->db_data));
/* Flush the write combined buffer. Next doorbell may come from a
* different entity to the same address...
*/
wmb();
}
/* Traverse the doorbell recovery entry list and ring all the doorbells */
void qed_db_recovery_execute(struct qed_hwfn *p_hwfn)
{
struct qed_db_recovery_entry *db_entry = NULL;
DP_NOTICE(p_hwfn, "Executing doorbell recovery. Counter was %d\n",
p_hwfn->db_recovery_info.db_recovery_counter);
/* Track amount of times recovery was executed */
p_hwfn->db_recovery_info.db_recovery_counter++;
/* Protect the list */
spin_lock_bh(&p_hwfn->db_recovery_info.lock);
list_for_each_entry(db_entry,
&p_hwfn->db_recovery_info.list, list_entry)
qed_db_recovery_ring(p_hwfn, db_entry);
spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
}
/******************** Doorbell Recovery end ****************/
/********************************** NIG LLH ***********************************/
enum qed_llh_filter_type {
QED_LLH_FILTER_TYPE_MAC,
QED_LLH_FILTER_TYPE_PROTOCOL,
};
struct qed_llh_mac_filter {
u8 addr[ETH_ALEN];
};
struct qed_llh_protocol_filter {
enum qed_llh_prot_filter_type_t type;
u16 source_port_or_eth_type;
u16 dest_port;
};
union qed_llh_filter {
struct qed_llh_mac_filter mac;
struct qed_llh_protocol_filter protocol;
};
struct qed_llh_filter_info {
bool b_enabled;
u32 ref_cnt;
enum qed_llh_filter_type type;
union qed_llh_filter filter;
};
struct qed_llh_info {
/* Number of LLH filters banks */
u8 num_ppfid;
#define MAX_NUM_PPFID 8
u8 ppfid_array[MAX_NUM_PPFID];
/* Array of filters arrays:
* "num_ppfid" elements of filters banks, where each is an array of
* "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
*/
struct qed_llh_filter_info **pp_filters;
};
static void qed_llh_free(struct qed_dev *cdev)
{
struct qed_llh_info *p_llh_info = cdev->p_llh_info;
u32 i;
if (p_llh_info) {
if (p_llh_info->pp_filters)
for (i = 0; i < p_llh_info->num_ppfid; i++)
kfree(p_llh_info->pp_filters[i]);
kfree(p_llh_info->pp_filters);
}
kfree(p_llh_info);
cdev->p_llh_info = NULL;
}
static int qed_llh_alloc(struct qed_dev *cdev)
{
struct qed_llh_info *p_llh_info;
u32 size, i;
p_llh_info = kzalloc(sizeof(*p_llh_info), GFP_KERNEL);
if (!p_llh_info)
return -ENOMEM;
cdev->p_llh_info = p_llh_info;
for (i = 0; i < MAX_NUM_PPFID; i++) {
if (!(cdev->ppfid_bitmap & (0x1 << i)))
continue;
p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
DP_VERBOSE(cdev, QED_MSG_SP, "ppfid_array[%d] = %hhd\n",
p_llh_info->num_ppfid, i);
p_llh_info->num_ppfid++;
}
size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
p_llh_info->pp_filters = kzalloc(size, GFP_KERNEL);
if (!p_llh_info->pp_filters)
return -ENOMEM;
size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
sizeof(**p_llh_info->pp_filters);
for (i = 0; i < p_llh_info->num_ppfid; i++) {
p_llh_info->pp_filters[i] = kzalloc(size, GFP_KERNEL);
if (!p_llh_info->pp_filters[i])
return -ENOMEM;
}
return 0;
}
static int qed_llh_shadow_sanity(struct qed_dev *cdev,
u8 ppfid, u8 filter_idx, const char *action)
{
struct qed_llh_info *p_llh_info = cdev->p_llh_info;
if (ppfid >= p_llh_info->num_ppfid) {
DP_NOTICE(cdev,
"LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
action, ppfid, p_llh_info->num_ppfid);
return -EINVAL;
}
if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
DP_NOTICE(cdev,
"LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
return -EINVAL;
}
return 0;
}
#define QED_LLH_INVALID_FILTER_IDX 0xff
static int
qed_llh_shadow_search_filter(struct qed_dev *cdev,
u8 ppfid,
union qed_llh_filter *p_filter, u8 *p_filter_idx)
{
struct qed_llh_info *p_llh_info = cdev->p_llh_info;
struct qed_llh_filter_info *p_filters;
int rc;
u8 i;
rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "search");
if (rc)
return rc;
*p_filter_idx = QED_LLH_INVALID_FILTER_IDX;
p_filters = p_llh_info->pp_filters[ppfid];
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
if (!memcmp(p_filter, &p_filters[i].filter,
sizeof(*p_filter))) {
*p_filter_idx = i;
break;
}
}
return 0;
}
static int
qed_llh_shadow_get_free_idx(struct qed_dev *cdev, u8 ppfid, u8 *p_filter_idx)
{
struct qed_llh_info *p_llh_info = cdev->p_llh_info;
struct qed_llh_filter_info *p_filters;
int rc;
u8 i;
rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "get_free_idx");
if (rc)
return rc;
*p_filter_idx = QED_LLH_INVALID_FILTER_IDX;
p_filters = p_llh_info->pp_filters[ppfid];
for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
if (!p_filters[i].b_enabled) {
*p_filter_idx = i;
break;
}
}
return 0;
}
static int
__qed_llh_shadow_add_filter(struct qed_dev *cdev,
u8 ppfid,
u8 filter_idx,
enum qed_llh_filter_type type,
union qed_llh_filter *p_filter, u32 *p_ref_cnt)
{
struct qed_llh_info *p_llh_info = cdev->p_llh_info;
struct qed_llh_filter_info *p_filters;
int rc;
rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "add");
if (rc)
return rc;
p_filters = p_llh_info->pp_filters[ppfid];
if (!p_filters[filter_idx].ref_cnt) {
p_filters[filter_idx].b_enabled = true;
p_filters[filter_idx].type = type;
memcpy(&p_filters[filter_idx].filter, p_filter,
sizeof(p_filters[filter_idx].filter));
}
*p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
return 0;
}
static int
qed_llh_shadow_add_filter(struct qed_dev *cdev,
u8 ppfid,
enum qed_llh_filter_type type,
union qed_llh_filter *p_filter,
u8 *p_filter_idx, u32 *p_ref_cnt)
{
int rc;
/* Check if the same filter already exist */
rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx);
if (rc)
return rc;
/* Find a new entry in case of a new filter */
if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
rc = qed_llh_shadow_get_free_idx(cdev, ppfid, p_filter_idx);
if (rc)
return rc;
}
/* No free entry was found */
if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
DP_NOTICE(cdev,
"Failed to find an empty LLH filter to utilize [ppfid %d]\n",
ppfid);
return -EINVAL;
}
return __qed_llh_shadow_add_filter(cdev, ppfid, *p_filter_idx, type,
p_filter, p_ref_cnt);
}
static int
__qed_llh_shadow_remove_filter(struct qed_dev *cdev,
u8 ppfid, u8 filter_idx, u32 *p_ref_cnt)
{
struct qed_llh_info *p_llh_info = cdev->p_llh_info;
struct qed_llh_filter_info *p_filters;
int rc;
rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "remove");
if (rc)
return rc;
p_filters = p_llh_info->pp_filters[ppfid];
if (!p_filters[filter_idx].ref_cnt) {
DP_NOTICE(cdev,
"LLH shadow: trying to remove a filter with ref_cnt=0\n");
return -EINVAL;
}
*p_ref_cnt = --p_filters[filter_idx].ref_cnt;
if (!p_filters[filter_idx].ref_cnt)
memset(&p_filters[filter_idx],
0, sizeof(p_filters[filter_idx]));
return 0;
}
static int
qed_llh_shadow_remove_filter(struct qed_dev *cdev,
u8 ppfid,
union qed_llh_filter *p_filter,
u8 *p_filter_idx, u32 *p_ref_cnt)
{
int rc;
rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx);
if (rc)
return rc;
/* No matching filter was found */
if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
DP_NOTICE(cdev, "Failed to find a filter in the LLH shadow\n");
return -EINVAL;
}
return __qed_llh_shadow_remove_filter(cdev, ppfid, *p_filter_idx,
p_ref_cnt);
}
static int qed_llh_abs_ppfid(struct qed_dev *cdev, u8 ppfid, u8 *p_abs_ppfid)
{
struct qed_llh_info *p_llh_info = cdev->p_llh_info;
if (ppfid >= p_llh_info->num_ppfid) {
DP_NOTICE(cdev,
"ppfid %d is not valid, available indices are 0..%hhd\n",
ppfid, p_llh_info->num_ppfid - 1);
*p_abs_ppfid = 0;
return -EINVAL;
}
*p_abs_ppfid = p_llh_info->ppfid_array[ppfid];
return 0;
}
static int
qed_llh_set_engine_affin(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_dev *cdev = p_hwfn->cdev;
enum qed_eng eng;
u8 ppfid;
int rc;
rc = qed_mcp_get_engine_config(p_hwfn, p_ptt);
if (rc != 0 && rc != -EOPNOTSUPP) {
DP_NOTICE(p_hwfn,
"Failed to get the engine affinity configuration\n");
return rc;
}
/* RoCE PF is bound to a single engine */
if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0;
rc = qed_llh_set_roce_affinity(cdev, eng);
if (rc) {
DP_NOTICE(cdev,
"Failed to set the RoCE engine affinity\n");
return rc;
}
DP_VERBOSE(cdev,
QED_MSG_SP,
"LLH: Set the engine affinity of RoCE packets as %d\n",
eng);
}
/* Storage PF is bound to a single engine while L2 PF uses both */
if (QED_IS_FCOE_PERSONALITY(p_hwfn) || QED_IS_ISCSI_PERSONALITY(p_hwfn))
eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0;
else /* L2_PERSONALITY */
eng = QED_BOTH_ENG;
for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
rc = qed_llh_set_ppfid_affinity(cdev, ppfid, eng);
if (rc) {
DP_NOTICE(cdev,
"Failed to set the engine affinity of ppfid %d\n",
ppfid);
return rc;
}
}
DP_VERBOSE(cdev, QED_MSG_SP,
"LLH: Set the engine affinity of non-RoCE packets as %d\n",
eng);
return 0;
}
static int qed_llh_hw_init_pf(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_dev *cdev = p_hwfn->cdev;
u8 ppfid, abs_ppfid;
int rc;
for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
u32 addr;
rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
if (rc)
return rc;
addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
qed_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
}
if (test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) &&
!QED_IS_FCOE_PERSONALITY(p_hwfn)) {
rc = qed_llh_add_mac_filter(cdev, 0,
p_hwfn->hw_info.hw_mac_addr);
if (rc)
DP_NOTICE(cdev,
"Failed to add an LLH filter with the primary MAC\n");
}
if (QED_IS_CMT(cdev)) {
rc = qed_llh_set_engine_affin(p_hwfn, p_ptt);
if (rc)
return rc;
}
return 0;
}
u8 qed_llh_get_num_ppfid(struct qed_dev *cdev)
{
return cdev->p_llh_info->num_ppfid;
}
#define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK 0x3
#define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT 0
#define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK 0x3
#define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT 2
int qed_llh_set_ppfid_affinity(struct qed_dev *cdev, u8 ppfid, enum qed_eng eng)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
u32 addr, val, eng_sel;
u8 abs_ppfid;
int rc = 0;
if (!p_ptt)
return -EAGAIN;
if (!QED_IS_CMT(cdev))
goto out;
rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
if (rc)
goto out;
switch (eng) {
case QED_ENG0:
eng_sel = 0;
break;
case QED_ENG1:
eng_sel = 1;
break;
case QED_BOTH_ENG:
eng_sel = 2;
break;
default:
DP_NOTICE(cdev, "Invalid affinity value for ppfid [%d]\n", eng);
rc = -EINVAL;
goto out;
}
addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
val = qed_rd(p_hwfn, p_ptt, addr);
SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
qed_wr(p_hwfn, p_ptt, addr, val);
/* The iWARP affinity is set as the affinity of ppfid 0 */
if (!ppfid && QED_IS_IWARP_PERSONALITY(p_hwfn))
cdev->iwarp_affin = (eng == QED_ENG1) ? 1 : 0;
out:
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
int qed_llh_set_roce_affinity(struct qed_dev *cdev, enum qed_eng eng)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
u32 addr, val, eng_sel;
u8 ppfid, abs_ppfid;
int rc = 0;
if (!p_ptt)
return -EAGAIN;
if (!QED_IS_CMT(cdev))
goto out;
switch (eng) {
case QED_ENG0:
eng_sel = 0;
break;
case QED_ENG1:
eng_sel = 1;
break;
case QED_BOTH_ENG:
eng_sel = 2;
qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
0xf); /* QP bit 15 */
break;
default:
DP_NOTICE(cdev, "Invalid affinity value for RoCE [%d]\n", eng);
rc = -EINVAL;
goto out;
}
for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
if (rc)
goto out;
addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
val = qed_rd(p_hwfn, p_ptt, addr);
SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
qed_wr(p_hwfn, p_ptt, addr, val);
}
out:
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
struct qed_llh_filter_details {
u64 value;
u32 mode;
u32 protocol_type;
u32 hdr_sel;
u32 enable;
};
static int
qed_llh_access_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u8 abs_ppfid,
u8 filter_idx,
struct qed_llh_filter_details *p_details)
{
struct qed_dmae_params params = {0};
u32 addr;
u8 pfid;
int rc;
/* The NIG/LLH registers that are accessed in this function have only 16
* rows which are exposed to a PF. I.e. only the 16 filters of its
* default ppfid. Accessing filters of other ppfids requires pretending
* to another PFs.
* The calculation of PPFID->PFID in AH is based on the relative index
* of a PF on its port.
* For BB the pfid is actually the abs_ppfid.
*/
if (QED_IS_BB(p_hwfn->cdev))
pfid = abs_ppfid;
else
pfid = abs_ppfid * p_hwfn->cdev->num_ports_in_engine +
MFW_PORT(p_hwfn);
/* Filter enable - should be done first when removing a filter */
if (!p_details->enable) {
qed_fid_pretend(p_hwfn, p_ptt,
pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
qed_wr(p_hwfn, p_ptt, addr, p_details->enable);
qed_fid_pretend(p_hwfn, p_ptt,
p_hwfn->rel_pf_id <<
PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
}
/* Filter value */
addr = NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * filter_idx * 0x4;
SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_PF_VALID, 0x1);
params.dst_pfid = pfid;
rc = qed_dmae_host2grc(p_hwfn,
p_ptt,
(u64)(uintptr_t)&p_details->value,
addr, 2 /* size_in_dwords */,
&params);
if (rc)
return rc;
qed_fid_pretend(p_hwfn, p_ptt,
pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
/* Filter mode */
addr = NIG_REG_LLH_FUNC_FILTER_MODE + filter_idx * 0x4;
qed_wr(p_hwfn, p_ptt, addr, p_details->mode);
/* Filter protocol type */
addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + filter_idx * 0x4;
qed_wr(p_hwfn, p_ptt, addr, p_details->protocol_type);
/* Filter header select */
addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL + filter_idx * 0x4;
qed_wr(p_hwfn, p_ptt, addr, p_details->hdr_sel);
/* Filter enable - should be done last when adding a filter */
if (p_details->enable) {
addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
qed_wr(p_hwfn, p_ptt, addr, p_details->enable);
}
qed_fid_pretend(p_hwfn, p_ptt,
p_hwfn->rel_pf_id <<
PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
return 0;
}
static int
qed_llh_add_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u8 abs_ppfid,
u8 filter_idx, u8 filter_prot_type, u32 high, u32 low)
{
struct qed_llh_filter_details filter_details;
filter_details.enable = 1;
filter_details.value = ((u64)high << 32) | low;
filter_details.hdr_sel = 0;
filter_details.protocol_type = filter_prot_type;
/* Mode: 0: MAC-address classification 1: protocol classification */
filter_details.mode = filter_prot_type ? 1 : 0;
return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
&filter_details);
}
static int
qed_llh_remove_filter(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
{
struct qed_llh_filter_details filter_details = {0};
return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
&filter_details);
}
int qed_llh_add_mac_filter(struct qed_dev *cdev,
u8 ppfid, u8 mac_addr[ETH_ALEN])
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
union qed_llh_filter filter = {};
u8 filter_idx, abs_ppfid = 0;
u32 high, low, ref_cnt;
int rc = 0;
if (!p_ptt)
return -EAGAIN;
if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits))
goto out;
memcpy(filter.mac.addr, mac_addr, ETH_ALEN);
rc = qed_llh_shadow_add_filter(cdev, ppfid,
QED_LLH_FILTER_TYPE_MAC,
&filter, &filter_idx, &ref_cnt);
if (rc)
goto err;
/* Configure the LLH only in case of a new the filter */
if (ref_cnt == 1) {
rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
if (rc)
goto err;
high = mac_addr[1] | (mac_addr[0] << 8);
low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
(mac_addr[2] << 24);
rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
0, high, low);
if (rc)
goto err;
}
DP_VERBOSE(cdev,
QED_MSG_SP,
"LLH: Added MAC filter [%pM] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt);
goto out;
err: DP_NOTICE(cdev,
"LLH: Failed to add MAC filter [%pM] to ppfid %hhd\n",
mac_addr, ppfid);
out:
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
static int
qed_llh_protocol_filter_stringify(struct qed_dev *cdev,
enum qed_llh_prot_filter_type_t type,
u16 source_port_or_eth_type,
u16 dest_port, u8 *str, size_t str_len)
{
switch (type) {
case QED_LLH_FILTER_ETHERTYPE:
snprintf(str, str_len, "Ethertype 0x%04x",
source_port_or_eth_type);
break;
case QED_LLH_FILTER_TCP_SRC_PORT:
snprintf(str, str_len, "TCP src port 0x%04x",
source_port_or_eth_type);
break;
case QED_LLH_FILTER_UDP_SRC_PORT:
snprintf(str, str_len, "UDP src port 0x%04x",
source_port_or_eth_type);
break;
case QED_LLH_FILTER_TCP_DEST_PORT:
snprintf(str, str_len, "TCP dst port 0x%04x", dest_port);
break;
case QED_LLH_FILTER_UDP_DEST_PORT:
snprintf(str, str_len, "UDP dst port 0x%04x", dest_port);
break;
case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
snprintf(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
source_port_or_eth_type, dest_port);
break;
case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
snprintf(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
source_port_or_eth_type, dest_port);
break;
default:
DP_NOTICE(cdev,
"Non valid LLH protocol filter type %d\n", type);
return -EINVAL;
}
return 0;
}
static int
qed_llh_protocol_filter_to_hilo(struct qed_dev *cdev,
enum qed_llh_prot_filter_type_t type,
u16 source_port_or_eth_type,
u16 dest_port, u32 *p_high, u32 *p_low)
{
*p_high = 0;
*p_low = 0;
switch (type) {
case QED_LLH_FILTER_ETHERTYPE:
*p_high = source_port_or_eth_type;
break;
case QED_LLH_FILTER_TCP_SRC_PORT:
case QED_LLH_FILTER_UDP_SRC_PORT:
*p_low = source_port_or_eth_type << 16;
break;
case QED_LLH_FILTER_TCP_DEST_PORT:
case QED_LLH_FILTER_UDP_DEST_PORT:
*p_low = dest_port;
break;
case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
*p_low = (source_port_or_eth_type << 16) | dest_port;
break;
default:
DP_NOTICE(cdev,
"Non valid LLH protocol filter type %d\n", type);
return -EINVAL;
}
return 0;
}
int
qed_llh_add_protocol_filter(struct qed_dev *cdev,
u8 ppfid,
enum qed_llh_prot_filter_type_t type,
u16 source_port_or_eth_type, u16 dest_port)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
u8 filter_idx, abs_ppfid, str[32], type_bitmap;
union qed_llh_filter filter = {};
u32 high, low, ref_cnt;
int rc = 0;
if (!p_ptt)
return -EAGAIN;
if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits))
goto out;
rc = qed_llh_protocol_filter_stringify(cdev, type,
source_port_or_eth_type,
dest_port, str, sizeof(str));
if (rc)
goto err;
filter.protocol.type = type;
filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
filter.protocol.dest_port = dest_port;
rc = qed_llh_shadow_add_filter(cdev,
ppfid,
QED_LLH_FILTER_TYPE_PROTOCOL,
&filter, &filter_idx, &ref_cnt);
if (rc)
goto err;
rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
if (rc)
goto err;
/* Configure the LLH only in case of a new the filter */
if (ref_cnt == 1) {
rc = qed_llh_protocol_filter_to_hilo(cdev, type,
source_port_or_eth_type,
dest_port, &high, &low);
if (rc)
goto err;
type_bitmap = 0x1 << type;
rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid,
filter_idx, type_bitmap, high, low);
if (rc)
goto err;
}
DP_VERBOSE(cdev,
QED_MSG_SP,
"LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
str, ppfid, abs_ppfid, filter_idx, ref_cnt);
goto out;
err: DP_NOTICE(p_hwfn,
"LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
str, ppfid);
out:
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
void qed_llh_remove_mac_filter(struct qed_dev *cdev,
u8 ppfid, u8 mac_addr[ETH_ALEN])
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
union qed_llh_filter filter = {};
u8 filter_idx, abs_ppfid;
int rc = 0;
u32 ref_cnt;
if (!p_ptt)
return;
if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits))
goto out;
ether_addr_copy(filter.mac.addr, mac_addr);
rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx,
&ref_cnt);
if (rc)
goto err;
rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
if (rc)
goto err;
/* Remove from the LLH in case the filter is not in use */
if (!ref_cnt) {
rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
filter_idx);
if (rc)
goto err;
}
DP_VERBOSE(cdev,
QED_MSG_SP,
"LLH: Removed MAC filter [%pM] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt);
goto out;
err: DP_NOTICE(cdev,
"LLH: Failed to remove MAC filter [%pM] from ppfid %hhd\n",
mac_addr, ppfid);
out:
qed_ptt_release(p_hwfn, p_ptt);
}
void qed_llh_remove_protocol_filter(struct qed_dev *cdev,
u8 ppfid,
enum qed_llh_prot_filter_type_t type,
u16 source_port_or_eth_type, u16 dest_port)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
u8 filter_idx, abs_ppfid, str[32];
union qed_llh_filter filter = {};
int rc = 0;
u32 ref_cnt;
if (!p_ptt)
return;
if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits))
goto out;
rc = qed_llh_protocol_filter_stringify(cdev, type,
source_port_or_eth_type,
dest_port, str, sizeof(str));
if (rc)
goto err;
filter.protocol.type = type;
filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
filter.protocol.dest_port = dest_port;
rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx,
&ref_cnt);
if (rc)
goto err;
rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
if (rc)
goto err;
/* Remove from the LLH in case the filter is not in use */
if (!ref_cnt) {
rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
filter_idx);
if (rc)
goto err;
}
DP_VERBOSE(cdev,
QED_MSG_SP,
"LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
str, ppfid, abs_ppfid, filter_idx, ref_cnt);
goto out;
err: DP_NOTICE(cdev,
"LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
str, ppfid);
out:
qed_ptt_release(p_hwfn, p_ptt);
}
/******************************* NIG LLH - End ********************************/
#define QED_MIN_DPIS (4)
#define QED_MIN_PWM_REGION (QED_WID_SIZE * QED_MIN_DPIS)
static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, enum BAR_ID bar_id)
{
u32 bar_reg = (bar_id == BAR_ID_0 ?
PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
u32 val;
if (IS_VF(p_hwfn->cdev))
return qed_vf_hw_bar_size(p_hwfn, bar_id);
val = qed_rd(p_hwfn, p_ptt, bar_reg);
if (val)
return 1 << (val + 15);
/* Old MFW initialized above registered only conditionally */
if (p_hwfn->cdev->num_hwfns > 1) {
DP_INFO(p_hwfn,
"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
} else {
DP_INFO(p_hwfn,
"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
return 512 * 1024;
}
}
void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
{
u32 i;
cdev->dp_level = dp_level;
cdev->dp_module = dp_module;
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
p_hwfn->dp_level = dp_level;
p_hwfn->dp_module = dp_module;
}
}
void qed_init_struct(struct qed_dev *cdev)
{
u8 i;
for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
p_hwfn->cdev = cdev;
p_hwfn->my_id = i;
p_hwfn->b_active = false;
mutex_init(&p_hwfn->dmae_info.mutex);
}
/* hwfn 0 is always active */
cdev->hwfns[0].b_active = true;
/* set the default cache alignment to 128 */
cdev->cache_shift = 7;
}
static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
kfree(qm_info->qm_pq_params);
qm_info->qm_pq_params = NULL;
kfree(qm_info->qm_vport_params);
qm_info->qm_vport_params = NULL;
kfree(qm_info->qm_port_params);
qm_info->qm_port_params = NULL;
kfree(qm_info->wfq_data);
qm_info->wfq_data = NULL;
}
static void qed_dbg_user_data_free(struct qed_hwfn *p_hwfn)
{
kfree(p_hwfn->dbg_user_info);
p_hwfn->dbg_user_info = NULL;
}
void qed_resc_free(struct qed_dev *cdev)
{
struct qed_rdma_info *rdma_info;
struct qed_hwfn *p_hwfn;
int i;
if (IS_VF(cdev)) {
for_each_hwfn(cdev, i)
qed_l2_free(&cdev->hwfns[i]);
return;
}
kfree(cdev->fw_data);
cdev->fw_data = NULL;
kfree(cdev->reset_stats);
cdev->reset_stats = NULL;
qed_llh_free(cdev);
for_each_hwfn(cdev, i) {
p_hwfn = cdev->hwfns + i;
rdma_info = p_hwfn->p_rdma_info;
qed_cxt_mngr_free(p_hwfn);
qed_qm_info_free(p_hwfn);
qed_spq_free(p_hwfn);
qed_eq_free(p_hwfn);
qed_consq_free(p_hwfn);
qed_int_free(p_hwfn);
#ifdef CONFIG_QED_LL2
qed_ll2_free(p_hwfn);
#endif
if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
qed_fcoe_free(p_hwfn);
if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
qed_iscsi_free(p_hwfn);
qed_ooo_free(p_hwfn);
}
if (QED_IS_RDMA_PERSONALITY(p_hwfn) && rdma_info) {
qed_spq_unregister_async_cb(p_hwfn, rdma_info->proto);
qed_rdma_info_free(p_hwfn);
}
qed_iov_free(p_hwfn);
qed_l2_free(p_hwfn);
qed_dmae_info_free(p_hwfn);
qed_dcbx_info_free(p_hwfn);
qed_dbg_user_data_free(p_hwfn);
qed_fw_overlay_mem_free(p_hwfn, p_hwfn->fw_overlay_mem);
/* Destroy doorbell recovery mechanism */
qed_db_recovery_teardown(p_hwfn);
}
}
/******************** QM initialization *******************/
#define ACTIVE_TCS_BMAP 0x9f
#define ACTIVE_TCS_BMAP_4PORT_K2 0xf
/* determines the physical queue flags for a given PF. */
static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn)
{
u32 flags;
/* common flags */
flags = PQ_FLAGS_LB;
/* feature flags */
if (IS_QED_SRIOV(p_hwfn->cdev))
flags |= PQ_FLAGS_VFS;
/* protocol flags */
switch (p_hwfn->hw_info.personality) {
case QED_PCI_ETH:
flags |= PQ_FLAGS_MCOS;
break;
case QED_PCI_FCOE:
flags |= PQ_FLAGS_OFLD;
break;
case QED_PCI_ISCSI:
flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
break;
case QED_PCI_ETH_ROCE:
flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
if (IS_QED_MULTI_TC_ROCE(p_hwfn))
flags |= PQ_FLAGS_MTC;
break;
case QED_PCI_ETH_IWARP:
flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
PQ_FLAGS_OFLD;
break;
default:
DP_ERR(p_hwfn,
"unknown personality %d\n", p_hwfn->hw_info.personality);
return 0;
}
return flags;
}
/* Getters for resource amounts necessary for qm initialization */
static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn)
{
return p_hwfn->hw_info.num_hw_tc;
}
static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn)
{
return IS_QED_SRIOV(p_hwfn->cdev) ?
p_hwfn->cdev->p_iov_info->total_vfs : 0;
}
static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn)
{
u32 pq_flags = qed_get_pq_flags(p_hwfn);
if (!(PQ_FLAGS_MTC & pq_flags))
return 1;
return qed_init_qm_get_num_tcs(p_hwfn);
}
#define NUM_DEFAULT_RLS 1
static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn)
{
u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
/* num RLs can't exceed resource amount of rls or vports */
num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL),
RESC_NUM(p_hwfn, QED_VPORT));
/* Make sure after we reserve there's something left */
if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS)
return 0;
/* subtract rls necessary for VFs and one default one for the PF */
num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
return num_pf_rls;
}
static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn)
{
u32 pq_flags = qed_get_pq_flags(p_hwfn);
/* all pqs share the same vport, except for vfs and pf_rl pqs */
return (!!(PQ_FLAGS_RLS & pq_flags)) *
qed_init_qm_get_num_pf_rls(p_hwfn) +
(!!(PQ_FLAGS_VFS & pq_flags)) *
qed_init_qm_get_num_vfs(p_hwfn) + 1;
}
/* calc amount of PQs according to the requested flags */
static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn)
{
u32 pq_flags = qed_get_pq_flags(p_hwfn);
return (!!(PQ_FLAGS_RLS & pq_flags)) *
qed_init_qm_get_num_pf_rls(p_hwfn) +
(!!(PQ_FLAGS_MCOS & pq_flags)) *
qed_init_qm_get_num_tcs(p_hwfn) +
(!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) +
(!!(PQ_FLAGS_ACK & pq_flags)) +
(!!(PQ_FLAGS_OFLD & pq_flags)) *
qed_init_qm_get_num_mtc_tcs(p_hwfn) +
(!!(PQ_FLAGS_LLT & pq_flags)) *
qed_init_qm_get_num_mtc_tcs(p_hwfn) +
(!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn);
}
/* initialize the top level QM params */
static void qed_init_qm_params(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
bool four_port;
/* pq and vport bases for this PF */
qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ);
qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
/* rate limiting and weighted fair queueing are always enabled */
qm_info->vport_rl_en = true;
qm_info->vport_wfq_en = true;
/* TC config is different for AH 4 port */
four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2;
/* in AH 4 port we have fewer TCs per port */
qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
NUM_OF_PHYS_TCS;
/* unless MFW indicated otherwise, ooo_tc == 3 for
* AH 4-port and 4 otherwise.
*/
if (!qm_info->ooo_tc)
qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
DCBX_TCP_OOO_TC;
}
/* initialize qm vport params */
static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
u8 i;
/* all vports participate in weighted fair queueing */
for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++)
qm_info->qm_vport_params[i].wfq = 1;
}
/* initialize qm port params */
static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn)
{
/* Initialize qm port parameters */
u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine;
struct qed_dev *cdev = p_hwfn->cdev;
/* indicate how ooo and high pri traffic is dealt with */
active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
ACTIVE_TCS_BMAP_4PORT_K2 :
ACTIVE_TCS_BMAP;
for (i = 0; i < num_ports; i++) {
struct init_qm_port_params *p_qm_port =
&p_hwfn->qm_info.qm_port_params[i];
u16 pbf_max_cmd_lines;
p_qm_port->active = 1;
p_qm_port->active_phys_tcs = active_phys_tcs;
pbf_max_cmd_lines = (u16)NUM_OF_PBF_CMD_LINES(cdev);
p_qm_port->num_pbf_cmd_lines = pbf_max_cmd_lines / num_ports;
p_qm_port->num_btb_blocks = NUM_OF_BTB_BLOCKS(cdev) / num_ports;
}
}
/* Reset the params which must be reset for qm init. QM init may be called as
* a result of flows other than driver load (e.g. dcbx renegotiation). Other
* params may be affected by the init but would simply recalculate to the same
* values. The allocations made for QM init, ports, vports, pqs and vfqs are not
* affected as these amounts stay the same.
*/
static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
qm_info->num_pqs = 0;
qm_info->num_vports = 0;
qm_info->num_pf_rls = 0;
qm_info->num_vf_pqs = 0;
qm_info->first_vf_pq = 0;
qm_info->first_mcos_pq = 0;
qm_info->first_rl_pq = 0;
}
static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
qm_info->num_vports++;
if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
DP_ERR(p_hwfn,
"vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
}
/* initialize a single pq and manage qm_info resources accounting.
* The pq_init_flags param determines whether the PQ is rate limited
* (for VF or PF) and whether a new vport is allocated to the pq or not
* (i.e. vport will be shared).
*/
/* flags for pq init */
#define PQ_INIT_SHARE_VPORT (1 << 0)
#define PQ_INIT_PF_RL (1 << 1)
#define PQ_INIT_VF_RL (1 << 2)
/* defines for pq init */
#define PQ_INIT_DEFAULT_WRR_GROUP 1
#define PQ_INIT_DEFAULT_TC 0
void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc)
{
p_info->offload_tc = tc;
p_info->offload_tc_set = true;
}
static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn)
{
return p_hwfn->hw_info.offload_tc_set;
}
static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn)
{
if (qed_is_offload_tc_set(p_hwfn))
return p_hwfn->hw_info.offload_tc;
return PQ_INIT_DEFAULT_TC;
}
static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
struct qed_qm_info *qm_info,
u8 tc, u32 pq_init_flags)
{
u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn);
if (pq_idx > max_pq)
DP_ERR(p_hwfn,
"pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
/* init pq params */
qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id;
qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
qm_info->num_vports;
qm_info->qm_pq_params[pq_idx].tc_id = tc;
qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
qm_info->qm_pq_params[pq_idx].rl_valid =
(pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
/* qm params accounting */
qm_info->num_pqs++;
if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
qm_info->num_vports++;
if (pq_init_flags & PQ_INIT_PF_RL)
qm_info->num_pf_rls++;
if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
DP_ERR(p_hwfn,
"vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn))
DP_ERR(p_hwfn,
"rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n",
qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn));
}
/* get pq index according to PQ_FLAGS */
static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
unsigned long pq_flags)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
/* Can't have multiple flags set here */
if (bitmap_weight(&pq_flags,
sizeof(pq_flags) * BITS_PER_BYTE) > 1) {
DP_ERR(p_hwfn, "requested multiple pq flags 0x%lx\n", pq_flags);
goto err;
}
if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) {
DP_ERR(p_hwfn, "pq flag 0x%lx is not set\n", pq_flags);
goto err;
}
switch (pq_flags) {
case PQ_FLAGS_RLS:
return &qm_info->first_rl_pq;
case PQ_FLAGS_MCOS:
return &qm_info->first_mcos_pq;
case PQ_FLAGS_LB:
return &qm_info->pure_lb_pq;
case PQ_FLAGS_OOO:
return &qm_info->ooo_pq;
case PQ_FLAGS_ACK:
return &qm_info->pure_ack_pq;
case PQ_FLAGS_OFLD:
return &qm_info->first_ofld_pq;
case PQ_FLAGS_LLT:
return &qm_info->first_llt_pq;
case PQ_FLAGS_VFS:
return &qm_info->first_vf_pq;
default:
goto err;
}
err:
return &qm_info->start_pq;
}
/* save pq index in qm info */
static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn,
u32 pq_flags, u16 pq_val)
{
u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
}
/* get tx pq index, with the PQ TX base already set (ready for context init) */
u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags)
{
u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
return *base_pq_idx + CM_TX_PQ_BASE;
}
u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc)
{
u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn);
if (max_tc == 0) {
DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
PQ_FLAGS_MCOS);
return p_hwfn->qm_info.start_pq;
}
if (tc > max_tc)
DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc);
}
u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf)
{
u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn);
if (max_vf == 0) {
DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
PQ_FLAGS_VFS);
return p_hwfn->qm_info.start_pq;
}
if (vf > max_vf)
DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf);
}
u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc)
{
u16 first_ofld_pq, pq_offset;
first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD);
pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
tc : PQ_INIT_DEFAULT_TC;
return first_ofld_pq + pq_offset;
}
u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc)
{
u16 first_llt_pq, pq_offset;
first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT);
pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
tc : PQ_INIT_DEFAULT_TC;
return first_llt_pq + pq_offset;
}
/* Functions for creating specific types of pqs */
static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
return;
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
}
static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
return;
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
}
static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
return;
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
PQ_INIT_SHARE_VPORT);
}
static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn)
{
u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn);
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
u8 tc;
/* override pq's TC if offload TC is set */
for (tc = 0; tc < num_tcs; tc++)
qed_init_qm_pq(p_hwfn, qm_info,
qed_is_offload_tc_set(p_hwfn) ?
p_hwfn->hw_info.offload_tc : tc,
PQ_INIT_SHARE_VPORT);
}
static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
return;
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
qed_init_qm_mtc_pqs(p_hwfn);
}
static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
return;
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
qed_init_qm_mtc_pqs(p_hwfn);
}
static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
u8 tc_idx;
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
return;
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++)
qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
}
static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
return;
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
qm_info->num_vf_pqs = num_vfs;
for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
qed_init_qm_pq(p_hwfn,
qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
}
static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn)
{
u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn);
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
return;
qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
PQ_INIT_PF_RL);
}
static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn)
{
/* rate limited pqs, must come first (FW assumption) */
qed_init_qm_rl_pqs(p_hwfn);
/* pqs for multi cos */
qed_init_qm_mcos_pqs(p_hwfn);
/* pure loopback pq */
qed_init_qm_lb_pq(p_hwfn);
/* out of order pq */
qed_init_qm_ooo_pq(p_hwfn);
/* pure ack pq */
qed_init_qm_pure_ack_pq(p_hwfn);
/* pq for offloaded protocol */
qed_init_qm_offload_pq(p_hwfn);
/* low latency pq */
qed_init_qm_low_latency_pq(p_hwfn);
/* done sharing vports */
qed_init_qm_advance_vport(p_hwfn);
/* pqs for vfs */
qed_init_qm_vf_pqs(p_hwfn);
}
/* compare values of getters against resources amounts */
static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn)
{
if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) {
DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
return -EINVAL;
}
if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
return 0;
if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
p_hwfn->hw_info.multi_tc_roce_en = false;
DP_NOTICE(p_hwfn,
"multi-tc roce was disabled to reduce requested amount of pqs\n");
if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
return 0;
}
DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
return -EINVAL;
}
static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
struct init_qm_vport_params *vport;
struct init_qm_port_params *port;
struct init_qm_pq_params *pq;
int i, tc;
/* top level params */
DP_VERBOSE(p_hwfn,
NETIF_MSG_HW,
"qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n",
qm_info->start_pq,
qm_info->start_vport,
qm_info->pure_lb_pq,
qm_info->first_ofld_pq,
qm_info->first_llt_pq,
qm_info->pure_ack_pq);
DP_VERBOSE(p_hwfn,
NETIF_MSG_HW,
"ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
qm_info->ooo_pq,
qm_info->first_vf_pq,
qm_info->num_pqs,
qm_info->num_vf_pqs,
qm_info->num_vports, qm_info->max_phys_tcs_per_port);
DP_VERBOSE(p_hwfn,
NETIF_MSG_HW,
"pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
qm_info->pf_rl_en,
qm_info->pf_wfq_en,
qm_info->vport_rl_en,
qm_info->vport_wfq_en,
qm_info->pf_wfq,
qm_info->pf_rl,
qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn));
/* port table */
for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) {
port = &(qm_info->qm_port_params[i]);
DP_VERBOSE(p_hwfn,
NETIF_MSG_HW,
"port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
i,
port->active,
port->active_phys_tcs,
port->num_pbf_cmd_lines,
port->num_btb_blocks, port->reserved);
}
/* vport table */
for (i = 0; i < qm_info->num_vports; i++) {
vport = &(qm_info->qm_vport_params[i]);
DP_VERBOSE(p_hwfn,
NETIF_MSG_HW,
"vport idx %d, wfq %d, first_tx_pq_id [ ",
qm_info->start_vport + i, vport->wfq);
for (tc = 0; tc < NUM_OF_TCS; tc++)
DP_VERBOSE(p_hwfn,
NETIF_MSG_HW,
"%d ", vport->first_tx_pq_id[tc]);
DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n");
}
/* pq table */
for (i = 0; i < qm_info->num_pqs; i++) {
pq = &(qm_info->qm_pq_params[i]);
DP_VERBOSE(p_hwfn,
NETIF_MSG_HW,
"pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d rl_id %d\n",
qm_info->start_pq + i,
pq->port_id,
pq->vport_id,
pq->tc_id, pq->wrr_group, pq->rl_valid, pq->rl_id);
}
}
static void qed_init_qm_info(struct qed_hwfn *p_hwfn)
{
/* reset params required for init run */
qed_init_qm_reset_params(p_hwfn);
/* init QM top level params */
qed_init_qm_params(p_hwfn);
/* init QM port params */
qed_init_qm_port_params(p_hwfn);
/* init QM vport params */
qed_init_qm_vport_params(p_hwfn);
/* init QM physical queue params */
qed_init_qm_pq_params(p_hwfn);
/* display all that init */
qed_dp_init_qm_params(p_hwfn);
}
/* This function reconfigures the QM pf on the fly.
* For this purpose we:
* 1. reconfigure the QM database
* 2. set new values to runtime array
* 3. send an sdm_qm_cmd through the rbc interface to stop the QM
* 4. activate init tool in QM_PF stage
* 5. send an sdm_qm_cmd through rbc interface to release the QM
*/
int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
bool b_rc;
int rc;
/* initialize qed's qm data structure */
qed_init_qm_info(p_hwfn);
/* stop PF's qm queues */
spin_lock_bh(&qm_lock);
b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
qm_info->start_pq, qm_info->num_pqs);
spin_unlock_bh(&qm_lock);
if (!b_rc)
return -EINVAL;
/* prepare QM portion of runtime array */
qed_qm_init_pf(p_hwfn, p_ptt, false);
/* activate init tool on runtime array */
rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
p_hwfn->hw_info.hw_mode);
if (rc)
return rc;
/* start PF's qm queues */
spin_lock_bh(&qm_lock);
b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
qm_info->start_pq, qm_info->num_pqs);
spin_unlock_bh(&qm_lock);
if (!b_rc)
return -EINVAL;
return 0;
}
static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
int rc;
rc = qed_init_qm_sanity(p_hwfn);
if (rc)
goto alloc_err;
qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn),
sizeof(*qm_info->qm_pq_params),
GFP_KERNEL);
if (!qm_info->qm_pq_params)
goto alloc_err;
qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
sizeof(*qm_info->qm_vport_params),
GFP_KERNEL);
if (!qm_info->qm_vport_params)
goto alloc_err;
qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine,
sizeof(*qm_info->qm_port_params),
GFP_KERNEL);
if (!qm_info->qm_port_params)
goto alloc_err;
qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
sizeof(*qm_info->wfq_data),
GFP_KERNEL);
if (!qm_info->wfq_data)
goto alloc_err;
return 0;
alloc_err:
DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
qed_qm_info_free(p_hwfn);
return -ENOMEM;
}
int qed_resc_alloc(struct qed_dev *cdev)
{
u32 rdma_tasks, excess_tasks;
u32 line_count;
int i, rc = 0;
if (IS_VF(cdev)) {
for_each_hwfn(cdev, i) {
rc = qed_l2_alloc(&cdev->hwfns[i]);
if (rc)
return rc;
}
return rc;
}
cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
if (!cdev->fw_data)
return -ENOMEM;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
u32 n_eqes, num_cons;
/* Initialize the doorbell recovery mechanism */
rc = qed_db_recovery_setup(p_hwfn);
if (rc)
goto alloc_err;
/* First allocate the context manager structure */
rc = qed_cxt_mngr_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* Set the HW cid/tid numbers (in the contest manager)
* Must be done prior to any further computations.
*/
rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
if (rc)
goto alloc_err;
rc = qed_alloc_qm_data(p_hwfn);
if (rc)
goto alloc_err;
/* init qm info */
qed_init_qm_info(p_hwfn);
/* Compute the ILT client partition */
rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
if (rc) {
DP_NOTICE(p_hwfn,
"too many ILT lines; re-computing with less lines\n");
/* In case there are not enough ILT lines we reduce the
* number of RDMA tasks and re-compute.
*/
excess_tasks =
qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count);
if (!excess_tasks)
goto alloc_err;
rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks);
if (rc)
goto alloc_err;
rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
if (rc) {
DP_ERR(p_hwfn,
"failed ILT compute. Requested too many lines: %u\n",
line_count);
goto alloc_err;
}
}
/* CID map / ILT shadow table / T2
* The talbes sizes are determined by the computations above
*/
rc = qed_cxt_tables_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* SPQ, must follow ILT because initializes SPQ context */
rc = qed_spq_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* SP status block allocation */
p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
RESERVED_PTT_DPC);
rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
if (rc)
goto alloc_err;
rc = qed_iov_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* EQ */
n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
u32 n_srq = qed_cxt_get_total_srq_count(p_hwfn);
enum protocol_type rdma_proto;
if (QED_IS_ROCE_PERSONALITY(p_hwfn))
rdma_proto = PROTOCOLID_ROCE;
else
rdma_proto = PROTOCOLID_IWARP;
num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
rdma_proto,
NULL) * 2;
/* EQ should be able to get events from all SRQ's
* at the same time
*/
n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq;
} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
num_cons =
qed_cxt_get_proto_cid_count(p_hwfn,
PROTOCOLID_ISCSI,
NULL);
n_eqes += 2 * num_cons;
}
if (n_eqes > 0xFFFF) {
DP_ERR(p_hwfn,
"Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
n_eqes, 0xFFFF);
goto alloc_no_mem;
}
rc = qed_eq_alloc(p_hwfn, (u16) n_eqes);
if (rc)
goto alloc_err;
rc = qed_consq_alloc(p_hwfn);
if (rc)
goto alloc_err;
rc = qed_l2_alloc(p_hwfn);
if (rc)
goto alloc_err;
#ifdef CONFIG_QED_LL2
if (p_hwfn->using_ll2) {
rc = qed_ll2_alloc(p_hwfn);
if (rc)
goto alloc_err;
}
#endif
if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
rc = qed_fcoe_alloc(p_hwfn);
if (rc)
goto alloc_err;
}
if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
rc = qed_iscsi_alloc(p_hwfn);
if (rc)
goto alloc_err;
rc = qed_ooo_alloc(p_hwfn);
if (rc)
goto alloc_err;
}
if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
rc = qed_rdma_info_alloc(p_hwfn);
if (rc)
goto alloc_err;
}
/* DMA info initialization */
rc = qed_dmae_info_alloc(p_hwfn);
if (rc)
goto alloc_err;
/* DCBX initialization */
rc = qed_dcbx_info_alloc(p_hwfn);
if (rc)
goto alloc_err;
rc = qed_dbg_alloc_user_data(p_hwfn, &p_hwfn->dbg_user_info);
if (rc)
goto alloc_err;
}
rc = qed_llh_alloc(cdev);
if (rc) {
DP_NOTICE(cdev,
"Failed to allocate memory for the llh_info structure\n");
goto alloc_err;
}
cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
if (!cdev->reset_stats)
goto alloc_no_mem;
return 0;
alloc_no_mem:
rc = -ENOMEM;
alloc_err:
qed_resc_free(cdev);
return rc;
}
void qed_resc_setup(struct qed_dev *cdev)
{
int i;
if (IS_VF(cdev)) {
for_each_hwfn(cdev, i)
qed_l2_setup(&cdev->hwfns[i]);
return;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
qed_cxt_mngr_setup(p_hwfn);
qed_spq_setup(p_hwfn);
qed_eq_setup(p_hwfn);
qed_consq_setup(p_hwfn);
/* Read shadow of current MFW mailbox */
qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
p_hwfn->mcp_info->mfw_mb_cur,
p_hwfn->mcp_info->mfw_mb_length);
qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
qed_l2_setup(p_hwfn);
qed_iov_setup(p_hwfn);
#ifdef CONFIG_QED_LL2
if (p_hwfn->using_ll2)
qed_ll2_setup(p_hwfn);
#endif
if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
qed_fcoe_setup(p_hwfn);
if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
qed_iscsi_setup(p_hwfn);
qed_ooo_setup(p_hwfn);
}
}
}
#define FINAL_CLEANUP_POLL_CNT (100)
#define FINAL_CLEANUP_POLL_TIME (10)
int qed_final_cleanup(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 id, bool is_vf)
{
u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
int rc = -EBUSY;
addr = GTT_BAR0_MAP_REG_USDM_RAM +
USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
if (is_vf)
id += 0x10;
command |= X_FINAL_CLEANUP_AGG_INT <<
SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
/* Make sure notification is not set before initiating final cleanup */
if (REG_RD(p_hwfn, addr)) {
DP_NOTICE(p_hwfn,
"Unexpected; Found final cleanup notification before initiating final cleanup\n");
REG_WR(p_hwfn, addr, 0);
}
DP_VERBOSE(p_hwfn, QED_MSG_IOV,
"Sending final cleanup for PFVF[%d] [Command %08x]\n",
id, command);
qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
/* Poll until completion */
while (!REG_RD(p_hwfn, addr) && count--)
msleep(FINAL_CLEANUP_POLL_TIME);
if (REG_RD(p_hwfn, addr))
rc = 0;
else
DP_NOTICE(p_hwfn,
"Failed to receive FW final cleanup notification\n");
/* Cleanup afterwards */
REG_WR(p_hwfn, addr, 0);
return rc;
}
static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
{
int hw_mode = 0;
if (QED_IS_BB_B0(p_hwfn->cdev)) {
hw_mode |= 1 << MODE_BB;
} else if (QED_IS_AH(p_hwfn->cdev)) {
hw_mode |= 1 << MODE_K2;
} else {
DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
p_hwfn->cdev->type);
return -EINVAL;
}
switch (p_hwfn->cdev->num_ports_in_engine) {
case 1:
hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
break;
case 2:
hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
break;
case 4:
hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
break;
default:
DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
p_hwfn->cdev->num_ports_in_engine);
return -EINVAL;
}
if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits))
hw_mode |= 1 << MODE_MF_SD;
else
hw_mode |= 1 << MODE_MF_SI;
hw_mode |= 1 << MODE_ASIC;
if (p_hwfn->cdev->num_hwfns > 1)
hw_mode |= 1 << MODE_100G;
p_hwfn->hw_info.hw_mode = hw_mode;
DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
"Configuring function for hw_mode: 0x%08x\n",
p_hwfn->hw_info.hw_mode);
return 0;
}
/* Init run time data for all PFs on an engine. */
static void qed_init_cau_rt_data(struct qed_dev *cdev)
{
u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
int i, igu_sb_id;
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_igu_info *p_igu_info;
struct qed_igu_block *p_block;
struct cau_sb_entry sb_entry;
p_igu_info = p_hwfn->hw_info.p_igu_info;
for (igu_sb_id = 0;
igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) {
p_block = &p_igu_info->entry[igu_sb_id];
if (!p_block->is_pf)
continue;
qed_init_cau_sb_entry(p_hwfn, &sb_entry,
p_block->function_id, 0, 0);
STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
sb_entry);
}
}
}
static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
u32 val, wr_mbs, cache_line_size;
val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
switch (val) {
case 0:
wr_mbs = 128;
break;
case 1:
wr_mbs = 256;
break;
case 2:
wr_mbs = 512;
break;
default:
DP_INFO(p_hwfn,
"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
val);
return;
}
cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs);
switch (cache_line_size) {
case 32:
val = 0;
break;
case 64:
val = 1;
break;
case 128:
val = 2;
break;
case 256:
val = 3;
break;
default:
DP_INFO(p_hwfn,
"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
cache_line_size);
}
if (L1_CACHE_BYTES > wr_mbs)
DP_INFO(p_hwfn,
"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
L1_CACHE_BYTES, wr_mbs);
STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
if (val > 0) {
STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
}
}
static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, int hw_mode)
{
struct qed_qm_info *qm_info = &p_hwfn->qm_info;
struct qed_qm_common_rt_init_params params;
struct qed_dev *cdev = p_hwfn->cdev;
u8 vf_id, max_num_vfs;
u16 num_pfs, pf_id;
u32 concrete_fid;
int rc = 0;
qed_init_cau_rt_data(cdev);
/* Program GTT windows */
qed_gtt_init(p_hwfn);
if (p_hwfn->mcp_info) {
if (p_hwfn->mcp_info->func_info.bandwidth_max)
qm_info->pf_rl_en = true;
if (p_hwfn->mcp_info->func_info.bandwidth_min)
qm_info->pf_wfq_en = true;
}
memset(&params, 0, sizeof(params));
params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
params.pf_rl_en = qm_info->pf_rl_en;
params.pf_wfq_en = qm_info->pf_wfq_en;
params.global_rl_en = qm_info->vport_rl_en;
params.vport_wfq_en = qm_info->vport_wfq_en;
params.port_params = qm_info->qm_port_params;
qed_qm_common_rt_init(p_hwfn, &params);
qed_cxt_hw_init_common(p_hwfn);
qed_init_cache_line_size(p_hwfn, p_ptt);
rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
if (rc)
return rc;
qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
if (QED_IS_BB(p_hwfn->cdev)) {
num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
for (pf_id = 0; pf_id < num_pfs; pf_id++) {
qed_fid_pretend(p_hwfn, p_ptt, pf_id);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
}
/* pretend to original PF */
qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
}
max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
}
/* pretend to original PF */
qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
return rc;
}
static int
qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
{
u32 dpi_bit_shift, dpi_count, dpi_page_size;
u32 min_dpis;
u32 n_wids;
/* Calculate DPI size */
n_wids = max_t(u32, QED_MIN_WIDS, n_cpus);
dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids);
dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
dpi_bit_shift = ilog2(dpi_page_size / 4096);
dpi_count = pwm_region_size / dpi_page_size;
min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
p_hwfn->dpi_size = dpi_page_size;
p_hwfn->dpi_count = dpi_count;
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
if (dpi_count < min_dpis)
return -EINVAL;
return 0;
}
enum QED_ROCE_EDPM_MODE {
QED_ROCE_EDPM_MODE_ENABLE = 0,
QED_ROCE_EDPM_MODE_FORCE_ON = 1,
QED_ROCE_EDPM_MODE_DISABLE = 2,
};
bool qed_edpm_enabled(struct qed_hwfn *p_hwfn)
{
if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm)
return false;
return true;
}
static int
qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 pwm_regsize, norm_regsize;
u32 non_pwm_conn, min_addr_reg1;
u32 db_bar_size, n_cpus = 1;
u32 roce_edpm_mode;
u32 pf_dems_shift;
int rc = 0;
u8 cond;
db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
if (p_hwfn->cdev->num_hwfns > 1)
db_bar_size /= 2;
/* Calculate doorbell regions */
non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
NULL) +
qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
NULL);
norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE);
min_addr_reg1 = norm_regsize / 4096;
pwm_regsize = db_bar_size - norm_regsize;
/* Check that the normal and PWM sizes are valid */
if (db_bar_size < norm_regsize) {
DP_ERR(p_hwfn->cdev,
"Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
db_bar_size, norm_regsize);
return -EINVAL;
}
if (pwm_regsize < QED_MIN_PWM_REGION) {
DP_ERR(p_hwfn->cdev,
"PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
pwm_regsize,
QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
return -EINVAL;
}
/* Calculate number of DPIs */
roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
/* Either EDPM is mandatory, or we are attempting to allocate a
* WID per CPU.
*/
n_cpus = num_present_cpus();
rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
}
cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
(roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
if (cond || p_hwfn->dcbx_no_edpm) {
/* Either EDPM is disabled from user configuration, or it is
* disabled via DCBx, or it is not mandatory and we failed to
* allocated a WID per CPU.
*/
n_cpus = 1;
rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
if (cond)
qed_rdma_dpm_bar(p_hwfn, p_ptt);
}
p_hwfn->wid_count = (u16) n_cpus;
DP_INFO(p_hwfn,
"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
norm_regsize,
pwm_regsize,
p_hwfn->dpi_size,
p_hwfn->dpi_count,
(!qed_edpm_enabled(p_hwfn)) ?
"disabled" : "enabled", PAGE_SIZE);
if (rc) {
DP_ERR(p_hwfn,
"Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
p_hwfn->dpi_count,
p_hwfn->pf_params.rdma_pf_params.min_dpis);
return -EINVAL;
}
p_hwfn->dpi_start_offset = norm_regsize;
/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
return 0;
}
static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, int hw_mode)
{
int rc = 0;
/* In CMT the gate should be cleared by the 2nd hwfn */
if (!QED_IS_CMT(p_hwfn->cdev) || !IS_LEAD_HWFN(p_hwfn))
STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
if (rc)
return rc;
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
return 0;
}
static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_tunnel_info *p_tunn,
int hw_mode,
bool b_hw_start,
enum qed_int_mode int_mode,
bool allow_npar_tx_switch)
{
u8 rel_pf_id = p_hwfn->rel_pf_id;
int rc = 0;
if (p_hwfn->mcp_info) {
struct qed_mcp_function_info *p_info;
p_info = &p_hwfn->mcp_info->func_info;
if (p_info->bandwidth_min)
p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
/* Update rate limit once we'll actually have a link */
p_hwfn->qm_info.pf_rl = 100000;
}
qed_cxt_hw_init_pf(p_hwfn, p_ptt);
qed_int_igu_init_rt(p_hwfn);
/* Set VLAN in NIG if needed */
if (hw_mode & BIT(MODE_MF_SD)) {
DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
p_hwfn->hw_info.ovlan);
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
"Configuring LLH_FUNC_FILTER_HDR_SEL\n");
STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
1);
}
/* Enable classification by MAC if needed */
if (hw_mode & BIT(MODE_MF_SI)) {
DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
"Configuring TAGMAC_CLS_TYPE\n");
STORE_RT_REG(p_hwfn,
NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
}
/* Protocol Configuration */
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
(p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
(p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
/* Sanity check before the PF init sequence that uses DMAE */
rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
if (rc)
return rc;
/* PF Init sequence */
rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
if (rc)
return rc;
/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
if (rc)
return rc;
qed_fw_overlay_init_ram(p_hwfn, p_ptt, p_hwfn->fw_overlay_mem);
/* Pure runtime initializations - directly to the HW */
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
if (rc)
return rc;
/* Use the leading hwfn since in CMT only NIG #0 is operational */
if (IS_LEAD_HWFN(p_hwfn)) {
rc = qed_llh_hw_init_pf(p_hwfn, p_ptt);
if (rc)
return rc;
}
if (b_hw_start) {
/* enable interrupts */
qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
/* send function start command */
rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn,
allow_npar_tx_switch);
if (rc) {
DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
return rc;
}
if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
qed_wr(p_hwfn, p_ptt,
PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
0x100);
}
}
return rc;
}
int qed_pglueb_set_pfid_enable(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, bool b_enable)
{
u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
/* Configure the PF's internal FID_enable for master transactions */
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
/* Wait until value is set - try for 1 second every 50us */
for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
val = qed_rd(p_hwfn, p_ptt,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
if (val == set_val)
break;
usleep_range(50, 60);
}
if (val != set_val) {
DP_NOTICE(p_hwfn,
"PFID_ENABLE_MASTER wasn't changed after a second\n");
return -EAGAIN;
}
return 0;
}
static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_main_ptt)
{
/* Read shadow of current MFW mailbox */
qed_mcp_read_mb(p_hwfn, p_main_ptt);
memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
}
static void
qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
struct qed_drv_load_params *p_drv_load)
{
memset(p_load_req, 0, sizeof(*p_load_req));
p_load_req->drv_role = p_drv_load->is_crash_kernel ?
QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
p_load_req->override_force_load = p_drv_load->override_force_load;
}
static int qed_vf_start(struct qed_hwfn *p_hwfn,
struct qed_hw_init_params *p_params)
{
if (p_params->p_tunn) {
qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
}
p_hwfn->b_int_enabled = true;
return 0;
}
static void qed_pglueb_clear_err(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
BIT(p_hwfn->abs_pf_id));
}
int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
{
struct qed_load_req_params load_req_params;
u32 load_code, resp, param, drv_mb_param;
bool b_default_mtu = true;
struct qed_hwfn *p_hwfn;
const u32 *fw_overlays;
u32 fw_overlays_len;
u16 ether_type;
int rc = 0, i;
if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
return -EINVAL;
}
if (IS_PF(cdev)) {
rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
if (rc)
return rc;
}
for_each_hwfn(cdev, i) {
p_hwfn = &cdev->hwfns[i];
/* If management didn't provide a default, set one of our own */
if (!p_hwfn->hw_info.mtu) {
p_hwfn->hw_info.mtu = 1500;
b_default_mtu = false;
}
if (IS_VF(cdev)) {
qed_vf_start(p_hwfn, p_params);
continue;
}
rc = qed_calc_hw_mode(p_hwfn);
if (rc)
return rc;
if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING,
&cdev->mf_bits) ||
test_bit(QED_MF_8021AD_TAGGING,
&cdev->mf_bits))) {
if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits))
ether_type = ETH_P_8021Q;
else
ether_type = ETH_P_8021AD;
STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
ether_type);
STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
ether_type);
STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
ether_type);
STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
ether_type);
}
qed_fill_load_req_params(&load_req_params,
p_params->p_drv_load_params);
rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
&load_req_params);
if (rc) {
DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
return rc;
}
load_code = load_req_params.load_code;
DP_VERBOSE(p_hwfn, QED_MSG_SP,
"Load request was sent. Load code: 0x%x\n",
load_code);
/* Only relevant for recovery:
* Clear the indication after LOAD_REQ is responded by the MFW.
*/
cdev->recov_in_prog = false;
qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
/* Clean up chip from previous driver if such remains exist.
* This is not needed when the PF is the first one on the
* engine, since afterwards we are going to init the FW.
*/
if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
rc = qed_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
p_hwfn->rel_pf_id, false);
if (rc) {
qed_hw_err_notify(p_hwfn, p_hwfn->p_main_ptt,
QED_HW_ERR_RAMROD_FAIL,
"Final cleanup failed\n");
goto load_err;
}
}
/* Log and clear previous pglue_b errors if such exist */
qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt, true);
/* Enable the PF's internal FID_enable in the PXP */
rc = qed_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
true);
if (rc)
goto load_err;
/* Clear the pglue_b was_error indication.
* In E4 it must be done after the BME and the internal
* FID_enable for the PF are set, since VDMs may cause the
* indication to be set again.
*/
qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
fw_overlays = cdev->fw_data->fw_overlays;
fw_overlays_len = cdev->fw_data->fw_overlays_len;
p_hwfn->fw_overlay_mem =
qed_fw_overlay_mem_alloc(p_hwfn, fw_overlays,
fw_overlays_len);
if (!p_hwfn->fw_overlay_mem) {
DP_NOTICE(p_hwfn,
"Failed to allocate fw overlay memory\n");
rc = -ENOMEM;
goto load_err;
}
switch (load_code) {
case FW_MSG_CODE_DRV_LOAD_ENGINE:
rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
p_hwfn->hw_info.hw_mode);
if (rc)
break;
fallthrough;
case FW_MSG_CODE_DRV_LOAD_PORT:
rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
p_hwfn->hw_info.hw_mode);
if (rc)
break;
fallthrough;
case FW_MSG_CODE_DRV_LOAD_FUNCTION:
rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
p_params->p_tunn,
p_hwfn->hw_info.hw_mode,
p_params->b_hw_start,
p_params->int_mode,
p_params->allow_npar_tx_switch);
break;
default:
DP_NOTICE(p_hwfn,
"Unexpected load code [0x%08x]", load_code);
rc = -EINVAL;
break;
}
if (rc) {
DP_NOTICE(p_hwfn,
"init phase failed for loadcode 0x%x (rc %d)\n",
load_code, rc);
goto load_err;
}
rc = qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
if (rc)
return rc;
/* send DCBX attention request command */
DP_VERBOSE(p_hwfn,
QED_MSG_DCB,
"sending phony dcbx set command to trigger DCBx attention handling\n");
rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_SET_DCBX,
1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
&resp, &param);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to send DCBX attention request\n");
return rc;
}
p_hwfn->hw_init_done = true;
}
if (IS_PF(cdev)) {
p_hwfn = QED_LEADING_HWFN(cdev);
/* Get pre-negotiated values for stag, bandwidth etc. */
DP_VERBOSE(p_hwfn,
QED_MSG_SPQ,
"Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET;
rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_GET_OEM_UPDATES,
drv_mb_param, &resp, &param);
if (rc)
DP_NOTICE(p_hwfn,
"Failed to send GET_OEM_UPDATES attention request\n");
drv_mb_param = STORM_FW_VERSION;
rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
drv_mb_param, &load_code, &param);
if (rc)
DP_INFO(p_hwfn, "Failed to update firmware version\n");
if (!b_default_mtu) {
rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
p_hwfn->hw_info.mtu);
if (rc)
DP_INFO(p_hwfn,
"Failed to update default mtu\n");
}
rc = qed_mcp_ov_update_driver_state(p_hwfn,
p_hwfn->p_main_ptt,
QED_OV_DRIVER_STATE_DISABLED);
if (rc)
DP_INFO(p_hwfn, "Failed to update driver state\n");
rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
QED_OV_ESWITCH_NONE);
if (rc)
DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
}
return 0;
load_err:
/* The MFW load lock should be released also when initialization fails.
*/
qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
return rc;
}
#define QED_HW_STOP_RETRY_LIMIT (10)
static void qed_hw_timers_stop(struct qed_dev *cdev,
struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
int i;
/* close timers */
qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
if (cdev->recov_in_prog)
return;
for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
if ((!qed_rd(p_hwfn, p_ptt,
TM_REG_PF_SCAN_ACTIVE_CONN)) &&
(!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
break;
/* Dependent on number of connection/tasks, possibly
* 1ms sleep is required between polls
*/
usleep_range(1000, 2000);
}
if (i < QED_HW_STOP_RETRY_LIMIT)
return;
DP_NOTICE(p_hwfn,
"Timers linear scans are not over [Connection %02x Tasks %02x]\n",
(u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
(u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
}
void qed_hw_timers_stop_all(struct qed_dev *cdev)
{
int j;
for_each_hwfn(cdev, j) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
}
}
int qed_hw_stop(struct qed_dev *cdev)
{
struct qed_hwfn *p_hwfn;
struct qed_ptt *p_ptt;
int rc, rc2 = 0;
int j;
for_each_hwfn(cdev, j) {
p_hwfn = &cdev->hwfns[j];
p_ptt = p_hwfn->p_main_ptt;
DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
if (IS_VF(cdev)) {
qed_vf_pf_int_cleanup(p_hwfn);
rc = qed_vf_pf_reset(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn,
"qed_vf_pf_reset failed. rc = %d.\n",
rc);
rc2 = -EINVAL;
}
continue;
}
/* mark the hw as uninitialized... */
p_hwfn->hw_init_done = false;
/* Send unload command to MCP */
if (!cdev->recov_in_prog) {
rc = qed_mcp_unload_req(p_hwfn, p_ptt);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed sending a UNLOAD_REQ command. rc = %d.\n",
rc);
rc2 = -EINVAL;
}
}
qed_slowpath_irq_sync(p_hwfn);
/* After this point no MFW attentions are expected, e.g. prevent
* race between pf stop and dcbx pf update.
*/
rc = qed_sp_pf_stop(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
rc);
rc2 = -EINVAL;
}
qed_wr(p_hwfn, p_ptt,
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
/* Disable Attention Generation */
qed_int_igu_disable_int(p_hwfn, p_ptt);
qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
/* Need to wait 1ms to guarantee SBs are cleared */
usleep_range(1000, 2000);
/* Disable PF in HW blocks */
qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
if (IS_LEAD_HWFN(p_hwfn) &&
test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) &&
!QED_IS_FCOE_PERSONALITY(p_hwfn))
qed_llh_remove_mac_filter(cdev, 0,
p_hwfn->hw_info.hw_mac_addr);
if (!cdev->recov_in_prog) {
rc = qed_mcp_unload_done(p_hwfn, p_ptt);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed sending a UNLOAD_DONE command. rc = %d.\n",
rc);
rc2 = -EINVAL;
}
}
}
if (IS_PF(cdev) && !cdev->recov_in_prog) {
p_hwfn = QED_LEADING_HWFN(cdev);
p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
/* Clear the PF's internal FID_enable in the PXP.
* In CMT this should only be done for first hw-function, and
* only after all transactions have stopped for all active
* hw-functions.
*/
rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false);
if (rc) {
DP_NOTICE(p_hwfn,
"qed_pglueb_set_pfid_enable() failed. rc = %d.\n",
rc);
rc2 = -EINVAL;
}
}
return rc2;
}
int qed_hw_stop_fastpath(struct qed_dev *cdev)
{
int j;
for_each_hwfn(cdev, j) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
struct qed_ptt *p_ptt;
if (IS_VF(cdev)) {
qed_vf_pf_int_cleanup(p_hwfn);
continue;
}
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EAGAIN;
DP_VERBOSE(p_hwfn,
NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
qed_wr(p_hwfn, p_ptt,
NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
/* Need to wait 1ms to guarantee SBs are cleared */
usleep_range(1000, 2000);
qed_ptt_release(p_hwfn, p_ptt);
}
return 0;
}
int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
{
struct qed_ptt *p_ptt;
if (IS_VF(p_hwfn->cdev))
return 0;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EAGAIN;
if (p_hwfn->p_rdma_info &&
p_hwfn->p_rdma_info->active && p_hwfn->b_rdma_enabled_in_prs)
qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
/* Re-open incoming traffic */
qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
qed_ptt_release(p_hwfn, p_ptt);
return 0;
}
/* Free hwfn memory and resources acquired in hw_hwfn_prepare */
static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
{
qed_ptt_pool_free(p_hwfn);
kfree(p_hwfn->hw_info.p_igu_info);
p_hwfn->hw_info.p_igu_info = NULL;
}
/* Setup bar access */
static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
{
/* clear indirect access */
if (QED_IS_AH(p_hwfn->cdev)) {
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
} else {
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
}
/* Clean previous pglue_b errors if such exist */
qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
/* enable internal target-read */
qed_wr(p_hwfn, p_hwfn->p_main_ptt,
PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
}
static void get_function_id(struct qed_hwfn *p_hwfn)
{
/* ME Register */
p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
PXP_PF_ME_OPAQUE_ADDR);
p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
PXP_CONCRETE_FID_PFID);
p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
PXP_CONCRETE_FID_PORT);
DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
"Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
}
static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
{
u32 *feat_num = p_hwfn->hw_info.feat_num;
struct qed_sb_cnt_info sb_cnt;
u32 non_l2_sbs = 0;
memset(&sb_cnt, 0, sizeof(sb_cnt));
qed_int_get_num_sbs(p_hwfn, &sb_cnt);
if (IS_ENABLED(CONFIG_QED_RDMA) &&
QED_IS_RDMA_PERSONALITY(p_hwfn)) {
/* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
* the status blocks equally between L2 / RoCE but with
* consideration as to how many l2 queues / cnqs we have.
*/
feat_num[QED_RDMA_CNQ] =
min_t(u32, sb_cnt.cnt / 2,
RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
non_l2_sbs = feat_num[QED_RDMA_CNQ];
}
if (QED_IS_L2_PERSONALITY(p_hwfn)) {
/* Start by allocating VF queues, then PF's */
feat_num[QED_VF_L2_QUE] = min_t(u32,
RESC_NUM(p_hwfn, QED_L2_QUEUE),
sb_cnt.iov_cnt);
feat_num[QED_PF_L2_QUE] = min_t(u32,
sb_cnt.cnt - non_l2_sbs,
RESC_NUM(p_hwfn,
QED_L2_QUEUE) -
FEAT_NUM(p_hwfn,
QED_VF_L2_QUE));
}
if (QED_IS_FCOE_PERSONALITY(p_hwfn))
feat_num[QED_FCOE_CQ] = min_t(u32, sb_cnt.cnt,
RESC_NUM(p_hwfn,
QED_CMDQS_CQS));
if (QED_IS_ISCSI_PERSONALITY(p_hwfn))
feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt,
RESC_NUM(p_hwfn,
QED_CMDQS_CQS));
DP_VERBOSE(p_hwfn,
NETIF_MSG_PROBE,
"#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n",
(int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
(int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
(int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
(int)FEAT_NUM(p_hwfn, QED_FCOE_CQ),
(int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ),
(int)sb_cnt.cnt);
}
const char *qed_hw_get_resc_name(enum qed_resources res_id)
{
switch (res_id) {
case QED_L2_QUEUE:
return "L2_QUEUE";
case QED_VPORT:
return "VPORT";
case QED_RSS_ENG:
return "RSS_ENG";
case QED_PQ:
return "PQ";
case QED_RL:
return "RL";
case QED_MAC:
return "MAC";
case QED_VLAN:
return "VLAN";
case QED_RDMA_CNQ_RAM:
return "RDMA_CNQ_RAM";
case QED_ILT:
return "ILT";
case QED_LL2_RAM_QUEUE:
return "LL2_RAM_QUEUE";
case QED_LL2_CTX_QUEUE:
return "LL2_CTX_QUEUE";
case QED_CMDQS_CQS:
return "CMDQS_CQS";
case QED_RDMA_STATS_QUEUE:
return "RDMA_STATS_QUEUE";
case QED_BDQ:
return "BDQ";
case QED_SB:
return "SB";
default:
return "UNKNOWN_RESOURCE";
}
}
static int
__qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
enum qed_resources res_id,
u32 resc_max_val, u32 *p_mcp_resp)
{
int rc;
rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
resc_max_val, p_mcp_resp);
if (rc) {
DP_NOTICE(p_hwfn,
"MFW response failure for a max value setting of resource %d [%s]\n",
res_id, qed_hw_get_resc_name(res_id));
return rc;
}
if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
DP_INFO(p_hwfn,
"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
return 0;
}
static u32 qed_hsi_def_val[][MAX_CHIP_IDS] = {
{MAX_NUM_VFS_BB, MAX_NUM_VFS_K2},
{MAX_NUM_L2_QUEUES_BB, MAX_NUM_L2_QUEUES_K2},
{MAX_NUM_PORTS_BB, MAX_NUM_PORTS_K2},
{MAX_SB_PER_PATH_BB, MAX_SB_PER_PATH_K2,},
{MAX_NUM_PFS_BB, MAX_NUM_PFS_K2},
{MAX_NUM_VPORTS_BB, MAX_NUM_VPORTS_K2},
{ETH_RSS_ENGINE_NUM_BB, ETH_RSS_ENGINE_NUM_K2},
{MAX_QM_TX_QUEUES_BB, MAX_QM_TX_QUEUES_K2},
{PXP_NUM_ILT_RECORDS_BB, PXP_NUM_ILT_RECORDS_K2},
{RDMA_NUM_STATISTIC_COUNTERS_BB, RDMA_NUM_STATISTIC_COUNTERS_K2},
{MAX_QM_GLOBAL_RLS, MAX_QM_GLOBAL_RLS},
{PBF_MAX_CMD_LINES, PBF_MAX_CMD_LINES},
{BTB_MAX_BLOCKS_BB, BTB_MAX_BLOCKS_K2},
};
u32 qed_get_hsi_def_val(struct qed_dev *cdev, enum qed_hsi_def_type type)
{
enum chip_ids chip_id = QED_IS_BB(cdev) ? CHIP_BB : CHIP_K2;
if (type >= QED_NUM_HSI_DEFS) {
DP_ERR(cdev, "Unexpected HSI definition type [%d]\n", type);
return 0;
}
return qed_hsi_def_val[type][chip_id];
}
static int
qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 resc_max_val, mcp_resp;
u8 res_id;
int rc;
for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
switch (res_id) {
case QED_LL2_RAM_QUEUE:
resc_max_val = MAX_NUM_LL2_RX_RAM_QUEUES;
break;
case QED_LL2_CTX_QUEUE:
resc_max_val = MAX_NUM_LL2_RX_CTX_QUEUES;
break;
case QED_RDMA_CNQ_RAM:
/* No need for a case for QED_CMDQS_CQS since
* CNQ/CMDQS are the same resource.
*/
resc_max_val = NUM_OF_GLOBAL_QUEUES;
break;
case QED_RDMA_STATS_QUEUE:
resc_max_val =
NUM_OF_RDMA_STATISTIC_COUNTERS(p_hwfn->cdev);
break;
case QED_BDQ:
resc_max_val = BDQ_NUM_RESOURCES;
break;
default:
continue;
}
rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
resc_max_val, &mcp_resp);
if (rc)
return rc;
/* There's no point to continue to the next resource if the
* command is not supported by the MFW.
* We do continue if the command is supported but the resource
* is unknown to the MFW. Such a resource will be later
* configured with the default allocation values.
*/
if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
return -EINVAL;
}
return 0;
}
static
int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
enum qed_resources res_id,
u32 *p_resc_num, u32 *p_resc_start)
{
u8 num_funcs = p_hwfn->num_funcs_on_engine;
struct qed_dev *cdev = p_hwfn->cdev;
switch (res_id) {
case QED_L2_QUEUE:
*p_resc_num = NUM_OF_L2_QUEUES(cdev) / num_funcs;
break;
case QED_VPORT:
*p_resc_num = NUM_OF_VPORTS(cdev) / num_funcs;
break;
case QED_RSS_ENG:
*p_resc_num = NUM_OF_RSS_ENGINES(cdev) / num_funcs;
break;
case QED_PQ:
*p_resc_num = NUM_OF_QM_TX_QUEUES(cdev) / num_funcs;
*p_resc_num &= ~0x7; /* The granularity of the PQs is 8 */
break;
case QED_RL:
*p_resc_num = NUM_OF_QM_GLOBAL_RLS(cdev) / num_funcs;
break;
case QED_MAC:
case QED_VLAN:
/* Each VFC resource can accommodate both a MAC and a VLAN */
*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
break;
case QED_ILT:
*p_resc_num = NUM_OF_PXP_ILT_RECORDS(cdev) / num_funcs;
break;
case QED_LL2_RAM_QUEUE:
*p_resc_num = MAX_NUM_LL2_RX_RAM_QUEUES / num_funcs;
break;
case QED_LL2_CTX_QUEUE:
*p_resc_num = MAX_NUM_LL2_RX_CTX_QUEUES / num_funcs;
break;
case QED_RDMA_CNQ_RAM:
case QED_CMDQS_CQS:
/* CNQ/CMDQS are the same resource */
*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
break;
case QED_RDMA_STATS_QUEUE:
*p_resc_num = NUM_OF_RDMA_STATISTIC_COUNTERS(cdev) / num_funcs;
break;
case QED_BDQ:
if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
p_hwfn->hw_info.personality != QED_PCI_FCOE)
*p_resc_num = 0;
else
*p_resc_num = 1;
break;
case QED_SB:
/* Since we want its value to reflect whether MFW supports
* the new scheme, have a default of 0.
*/
*p_resc_num = 0;
break;
default:
return -EINVAL;
}
switch (res_id) {
case QED_BDQ:
if (!*p_resc_num)
*p_resc_start = 0;
else if (p_hwfn->cdev->num_ports_in_engine == 4)
*p_resc_start = p_hwfn->port_id;
else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
*p_resc_start = p_hwfn->port_id;
else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
*p_resc_start = p_hwfn->port_id + 2;
break;
default:
*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
break;
}
return 0;
}
static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
enum qed_resources res_id)
{
u32 dflt_resc_num = 0, dflt_resc_start = 0;
u32 mcp_resp, *p_resc_num, *p_resc_start;
int rc;
p_resc_num = &RESC_NUM(p_hwfn, res_id);
p_resc_start = &RESC_START(p_hwfn, res_id);
rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
&dflt_resc_start);
if (rc) {
DP_ERR(p_hwfn,
"Failed to get default amount for resource %d [%s]\n",
res_id, qed_hw_get_resc_name(res_id));
return rc;
}
rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
&mcp_resp, p_resc_num, p_resc_start);
if (rc) {
DP_NOTICE(p_hwfn,
"MFW response failure for an allocation request for resource %d [%s]\n",
res_id, qed_hw_get_resc_name(res_id));
return rc;
}
/* Default driver values are applied in the following cases:
* - The resource allocation MB command is not supported by the MFW
* - There is an internal error in the MFW while processing the request
* - The resource ID is unknown to the MFW
*/
if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
DP_INFO(p_hwfn,
"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
res_id,
qed_hw_get_resc_name(res_id),
mcp_resp, dflt_resc_num, dflt_resc_start);
*p_resc_num = dflt_resc_num;
*p_resc_start = dflt_resc_start;
goto out;
}
out:
/* PQs have to divide by 8 [that's the HW granularity].
* Reduce number so it would fit.
*/
if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
DP_INFO(p_hwfn,
"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
*p_resc_num,
(*p_resc_num) & ~0x7,
*p_resc_start, (*p_resc_start) & ~0x7);
*p_resc_num &= ~0x7;
*p_resc_start &= ~0x7;
}
return 0;
}
static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
{
int rc;
u8 res_id;
for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
rc = __qed_hw_set_resc_info(p_hwfn, res_id);
if (rc)
return rc;
}
return 0;
}
static int qed_hw_get_ppfid_bitmap(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt)
{
struct qed_dev *cdev = p_hwfn->cdev;
u8 native_ppfid_idx;
int rc;
/* Calculation of BB/AH is different for native_ppfid_idx */
if (QED_IS_BB(cdev))
native_ppfid_idx = p_hwfn->rel_pf_id;
else
native_ppfid_idx = p_hwfn->rel_pf_id /
cdev->num_ports_in_engine;
rc = qed_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
if (rc != 0 && rc != -EOPNOTSUPP)
return rc;
else if (rc == -EOPNOTSUPP)
cdev->ppfid_bitmap = 0x1 << native_ppfid_idx;
if (!(cdev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
DP_INFO(p_hwfn,
"Fix the PPFID bitmap to include the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
native_ppfid_idx, cdev->ppfid_bitmap);
cdev->ppfid_bitmap = 0x1 << native_ppfid_idx;
}
return 0;
}
static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_resc_unlock_params resc_unlock_params;
struct qed_resc_lock_params resc_lock_params;
bool b_ah = QED_IS_AH(p_hwfn->cdev);
u8 res_id;
int rc;
/* Setting the max values of the soft resources and the following
* resources allocation queries should be atomic. Since several PFs can
* run in parallel - a resource lock is needed.
* If either the resource lock or resource set value commands are not
* supported - skip the the max values setting, release the lock if
* needed, and proceed to the queries. Other failures, including a
* failure to acquire the lock, will cause this function to fail.
*/
qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
QED_RESC_LOCK_RESC_ALLOC, false);
rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
if (rc && rc != -EINVAL) {
return rc;
} else if (rc == -EINVAL) {
DP_INFO(p_hwfn,
"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
} else if (!rc && !resc_lock_params.b_granted) {
DP_NOTICE(p_hwfn,
"Failed to acquire the resource lock for the resource allocation commands\n");
return -EBUSY;
} else {
rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
if (rc && rc != -EINVAL) {
DP_NOTICE(p_hwfn,
"Failed to set the max values of the soft resources\n");
goto unlock_and_exit;
} else if (rc == -EINVAL) {
DP_INFO(p_hwfn,
"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
&resc_unlock_params);
if (rc)
DP_INFO(p_hwfn,
"Failed to release the resource lock for the resource allocation commands\n");
}
}
rc = qed_hw_set_resc_info(p_hwfn);
if (rc)
goto unlock_and_exit;
if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
if (rc)
DP_INFO(p_hwfn,
"Failed to release the resource lock for the resource allocation commands\n");
}
/* PPFID bitmap */
if (IS_LEAD_HWFN(p_hwfn)) {
rc = qed_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
if (rc)
return rc;
}
/* Sanity for ILT */
if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
(!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
RESC_START(p_hwfn, QED_ILT),
RESC_END(p_hwfn, QED_ILT) - 1);
return -EINVAL;
}
/* This will also learn the number of SBs from MFW */
if (qed_int_igu_reset_cam(p_hwfn, p_ptt))
return -EINVAL;
qed_hw_set_feat(p_hwfn);
for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
qed_hw_get_resc_name(res_id),
RESC_NUM(p_hwfn, res_id),
RESC_START(p_hwfn, res_id));
return 0;
unlock_and_exit:
if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
return rc;
}
static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities, fld;
u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
struct qed_mcp_link_speed_params *ext_speed;
struct qed_mcp_link_capabilities *p_caps;
struct qed_mcp_link_params *link;
int i;
/* Read global nvm_cfg address */
nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
/* Verify MCP has initialized it */
if (!nvm_cfg_addr) {
DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
return -EINVAL;
}
/* Read nvm_cfg1 (Notice this is just offset, and not offsize (TBD) */
nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, glob) +
offsetof(struct nvm_cfg1_glob, core_cfg);
core_cfg = qed_rd(p_hwfn, p_ptt, addr);
switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_2X50G_R1:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_4X50G_R1:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_1X100G_R2:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_2X100G_R2:
case NVM_CFG1_GLOB_NETWORK_PORT_MODE_AHP_1X100G_R4:
break;
default:
DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
break;
}
/* Read default link configuration */
link = &p_hwfn->mcp_info->link_input;
p_caps = &p_hwfn->mcp_info->link_capabilities;
port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
link_temp = qed_rd(p_hwfn, p_ptt,
port_cfg_addr +
offsetof(struct nvm_cfg1_port, speed_cap_mask));
link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
link->speed.advertised_speeds = link_temp;
p_caps->speed_capabilities = link->speed.advertised_speeds;
link_temp = qed_rd(p_hwfn, p_ptt,
port_cfg_addr +
offsetof(struct nvm_cfg1_port, link_settings));
switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
link->speed.autoneg = true;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
link->speed.forced_speed = 1000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
link->speed.forced_speed = 10000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
link->speed.forced_speed = 20000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
link->speed.forced_speed = 25000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
link->speed.forced_speed = 40000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
link->speed.forced_speed = 50000;
break;
case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
link->speed.forced_speed = 100000;
break;
default:
DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
}
p_caps->default_speed_autoneg = link->speed.autoneg;
fld = GET_MFW_FIELD(link_temp, NVM_CFG1_PORT_DRV_FLOW_CONTROL);
link->pause.autoneg = !!(fld & NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
link->pause.forced_rx = !!(fld & NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
link->pause.forced_tx = !!(fld & NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
link->loopback_mode = 0;
if (p_hwfn->mcp_info->capabilities &
FW_MB_PARAM_FEATURE_SUPPORT_FEC_CONTROL) {
switch (GET_MFW_FIELD(link_temp,
NVM_CFG1_PORT_FEC_FORCE_MODE)) {
case NVM_CFG1_PORT_FEC_FORCE_MODE_NONE:
p_caps->fec_default |= QED_FEC_MODE_NONE;
break;
case NVM_CFG1_PORT_FEC_FORCE_MODE_FIRECODE:
p_caps->fec_default |= QED_FEC_MODE_FIRECODE;
break;
case NVM_CFG1_PORT_FEC_FORCE_MODE_RS:
p_caps->fec_default |= QED_FEC_MODE_RS;
break;
case NVM_CFG1_PORT_FEC_FORCE_MODE_AUTO:
p_caps->fec_default |= QED_FEC_MODE_AUTO;
break;
default:
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"unknown FEC mode in 0x%08x\n", link_temp);
}
} else {
p_caps->fec_default = QED_FEC_MODE_UNSUPPORTED;
}
link->fec = p_caps->fec_default;
if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr +
offsetof(struct nvm_cfg1_port, ext_phy));
link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
p_caps->default_eee = QED_MCP_EEE_ENABLED;
link->eee.enable = true;
switch (link_temp) {
case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
p_caps->default_eee = QED_MCP_EEE_DISABLED;
link->eee.enable = false;
break;
case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
break;
case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
p_caps->eee_lpi_timer =
EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
break;
case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
break;
}
link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
link->eee.tx_lpi_enable = link->eee.enable;
link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV;
} else {
p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED;
}
if (p_hwfn->mcp_info->capabilities &
FW_MB_PARAM_FEATURE_SUPPORT_EXT_SPEED_FEC_CONTROL) {
ext_speed = &link->ext_speed;
link_temp = qed_rd(p_hwfn, p_ptt,
port_cfg_addr +
offsetof(struct nvm_cfg1_port,
extended_speed));
fld = GET_MFW_FIELD(link_temp, NVM_CFG1_PORT_EXTENDED_SPEED);
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_AN)
ext_speed->autoneg = true;
ext_speed->forced_speed = 0;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_1G)
ext_speed->forced_speed |= QED_EXT_SPEED_1G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_10G)
ext_speed->forced_speed |= QED_EXT_SPEED_10G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_20G)
ext_speed->forced_speed |= QED_EXT_SPEED_20G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_25G)
ext_speed->forced_speed |= QED_EXT_SPEED_25G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_40G)
ext_speed->forced_speed |= QED_EXT_SPEED_40G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_50G_R)
ext_speed->forced_speed |= QED_EXT_SPEED_50G_R;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_50G_R2)
ext_speed->forced_speed |= QED_EXT_SPEED_50G_R2;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_100G_R2)
ext_speed->forced_speed |= QED_EXT_SPEED_100G_R2;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_100G_R4)
ext_speed->forced_speed |= QED_EXT_SPEED_100G_R4;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_EXTND_SPD_100G_P4)
ext_speed->forced_speed |= QED_EXT_SPEED_100G_P4;
fld = GET_MFW_FIELD(link_temp,
NVM_CFG1_PORT_EXTENDED_SPEED_CAP);
ext_speed->advertised_speeds = 0;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_RESERVED)
ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_RES;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_1G)
ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_1G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_10G)
ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_10G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_20G)
ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_20G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_25G)
ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_25G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_40G)
ext_speed->advertised_speeds |= QED_EXT_SPEED_MASK_40G;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_50G_R)
ext_speed->advertised_speeds |=
QED_EXT_SPEED_MASK_50G_R;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_50G_R2)
ext_speed->advertised_speeds |=
QED_EXT_SPEED_MASK_50G_R2;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_100G_R2)
ext_speed->advertised_speeds |=
QED_EXT_SPEED_MASK_100G_R2;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_100G_R4)
ext_speed->advertised_speeds |=
QED_EXT_SPEED_MASK_100G_R4;
if (fld & NVM_CFG1_PORT_EXTENDED_SPEED_CAP_EXTND_SPD_100G_P4)
ext_speed->advertised_speeds |=
QED_EXT_SPEED_MASK_100G_P4;
link_temp = qed_rd(p_hwfn, p_ptt,
port_cfg_addr +
offsetof(struct nvm_cfg1_port,
extended_fec_mode));
link->ext_fec_mode = link_temp;
p_caps->default_ext_speed_caps = ext_speed->advertised_speeds;
p_caps->default_ext_speed = ext_speed->forced_speed;
p_caps->default_ext_autoneg = ext_speed->autoneg;
p_caps->default_ext_fec = link->ext_fec_mode;
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Read default extended link config: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, FEC: 0x%02x\n",
ext_speed->forced_speed,
ext_speed->advertised_speeds, ext_speed->autoneg,
p_caps->default_ext_fec);
}
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x, EEE: 0x%02x [0x%08x usec], FEC: 0x%02x\n",
link->speed.forced_speed, link->speed.advertised_speeds,
link->speed.autoneg, link->pause.autoneg,
p_caps->default_eee, p_caps->eee_lpi_timer,
p_caps->fec_default);
if (IS_LEAD_HWFN(p_hwfn)) {
struct qed_dev *cdev = p_hwfn->cdev;
/* Read Multi-function information from shmem */
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, glob) +
offsetof(struct nvm_cfg1_glob, generic_cont0);
generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
NVM_CFG1_GLOB_MF_MODE_OFFSET;
switch (mf_mode) {
case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS);
break;
case NVM_CFG1_GLOB_MF_MODE_UFP:
cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
BIT(QED_MF_LLH_PROTO_CLSS) |
BIT(QED_MF_UFP_SPECIFIC) |
BIT(QED_MF_8021Q_TAGGING) |
BIT(QED_MF_DONT_ADD_VLAN0_TAG);
break;
case NVM_CFG1_GLOB_MF_MODE_BD:
cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
BIT(QED_MF_LLH_PROTO_CLSS) |
BIT(QED_MF_8021AD_TAGGING) |
BIT(QED_MF_DONT_ADD_VLAN0_TAG);
break;
case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
BIT(QED_MF_LLH_PROTO_CLSS) |
BIT(QED_MF_LL2_NON_UNICAST) |
BIT(QED_MF_INTER_PF_SWITCH) |
BIT(QED_MF_DISABLE_ARFS);
break;
case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
BIT(QED_MF_LLH_PROTO_CLSS) |
BIT(QED_MF_LL2_NON_UNICAST);
if (QED_IS_BB(p_hwfn->cdev))
cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF);
break;
}
DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
cdev->mf_bits);
/* In CMT the PF is unknown when the GFS block processes the
* packet. Therefore cannot use searcher as it has a per PF
* database, and thus ARFS must be disabled.
*
*/
if (QED_IS_CMT(cdev))
cdev->mf_bits |= BIT(QED_MF_DISABLE_ARFS);
}
DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
p_hwfn->cdev->mf_bits);
/* Read device capabilities information from shmem */
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, glob) +
offsetof(struct nvm_cfg1_glob, device_capabilities);
device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
__set_bit(QED_DEV_CAP_ETH,
&p_hwfn->hw_info.device_capabilities);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
__set_bit(QED_DEV_CAP_FCOE,
&p_hwfn->hw_info.device_capabilities);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
__set_bit(QED_DEV_CAP_ISCSI,
&p_hwfn->hw_info.device_capabilities);
if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
__set_bit(QED_DEV_CAP_ROCE,
&p_hwfn->hw_info.device_capabilities);
/* Read device serial number information from shmem */
addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
offsetof(struct nvm_cfg1, glob) +
offsetof(struct nvm_cfg1_glob, serial_number);
for (i = 0; i < 4; i++)
p_hwfn->hw_info.part_num[i] = qed_rd(p_hwfn, p_ptt, addr + i * 4);
return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
}
static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
struct qed_dev *cdev = p_hwfn->cdev;
num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
* in the other bits are selected.
* Bits 1-15 are for functions 1-15, respectively, and their value is
* '0' only for enabled functions (function 0 always exists and
* enabled).
* In case of CMT, only the "even" functions are enabled, and thus the
* number of functions for both hwfns is learnt from the same bits.
*/
reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
if (reg_function_hide & 0x1) {
if (QED_IS_BB(cdev)) {
if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
num_funcs = 0;
eng_mask = 0xaaaa;
} else {
num_funcs = 1;
eng_mask = 0x5554;
}
} else {
num_funcs = 1;
eng_mask = 0xfffe;
}
/* Get the number of the enabled functions on the engine */
tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
while (tmp) {
if (tmp & 0x1)
num_funcs++;
tmp >>= 0x1;
}
/* Get the PF index within the enabled functions */
low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
tmp = reg_function_hide & eng_mask & low_pfs_mask;
while (tmp) {
if (tmp & 0x1)
enabled_func_idx--;
tmp >>= 0x1;
}
}
p_hwfn->num_funcs_on_engine = num_funcs;
p_hwfn->enabled_func_idx = enabled_func_idx;
DP_VERBOSE(p_hwfn,
NETIF_MSG_PROBE,
"PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
p_hwfn->rel_pf_id,
p_hwfn->abs_pf_id,
p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
}
static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
u32 addr, global_offsize, global_addr, port_mode;
struct qed_dev *cdev = p_hwfn->cdev;
/* In CMT there is always only one port */
if (cdev->num_hwfns > 1) {
cdev->num_ports_in_engine = 1;
cdev->num_ports = 1;
return;
}
/* Determine the number of ports per engine */
port_mode = qed_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE);
switch (port_mode) {
case 0x0:
cdev->num_ports_in_engine = 1;
break;
case 0x1:
cdev->num_ports_in_engine = 2;
break;
case 0x2:
cdev->num_ports_in_engine = 4;
break;
default:
DP_NOTICE(p_hwfn, "Unknown port mode 0x%08x\n", port_mode);
cdev->num_ports_in_engine = 1; /* Default to something */
break;
}
/* Get the total number of ports of the device */
addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
PUBLIC_GLOBAL);
global_offsize = qed_rd(p_hwfn, p_ptt, addr);
global_addr = SECTION_ADDR(global_offsize, 0);
addr = global_addr + offsetof(struct public_global, max_ports);
cdev->num_ports = (u8)qed_rd(p_hwfn, p_ptt, addr);
}
static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_mcp_link_capabilities *p_caps;
u32 eee_status;
p_caps = &p_hwfn->mcp_info->link_capabilities;
if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED)
return;
p_caps->eee_speed_caps = 0;
eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
offsetof(struct public_port, eee_status));
eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
EEE_SUPPORTED_SPEED_OFFSET;
if (eee_status & EEE_1G_SUPPORTED)
p_caps->eee_speed_caps |= QED_EEE_1G_ADV;
if (eee_status & EEE_10G_ADV)
p_caps->eee_speed_caps |= QED_EEE_10G_ADV;
}
static int
qed_get_hw_info(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
enum qed_pci_personality personality)
{
int rc;
/* Since all information is common, only first hwfns should do this */
if (IS_LEAD_HWFN(p_hwfn)) {
rc = qed_iov_hw_info(p_hwfn);
if (rc)
return rc;
}
if (IS_LEAD_HWFN(p_hwfn))
qed_hw_info_port_num(p_hwfn, p_ptt);
qed_mcp_get_capabilities(p_hwfn, p_ptt);
qed_hw_get_nvm_info(p_hwfn, p_ptt);
rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
if (rc)
return rc;
if (qed_mcp_is_init(p_hwfn))
ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
p_hwfn->mcp_info->func_info.mac);
else
eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
if (qed_mcp_is_init(p_hwfn)) {
if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
p_hwfn->hw_info.ovlan =
p_hwfn->mcp_info->func_info.ovlan;
qed_mcp_cmd_port_init(p_hwfn, p_ptt);
qed_get_eee_caps(p_hwfn, p_ptt);
qed_mcp_read_ufp_config(p_hwfn, p_ptt);
}
if (qed_mcp_is_init(p_hwfn)) {
enum qed_pci_personality protocol;
protocol = p_hwfn->mcp_info->func_info.protocol;
p_hwfn->hw_info.personality = protocol;
}
if (QED_IS_ROCE_PERSONALITY(p_hwfn))
p_hwfn->hw_info.multi_tc_roce_en = true;
p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
p_hwfn->hw_info.num_active_tc = 1;
qed_get_num_funcs(p_hwfn, p_ptt);
if (qed_mcp_is_init(p_hwfn))
p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
return qed_hw_get_resc(p_hwfn, p_ptt);
}
static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_dev *cdev = p_hwfn->cdev;
u16 device_id_mask;
u32 tmp;
/* Read Vendor Id / Device Id */
pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
/* Determine type */
device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
switch (device_id_mask) {
case QED_DEV_ID_MASK_BB:
cdev->type = QED_DEV_TYPE_BB;
break;
case QED_DEV_ID_MASK_AH:
cdev->type = QED_DEV_TYPE_AH;
break;
default:
DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
return -EBUSY;
}
cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
MASK_FIELD(CHIP_REV, cdev->chip_rev);
/* Learn number of HW-functions */
tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
if (tmp & (1 << p_hwfn->rel_pf_id)) {
DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
cdev->num_hwfns = 2;
} else {
cdev->num_hwfns = 1;
}
cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt,
MISCS_REG_CHIP_TEST_REG) >> 4;
MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
MASK_FIELD(CHIP_METAL, cdev->chip_metal);
DP_INFO(cdev->hwfns,
"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
QED_IS_BB(cdev) ? "BB" : "AH",
'A' + cdev->chip_rev,
(int)cdev->chip_metal,
cdev->chip_num, cdev->chip_rev,
cdev->chip_bond_id, cdev->chip_metal);
return 0;
}
static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
void __iomem *p_regview,
void __iomem *p_doorbells,
u64 db_phys_addr,
enum qed_pci_personality personality)
{
struct qed_dev *cdev = p_hwfn->cdev;
int rc = 0;
/* Split PCI bars evenly between hwfns */
p_hwfn->regview = p_regview;
p_hwfn->doorbells = p_doorbells;
p_hwfn->db_phys_addr = db_phys_addr;
if (IS_VF(p_hwfn->cdev))
return qed_vf_hw_prepare(p_hwfn);
/* Validate that chip access is feasible */
if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
DP_ERR(p_hwfn,
"Reading the ME register returns all Fs; Preventing further chip access\n");
return -EINVAL;
}
get_function_id(p_hwfn);
/* Allocate PTT pool */
rc = qed_ptt_pool_alloc(p_hwfn);
if (rc)
goto err0;
/* Allocate the main PTT */
p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
/* First hwfn learns basic information, e.g., number of hwfns */
if (!p_hwfn->my_id) {
rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
if (rc)
goto err1;
}
qed_hw_hwfn_prepare(p_hwfn);
/* Initialize MCP structure */
rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
if (rc) {
DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
goto err1;
}
/* Read the device configuration information from the HW and SHMEM */
rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
if (rc) {
DP_NOTICE(p_hwfn, "Failed to get HW information\n");
goto err2;
}
/* Sending a mailbox to the MFW should be done after qed_get_hw_info()
* is called as it sets the ports number in an engine.
*/
if (IS_LEAD_HWFN(p_hwfn) && !cdev->recov_in_prog) {
rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
if (rc)
DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
}
/* NVRAM info initialization and population */
if (IS_LEAD_HWFN(p_hwfn)) {
rc = qed_mcp_nvm_info_populate(p_hwfn);
if (rc) {
DP_NOTICE(p_hwfn,
"Failed to populate nvm info shadow\n");
goto err2;
}
}
/* Allocate the init RT array and initialize the init-ops engine */
rc = qed_init_alloc(p_hwfn);
if (rc)
goto err3;
return rc;
err3:
if (IS_LEAD_HWFN(p_hwfn))
qed_mcp_nvm_info_free(p_hwfn);
err2:
if (IS_LEAD_HWFN(p_hwfn))
qed_iov_free_hw_info(p_hwfn->cdev);
qed_mcp_free(p_hwfn);
err1:
qed_hw_hwfn_free(p_hwfn);
err0:
return rc;
}
int qed_hw_prepare(struct qed_dev *cdev,
int personality)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
int rc;
/* Store the precompiled init data ptrs */
if (IS_PF(cdev))
qed_init_iro_array(cdev);
/* Initialize the first hwfn - will learn number of hwfns */
rc = qed_hw_prepare_single(p_hwfn,
cdev->regview,
cdev->doorbells,
cdev->db_phys_addr,
personality);
if (rc)
return rc;
personality = p_hwfn->hw_info.personality;
/* Initialize the rest of the hwfns */
if (cdev->num_hwfns > 1) {
void __iomem *p_regview, *p_doorbell;
u64 db_phys_addr;
u32 offset;
/* adjust bar offset for second engine */
offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
BAR_ID_0) / 2;
p_regview = cdev->regview + offset;
offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
BAR_ID_1) / 2;
p_doorbell = cdev->doorbells + offset;
db_phys_addr = cdev->db_phys_addr + offset;
/* prepare second hw function */
rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
p_doorbell, db_phys_addr,
personality);
/* in case of error, need to free the previously
* initiliazed hwfn 0.
*/
if (rc) {
if (IS_PF(cdev)) {
qed_init_free(p_hwfn);
qed_mcp_nvm_info_free(p_hwfn);
qed_mcp_free(p_hwfn);
qed_hw_hwfn_free(p_hwfn);
}
}
}
return rc;
}
void qed_hw_remove(struct qed_dev *cdev)
{
struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
int i;
if (IS_PF(cdev))
qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
QED_OV_DRIVER_STATE_NOT_LOADED);
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
if (IS_VF(cdev)) {
qed_vf_pf_release(p_hwfn);
continue;
}
qed_init_free(p_hwfn);
qed_hw_hwfn_free(p_hwfn);
qed_mcp_free(p_hwfn);
}
qed_iov_free_hw_info(cdev);
qed_mcp_nvm_info_free(p_hwfn);
}
int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
u16 min, max;
min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
DP_NOTICE(p_hwfn,
"l2_queue id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return -EINVAL;
}
*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
return 0;
}
int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
u8 min, max;
min = (u8)RESC_START(p_hwfn, QED_VPORT);
max = min + RESC_NUM(p_hwfn, QED_VPORT);
DP_NOTICE(p_hwfn,
"vport id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return -EINVAL;
}
*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
return 0;
}
int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
{
if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
u8 min, max;
min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
DP_NOTICE(p_hwfn,
"rss_eng id [%d] is not valid, available indices [%d - %d]\n",
src_id, min, max);
return -EINVAL;
}
*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
return 0;
}
static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
u32 hw_addr, void *p_eth_qzone,
size_t eth_qzone_size, u8 timeset)
{
struct coalescing_timeset *p_coal_timeset;
if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
return -EINVAL;
}
p_coal_timeset = p_eth_qzone;
memset(p_eth_qzone, 0, eth_qzone_size);
SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
return 0;
}
int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle)
{
struct qed_queue_cid *p_cid = p_handle;
struct qed_hwfn *p_hwfn;
struct qed_ptt *p_ptt;
int rc = 0;
p_hwfn = p_cid->p_owner;
if (IS_VF(p_hwfn->cdev))
return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid);
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EAGAIN;
if (rx_coal) {
rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
if (rc)
goto out;
p_hwfn->cdev->rx_coalesce_usecs = rx_coal;
}
if (tx_coal) {
rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
if (rc)
goto out;
p_hwfn->cdev->tx_coalesce_usecs = tx_coal;
}
out:
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 coalesce, struct qed_queue_cid *p_cid)
{
struct ustorm_eth_queue_zone eth_qzone;
u8 timeset, timer_res;
u32 address;
int rc;
/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
if (coalesce <= 0x7F) {
timer_res = 0;
} else if (coalesce <= 0xFF) {
timer_res = 1;
} else if (coalesce <= 0x1FF) {
timer_res = 2;
} else {
DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
return -EINVAL;
}
timeset = (u8)(coalesce >> timer_res);
rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
p_cid->sb_igu_id, false);
if (rc)
goto out;
address = BAR0_MAP_REG_USDM_RAM +
USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
sizeof(struct ustorm_eth_queue_zone), timeset);
if (rc)
goto out;
out:
return rc;
}
int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u16 coalesce, struct qed_queue_cid *p_cid)
{
struct xstorm_eth_queue_zone eth_qzone;
u8 timeset, timer_res;
u32 address;
int rc;
/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
if (coalesce <= 0x7F) {
timer_res = 0;
} else if (coalesce <= 0xFF) {
timer_res = 1;
} else if (coalesce <= 0x1FF) {
timer_res = 2;
} else {
DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
return -EINVAL;
}
timeset = (u8)(coalesce >> timer_res);
rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
p_cid->sb_igu_id, true);
if (rc)
goto out;
address = BAR0_MAP_REG_XSDM_RAM +
XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
sizeof(struct xstorm_eth_queue_zone), timeset);
out:
return rc;
}
/* Calculate final WFQ values for all vports and configure them.
* After this configuration each vport will have
* approx min rate = min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
*/
static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 min_pf_rate)
{
struct init_qm_vport_params *vport_params;
int i;
vport_params = p_hwfn->qm_info.qm_vport_params;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
vport_params[i].wfq = (wfq_speed * QED_WFQ_UNIT) /
min_pf_rate;
qed_init_vport_wfq(p_hwfn, p_ptt,
vport_params[i].first_tx_pq_id,
vport_params[i].wfq);
}
}
static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
u32 min_pf_rate)
{
int i;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
p_hwfn->qm_info.qm_vport_params[i].wfq = 1;
}
static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 min_pf_rate)
{
struct init_qm_vport_params *vport_params;
int i;
vport_params = p_hwfn->qm_info.qm_vport_params;
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
qed_init_wfq_default_param(p_hwfn, min_pf_rate);
qed_init_vport_wfq(p_hwfn, p_ptt,
vport_params[i].first_tx_pq_id,
vport_params[i].wfq);
}
}
/* This function performs several validations for WFQ
* configuration and required min rate for a given vport
* 1. req_rate must be greater than one percent of min_pf_rate.
* 2. req_rate should not cause other vports [not configured for WFQ explicitly]
* rates to get less than one percent of min_pf_rate.
* 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
*/
static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
u16 vport_id, u32 req_rate, u32 min_pf_rate)
{
u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
int non_requested_count = 0, req_count = 0, i, num_vports;
num_vports = p_hwfn->qm_info.num_vports;
if (num_vports < 2) {
DP_NOTICE(p_hwfn, "Unexpected num_vports: %d\n", num_vports);
return -EINVAL;
}
/* Accounting for the vports which are configured for WFQ explicitly */
for (i = 0; i < num_vports; i++) {
u32 tmp_speed;
if ((i != vport_id) &&
p_hwfn->qm_info.wfq_data[i].configured) {
req_count++;
tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
total_req_min_rate += tmp_speed;
}
}
/* Include current vport data as well */
req_count++;
total_req_min_rate += req_rate;
non_requested_count = num_vports - req_count;
if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
vport_id, req_rate, min_pf_rate);
return -EINVAL;
}
if (num_vports > QED_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Number of vports is greater than %d\n",
QED_WFQ_UNIT);
return -EINVAL;
}
if (total_req_min_rate > min_pf_rate) {
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
total_req_min_rate, min_pf_rate);
return -EINVAL;
}
total_left_rate = min_pf_rate - total_req_min_rate;
left_rate_per_vp = total_left_rate / non_requested_count;
if (left_rate_per_vp < min_pf_rate / QED_WFQ_UNIT) {
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
left_rate_per_vp, min_pf_rate);
return -EINVAL;
}
p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
p_hwfn->qm_info.wfq_data[vport_id].configured = true;
for (i = 0; i < num_vports; i++) {
if (p_hwfn->qm_info.wfq_data[i].configured)
continue;
p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
}
return 0;
}
static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
{
struct qed_mcp_link_state *p_link;
int rc = 0;
p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
if (!p_link->min_pf_rate) {
p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
p_hwfn->qm_info.wfq_data[vp_id].configured = true;
return rc;
}
rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
if (!rc)
qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
p_link->min_pf_rate);
else
DP_NOTICE(p_hwfn,
"Validation failed while configuring min rate\n");
return rc;
}
static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
u32 min_pf_rate)
{
bool use_wfq = false;
int rc = 0;
u16 i;
/* Validate all pre configured vports for wfq */
for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
u32 rate;
if (!p_hwfn->qm_info.wfq_data[i].configured)
continue;
rate = p_hwfn->qm_info.wfq_data[i].min_speed;
use_wfq = true;
rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
if (rc) {
DP_NOTICE(p_hwfn,
"WFQ validation failed while configuring min rate\n");
break;
}
}
if (!rc && use_wfq)
qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
else
qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
return rc;
}
/* Main API for qed clients to configure vport min rate.
* vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
* rate - Speed in Mbps needs to be assigned to a given vport.
*/
int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
{
int i, rc = -EINVAL;
/* Currently not supported; Might change in future */
if (cdev->num_hwfns > 1) {
DP_NOTICE(cdev,
"WFQ configuration is not supported for this device\n");
return rc;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_ptt *p_ptt;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EBUSY;
rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
if (rc) {
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
qed_ptt_release(p_hwfn, p_ptt);
}
return rc;
}
/* API to configure WFQ from mcp link change */
void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
struct qed_ptt *p_ptt, u32 min_pf_rate)
{
int i;
if (cdev->num_hwfns > 1) {
DP_VERBOSE(cdev,
NETIF_MSG_LINK,
"WFQ configuration is not supported for this device\n");
return;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
__qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
min_pf_rate);
}
}
int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_mcp_link_state *p_link,
u8 max_bw)
{
int rc = 0;
p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
if (!p_link->line_speed && (max_bw != 100))
return rc;
p_link->speed = (p_link->line_speed * max_bw) / 100;
p_hwfn->qm_info.pf_rl = p_link->speed;
/* Since the limiter also affects Tx-switched traffic, we don't want it
* to limit such traffic in case there's no actual limit.
* In that case, set limit to imaginary high boundary.
*/
if (max_bw == 100)
p_hwfn->qm_info.pf_rl = 100000;
rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
p_hwfn->qm_info.pf_rl);
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Configured MAX bandwidth to be %08x Mb/sec\n",
p_link->speed);
return rc;
}
/* Main API to configure PF max bandwidth where bw range is [1 - 100] */
int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
{
int i, rc = -EINVAL;
if (max_bw < 1 || max_bw > 100) {
DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
return rc;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
struct qed_mcp_link_state *p_link;
struct qed_ptt *p_ptt;
p_link = &p_lead->mcp_info->link_output;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EBUSY;
rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
p_link, max_bw);
qed_ptt_release(p_hwfn, p_ptt);
if (rc)
break;
}
return rc;
}
int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
struct qed_ptt *p_ptt,
struct qed_mcp_link_state *p_link,
u8 min_bw)
{
int rc = 0;
p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
p_hwfn->qm_info.pf_wfq = min_bw;
if (!p_link->line_speed)
return rc;
p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
"Configured MIN bandwidth to be %d Mb/sec\n",
p_link->min_pf_rate);
return rc;
}
/* Main API to configure PF min bandwidth where bw range is [1-100] */
int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
{
int i, rc = -EINVAL;
if (min_bw < 1 || min_bw > 100) {
DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
return rc;
}
for_each_hwfn(cdev, i) {
struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
struct qed_mcp_link_state *p_link;
struct qed_ptt *p_ptt;
p_link = &p_lead->mcp_info->link_output;
p_ptt = qed_ptt_acquire(p_hwfn);
if (!p_ptt)
return -EBUSY;
rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
p_link, min_bw);
if (rc) {
qed_ptt_release(p_hwfn, p_ptt);
return rc;
}
if (p_link->min_pf_rate) {
u32 min_rate = p_link->min_pf_rate;
rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
p_ptt,
min_rate);
}
qed_ptt_release(p_hwfn, p_ptt);
}
return rc;
}
void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
{
struct qed_mcp_link_state *p_link;
p_link = &p_hwfn->mcp_info->link_output;
if (p_link->min_pf_rate)
qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
p_link->min_pf_rate);
memset(p_hwfn->qm_info.wfq_data, 0,
sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
}
int qed_device_num_ports(struct qed_dev *cdev)
{
return cdev->num_ports;
}
void qed_set_fw_mac_addr(__le16 *fw_msb,
__le16 *fw_mid, __le16 *fw_lsb, u8 *mac)
{
((u8 *)fw_msb)[0] = mac[1];
((u8 *)fw_msb)[1] = mac[0];
((u8 *)fw_mid)[0] = mac[3];
((u8 *)fw_mid)[1] = mac[2];
((u8 *)fw_lsb)[0] = mac[5];
((u8 *)fw_lsb)[1] = mac[4];
}