mirror of
https://github.com/physwizz/a155-U-u1.git
synced 2024-11-19 13:27:49 +00:00
1358 lines
41 KiB
C
1358 lines
41 KiB
C
// SPDX-License-Identifier: (GPL-2.0 OR MIT)
|
|
/* Microsemi Ocelot Switch driver
|
|
* Copyright (c) 2019 Microsemi Corporation
|
|
*/
|
|
|
|
#include <linux/iopoll.h>
|
|
#include <linux/proc_fs.h>
|
|
|
|
#include <soc/mscc/ocelot_vcap.h>
|
|
#include "ocelot_police.h"
|
|
#include "ocelot_vcap.h"
|
|
|
|
#define ENTRY_WIDTH 32
|
|
|
|
enum vcap_sel {
|
|
VCAP_SEL_ENTRY = 0x1,
|
|
VCAP_SEL_ACTION = 0x2,
|
|
VCAP_SEL_COUNTER = 0x4,
|
|
VCAP_SEL_ALL = 0x7,
|
|
};
|
|
|
|
enum vcap_cmd {
|
|
VCAP_CMD_WRITE = 0, /* Copy from Cache to TCAM */
|
|
VCAP_CMD_READ = 1, /* Copy from TCAM to Cache */
|
|
VCAP_CMD_MOVE_UP = 2, /* Move <count> up */
|
|
VCAP_CMD_MOVE_DOWN = 3, /* Move <count> down */
|
|
VCAP_CMD_INITIALIZE = 4, /* Write all (from cache) */
|
|
};
|
|
|
|
#define VCAP_ENTRY_WIDTH 12 /* Max entry width (32bit words) */
|
|
#define VCAP_COUNTER_WIDTH 4 /* Max counter width (32bit words) */
|
|
|
|
struct vcap_data {
|
|
u32 entry[VCAP_ENTRY_WIDTH]; /* ENTRY_DAT */
|
|
u32 mask[VCAP_ENTRY_WIDTH]; /* MASK_DAT */
|
|
u32 action[VCAP_ENTRY_WIDTH]; /* ACTION_DAT */
|
|
u32 counter[VCAP_COUNTER_WIDTH]; /* CNT_DAT */
|
|
u32 tg; /* TG_DAT */
|
|
u32 type; /* Action type */
|
|
u32 tg_sw; /* Current type-group */
|
|
u32 cnt; /* Current counter */
|
|
u32 key_offset; /* Current entry offset */
|
|
u32 action_offset; /* Current action offset */
|
|
u32 counter_offset; /* Current counter offset */
|
|
u32 tg_value; /* Current type-group value */
|
|
u32 tg_mask; /* Current type-group mask */
|
|
};
|
|
|
|
static u32 vcap_read_update_ctrl(struct ocelot *ocelot,
|
|
const struct vcap_props *vcap)
|
|
{
|
|
return ocelot_target_read(ocelot, vcap->target, VCAP_CORE_UPDATE_CTRL);
|
|
}
|
|
|
|
static void vcap_cmd(struct ocelot *ocelot, const struct vcap_props *vcap,
|
|
u16 ix, int cmd, int sel)
|
|
{
|
|
u32 value = (VCAP_CORE_UPDATE_CTRL_UPDATE_CMD(cmd) |
|
|
VCAP_CORE_UPDATE_CTRL_UPDATE_ADDR(ix) |
|
|
VCAP_CORE_UPDATE_CTRL_UPDATE_SHOT);
|
|
|
|
if ((sel & VCAP_SEL_ENTRY) && ix >= vcap->entry_count)
|
|
return;
|
|
|
|
if (!(sel & VCAP_SEL_ENTRY))
|
|
value |= VCAP_CORE_UPDATE_CTRL_UPDATE_ENTRY_DIS;
|
|
|
|
if (!(sel & VCAP_SEL_ACTION))
|
|
value |= VCAP_CORE_UPDATE_CTRL_UPDATE_ACTION_DIS;
|
|
|
|
if (!(sel & VCAP_SEL_COUNTER))
|
|
value |= VCAP_CORE_UPDATE_CTRL_UPDATE_CNT_DIS;
|
|
|
|
ocelot_target_write(ocelot, vcap->target, value, VCAP_CORE_UPDATE_CTRL);
|
|
|
|
read_poll_timeout(vcap_read_update_ctrl, value,
|
|
(value & VCAP_CORE_UPDATE_CTRL_UPDATE_SHOT) == 0,
|
|
10, 100000, false, ocelot, vcap);
|
|
}
|
|
|
|
/* Convert from 0-based row to VCAP entry row and run command */
|
|
static void vcap_row_cmd(struct ocelot *ocelot, const struct vcap_props *vcap,
|
|
u32 row, int cmd, int sel)
|
|
{
|
|
vcap_cmd(ocelot, vcap, vcap->entry_count - row - 1, cmd, sel);
|
|
}
|
|
|
|
static void vcap_entry2cache(struct ocelot *ocelot,
|
|
const struct vcap_props *vcap,
|
|
struct vcap_data *data)
|
|
{
|
|
u32 entry_words, i;
|
|
|
|
entry_words = DIV_ROUND_UP(vcap->entry_width, ENTRY_WIDTH);
|
|
|
|
for (i = 0; i < entry_words; i++) {
|
|
ocelot_target_write_rix(ocelot, vcap->target, data->entry[i],
|
|
VCAP_CACHE_ENTRY_DAT, i);
|
|
ocelot_target_write_rix(ocelot, vcap->target, ~data->mask[i],
|
|
VCAP_CACHE_MASK_DAT, i);
|
|
}
|
|
ocelot_target_write(ocelot, vcap->target, data->tg, VCAP_CACHE_TG_DAT);
|
|
}
|
|
|
|
static void vcap_cache2entry(struct ocelot *ocelot,
|
|
const struct vcap_props *vcap,
|
|
struct vcap_data *data)
|
|
{
|
|
u32 entry_words, i;
|
|
|
|
entry_words = DIV_ROUND_UP(vcap->entry_width, ENTRY_WIDTH);
|
|
|
|
for (i = 0; i < entry_words; i++) {
|
|
data->entry[i] = ocelot_target_read_rix(ocelot, vcap->target,
|
|
VCAP_CACHE_ENTRY_DAT, i);
|
|
// Invert mask
|
|
data->mask[i] = ~ocelot_target_read_rix(ocelot, vcap->target,
|
|
VCAP_CACHE_MASK_DAT, i);
|
|
}
|
|
data->tg = ocelot_target_read(ocelot, vcap->target, VCAP_CACHE_TG_DAT);
|
|
}
|
|
|
|
static void vcap_action2cache(struct ocelot *ocelot,
|
|
const struct vcap_props *vcap,
|
|
struct vcap_data *data)
|
|
{
|
|
u32 action_words, mask;
|
|
int i, width;
|
|
|
|
/* Encode action type */
|
|
width = vcap->action_type_width;
|
|
if (width) {
|
|
mask = GENMASK(width, 0);
|
|
data->action[0] = ((data->action[0] & ~mask) | data->type);
|
|
}
|
|
|
|
action_words = DIV_ROUND_UP(vcap->action_width, ENTRY_WIDTH);
|
|
|
|
for (i = 0; i < action_words; i++)
|
|
ocelot_target_write_rix(ocelot, vcap->target, data->action[i],
|
|
VCAP_CACHE_ACTION_DAT, i);
|
|
|
|
for (i = 0; i < vcap->counter_words; i++)
|
|
ocelot_target_write_rix(ocelot, vcap->target, data->counter[i],
|
|
VCAP_CACHE_CNT_DAT, i);
|
|
}
|
|
|
|
static void vcap_cache2action(struct ocelot *ocelot,
|
|
const struct vcap_props *vcap,
|
|
struct vcap_data *data)
|
|
{
|
|
u32 action_words;
|
|
int i, width;
|
|
|
|
action_words = DIV_ROUND_UP(vcap->action_width, ENTRY_WIDTH);
|
|
|
|
for (i = 0; i < action_words; i++)
|
|
data->action[i] = ocelot_target_read_rix(ocelot, vcap->target,
|
|
VCAP_CACHE_ACTION_DAT,
|
|
i);
|
|
|
|
for (i = 0; i < vcap->counter_words; i++)
|
|
data->counter[i] = ocelot_target_read_rix(ocelot, vcap->target,
|
|
VCAP_CACHE_CNT_DAT,
|
|
i);
|
|
|
|
/* Extract action type */
|
|
width = vcap->action_type_width;
|
|
data->type = (width ? (data->action[0] & GENMASK(width, 0)) : 0);
|
|
}
|
|
|
|
/* Calculate offsets for entry */
|
|
static void vcap_data_offset_get(const struct vcap_props *vcap,
|
|
struct vcap_data *data, int ix)
|
|
{
|
|
int num_subwords_per_entry, num_subwords_per_action;
|
|
int i, col, offset, num_entries_per_row, base;
|
|
u32 width = vcap->tg_width;
|
|
|
|
switch (data->tg_sw) {
|
|
case VCAP_TG_FULL:
|
|
num_entries_per_row = 1;
|
|
break;
|
|
case VCAP_TG_HALF:
|
|
num_entries_per_row = 2;
|
|
break;
|
|
case VCAP_TG_QUARTER:
|
|
num_entries_per_row = 4;
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
col = (ix % num_entries_per_row);
|
|
num_subwords_per_entry = (vcap->sw_count / num_entries_per_row);
|
|
base = (vcap->sw_count - col * num_subwords_per_entry -
|
|
num_subwords_per_entry);
|
|
data->tg_value = 0;
|
|
data->tg_mask = 0;
|
|
for (i = 0; i < num_subwords_per_entry; i++) {
|
|
offset = ((base + i) * width);
|
|
data->tg_value |= (data->tg_sw << offset);
|
|
data->tg_mask |= GENMASK(offset + width - 1, offset);
|
|
}
|
|
|
|
/* Calculate key/action/counter offsets */
|
|
col = (num_entries_per_row - col - 1);
|
|
data->key_offset = (base * vcap->entry_width) / vcap->sw_count;
|
|
data->counter_offset = (num_subwords_per_entry * col *
|
|
vcap->counter_width);
|
|
i = data->type;
|
|
width = vcap->action_table[i].width;
|
|
num_subwords_per_action = vcap->action_table[i].count;
|
|
data->action_offset = ((num_subwords_per_action * col * width) /
|
|
num_entries_per_row);
|
|
data->action_offset += vcap->action_type_width;
|
|
}
|
|
|
|
static void vcap_data_set(u32 *data, u32 offset, u32 len, u32 value)
|
|
{
|
|
u32 i, v, m;
|
|
|
|
for (i = 0; i < len; i++, offset++) {
|
|
v = data[offset / ENTRY_WIDTH];
|
|
m = (1 << (offset % ENTRY_WIDTH));
|
|
if (value & (1 << i))
|
|
v |= m;
|
|
else
|
|
v &= ~m;
|
|
data[offset / ENTRY_WIDTH] = v;
|
|
}
|
|
}
|
|
|
|
static u32 vcap_data_get(u32 *data, u32 offset, u32 len)
|
|
{
|
|
u32 i, v, m, value = 0;
|
|
|
|
for (i = 0; i < len; i++, offset++) {
|
|
v = data[offset / ENTRY_WIDTH];
|
|
m = (1 << (offset % ENTRY_WIDTH));
|
|
if (v & m)
|
|
value |= (1 << i);
|
|
}
|
|
return value;
|
|
}
|
|
|
|
static void vcap_key_field_set(struct vcap_data *data, u32 offset, u32 width,
|
|
u32 value, u32 mask)
|
|
{
|
|
vcap_data_set(data->entry, offset + data->key_offset, width, value);
|
|
vcap_data_set(data->mask, offset + data->key_offset, width, mask);
|
|
}
|
|
|
|
static void vcap_key_set(const struct vcap_props *vcap, struct vcap_data *data,
|
|
int field, u32 value, u32 mask)
|
|
{
|
|
u32 offset = vcap->keys[field].offset;
|
|
u32 length = vcap->keys[field].length;
|
|
|
|
vcap_key_field_set(data, offset, length, value, mask);
|
|
}
|
|
|
|
static void vcap_key_bytes_set(const struct vcap_props *vcap,
|
|
struct vcap_data *data, int field,
|
|
u8 *val, u8 *msk)
|
|
{
|
|
u32 offset = vcap->keys[field].offset;
|
|
u32 count = vcap->keys[field].length;
|
|
u32 i, j, n = 0, value = 0, mask = 0;
|
|
|
|
WARN_ON(count % 8);
|
|
|
|
/* Data wider than 32 bits are split up in chunks of maximum 32 bits.
|
|
* The 32 LSB of the data are written to the 32 MSB of the TCAM.
|
|
*/
|
|
offset += count;
|
|
count /= 8;
|
|
|
|
for (i = 0; i < count; i++) {
|
|
j = (count - i - 1);
|
|
value += (val[j] << n);
|
|
mask += (msk[j] << n);
|
|
n += 8;
|
|
if (n == ENTRY_WIDTH || (i + 1) == count) {
|
|
offset -= n;
|
|
vcap_key_field_set(data, offset, n, value, mask);
|
|
n = 0;
|
|
value = 0;
|
|
mask = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void vcap_key_l4_port_set(const struct vcap_props *vcap,
|
|
struct vcap_data *data, int field,
|
|
struct ocelot_vcap_udp_tcp *port)
|
|
{
|
|
u32 offset = vcap->keys[field].offset;
|
|
u32 length = vcap->keys[field].length;
|
|
|
|
WARN_ON(length != 16);
|
|
|
|
vcap_key_field_set(data, offset, length, port->value, port->mask);
|
|
}
|
|
|
|
static void vcap_key_bit_set(const struct vcap_props *vcap,
|
|
struct vcap_data *data, int field,
|
|
enum ocelot_vcap_bit val)
|
|
{
|
|
u32 value = (val == OCELOT_VCAP_BIT_1 ? 1 : 0);
|
|
u32 msk = (val == OCELOT_VCAP_BIT_ANY ? 0 : 1);
|
|
u32 offset = vcap->keys[field].offset;
|
|
u32 length = vcap->keys[field].length;
|
|
|
|
WARN_ON(length != 1);
|
|
|
|
vcap_key_field_set(data, offset, length, value, msk);
|
|
}
|
|
|
|
static void vcap_action_set(const struct vcap_props *vcap,
|
|
struct vcap_data *data, int field, u32 value)
|
|
{
|
|
int offset = vcap->actions[field].offset;
|
|
int length = vcap->actions[field].length;
|
|
|
|
vcap_data_set(data->action, offset + data->action_offset, length,
|
|
value);
|
|
}
|
|
|
|
static void is2_action_set(struct ocelot *ocelot, struct vcap_data *data,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS2];
|
|
struct ocelot_vcap_action *a = &filter->action;
|
|
|
|
vcap_action_set(vcap, data, VCAP_IS2_ACT_MASK_MODE, a->mask_mode);
|
|
vcap_action_set(vcap, data, VCAP_IS2_ACT_PORT_MASK, a->port_mask);
|
|
vcap_action_set(vcap, data, VCAP_IS2_ACT_POLICE_ENA, a->police_ena);
|
|
vcap_action_set(vcap, data, VCAP_IS2_ACT_POLICE_IDX, a->pol_ix);
|
|
vcap_action_set(vcap, data, VCAP_IS2_ACT_CPU_QU_NUM, a->cpu_qu_num);
|
|
vcap_action_set(vcap, data, VCAP_IS2_ACT_CPU_COPY_ENA, a->cpu_copy_ena);
|
|
}
|
|
|
|
static void is2_entry_set(struct ocelot *ocelot, int ix,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS2];
|
|
struct ocelot_vcap_key_vlan *tag = &filter->vlan;
|
|
u32 val, msk, type, type_mask = 0xf, i, count;
|
|
struct ocelot_vcap_u64 payload;
|
|
struct vcap_data data;
|
|
int row = (ix / 2);
|
|
|
|
memset(&payload, 0, sizeof(payload));
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
/* Read row */
|
|
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL);
|
|
vcap_cache2entry(ocelot, vcap, &data);
|
|
vcap_cache2action(ocelot, vcap, &data);
|
|
|
|
data.tg_sw = VCAP_TG_HALF;
|
|
vcap_data_offset_get(vcap, &data, ix);
|
|
data.tg = (data.tg & ~data.tg_mask);
|
|
if (filter->prio != 0)
|
|
data.tg |= data.tg_value;
|
|
|
|
data.type = IS2_ACTION_TYPE_NORMAL;
|
|
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_PAG, filter->pag, 0xff);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_FIRST,
|
|
(filter->lookup == 0) ? OCELOT_VCAP_BIT_1 :
|
|
OCELOT_VCAP_BIT_0);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_IGR_PORT_MASK, 0,
|
|
~filter->ingress_port_mask);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_HOST_MATCH,
|
|
OCELOT_VCAP_BIT_ANY);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L2_MC, filter->dmac_mc);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L2_BC, filter->dmac_bc);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_VLAN_TAGGED, tag->tagged);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_VID,
|
|
tag->vid.value, tag->vid.mask);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_PCP,
|
|
tag->pcp.value[0], tag->pcp.mask[0]);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_DEI, tag->dei);
|
|
|
|
switch (filter->key_type) {
|
|
case OCELOT_VCAP_KEY_ETYPE: {
|
|
struct ocelot_vcap_key_etype *etype = &filter->key.etype;
|
|
|
|
type = IS2_TYPE_ETYPE;
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC,
|
|
etype->dmac.value, etype->dmac.mask);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC,
|
|
etype->smac.value, etype->smac.mask);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_ETYPE,
|
|
etype->etype.value, etype->etype.mask);
|
|
/* Clear unused bits */
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0,
|
|
0, 0);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD1,
|
|
0, 0);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD2,
|
|
0, 0);
|
|
vcap_key_bytes_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ETYPE_L2_PAYLOAD0,
|
|
etype->data.value, etype->data.mask);
|
|
break;
|
|
}
|
|
case OCELOT_VCAP_KEY_LLC: {
|
|
struct ocelot_vcap_key_llc *llc = &filter->key.llc;
|
|
|
|
type = IS2_TYPE_LLC;
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC,
|
|
llc->dmac.value, llc->dmac.mask);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC,
|
|
llc->smac.value, llc->smac.mask);
|
|
for (i = 0; i < 4; i++) {
|
|
payload.value[i] = llc->llc.value[i];
|
|
payload.mask[i] = llc->llc.mask[i];
|
|
}
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_LLC_L2_LLC,
|
|
payload.value, payload.mask);
|
|
break;
|
|
}
|
|
case OCELOT_VCAP_KEY_SNAP: {
|
|
struct ocelot_vcap_key_snap *snap = &filter->key.snap;
|
|
|
|
type = IS2_TYPE_SNAP;
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_DMAC,
|
|
snap->dmac.value, snap->dmac.mask);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L2_SMAC,
|
|
snap->smac.value, snap->smac.mask);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_SNAP_L2_SNAP,
|
|
filter->key.snap.snap.value,
|
|
filter->key.snap.snap.mask);
|
|
break;
|
|
}
|
|
case OCELOT_VCAP_KEY_ARP: {
|
|
struct ocelot_vcap_key_arp *arp = &filter->key.arp;
|
|
|
|
type = IS2_TYPE_ARP;
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_SMAC,
|
|
arp->smac.value, arp->smac.mask);
|
|
vcap_key_bit_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ARP_ADDR_SPACE_OK,
|
|
arp->ethernet);
|
|
vcap_key_bit_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ARP_PROTO_SPACE_OK,
|
|
arp->ip);
|
|
vcap_key_bit_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ARP_LEN_OK,
|
|
arp->length);
|
|
vcap_key_bit_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ARP_TARGET_MATCH,
|
|
arp->dmac_match);
|
|
vcap_key_bit_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ARP_SENDER_MATCH,
|
|
arp->smac_match);
|
|
vcap_key_bit_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ARP_OPCODE_UNKNOWN,
|
|
arp->unknown);
|
|
|
|
/* OPCODE is inverse, bit 0 is reply flag, bit 1 is RARP flag */
|
|
val = ((arp->req == OCELOT_VCAP_BIT_0 ? 1 : 0) |
|
|
(arp->arp == OCELOT_VCAP_BIT_0 ? 2 : 0));
|
|
msk = ((arp->req == OCELOT_VCAP_BIT_ANY ? 0 : 1) |
|
|
(arp->arp == OCELOT_VCAP_BIT_ANY ? 0 : 2));
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_OPCODE,
|
|
val, msk);
|
|
vcap_key_bytes_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ARP_L3_IP4_DIP,
|
|
arp->dip.value.addr, arp->dip.mask.addr);
|
|
vcap_key_bytes_set(vcap, &data,
|
|
VCAP_IS2_HK_MAC_ARP_L3_IP4_SIP,
|
|
arp->sip.value.addr, arp->sip.mask.addr);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_MAC_ARP_DIP_EQ_SIP,
|
|
0, 0);
|
|
break;
|
|
}
|
|
case OCELOT_VCAP_KEY_IPV4:
|
|
case OCELOT_VCAP_KEY_IPV6: {
|
|
enum ocelot_vcap_bit sip_eq_dip, sport_eq_dport, seq_zero, tcp;
|
|
enum ocelot_vcap_bit ttl, fragment, options, tcp_ack, tcp_urg;
|
|
enum ocelot_vcap_bit tcp_fin, tcp_syn, tcp_rst, tcp_psh;
|
|
struct ocelot_vcap_key_ipv4 *ipv4 = NULL;
|
|
struct ocelot_vcap_key_ipv6 *ipv6 = NULL;
|
|
struct ocelot_vcap_udp_tcp *sport, *dport;
|
|
struct ocelot_vcap_ipv4 sip, dip;
|
|
struct ocelot_vcap_u8 proto, ds;
|
|
struct ocelot_vcap_u48 *ip_data;
|
|
|
|
if (filter->key_type == OCELOT_VCAP_KEY_IPV4) {
|
|
ipv4 = &filter->key.ipv4;
|
|
ttl = ipv4->ttl;
|
|
fragment = ipv4->fragment;
|
|
options = ipv4->options;
|
|
proto = ipv4->proto;
|
|
ds = ipv4->ds;
|
|
ip_data = &ipv4->data;
|
|
sip = ipv4->sip;
|
|
dip = ipv4->dip;
|
|
sport = &ipv4->sport;
|
|
dport = &ipv4->dport;
|
|
tcp_fin = ipv4->tcp_fin;
|
|
tcp_syn = ipv4->tcp_syn;
|
|
tcp_rst = ipv4->tcp_rst;
|
|
tcp_psh = ipv4->tcp_psh;
|
|
tcp_ack = ipv4->tcp_ack;
|
|
tcp_urg = ipv4->tcp_urg;
|
|
sip_eq_dip = ipv4->sip_eq_dip;
|
|
sport_eq_dport = ipv4->sport_eq_dport;
|
|
seq_zero = ipv4->seq_zero;
|
|
} else {
|
|
ipv6 = &filter->key.ipv6;
|
|
ttl = ipv6->ttl;
|
|
fragment = OCELOT_VCAP_BIT_ANY;
|
|
options = OCELOT_VCAP_BIT_ANY;
|
|
proto = ipv6->proto;
|
|
ds = ipv6->ds;
|
|
ip_data = &ipv6->data;
|
|
for (i = 0; i < 8; i++) {
|
|
val = ipv6->sip.value[i + 8];
|
|
msk = ipv6->sip.mask[i + 8];
|
|
if (i < 4) {
|
|
dip.value.addr[i] = val;
|
|
dip.mask.addr[i] = msk;
|
|
} else {
|
|
sip.value.addr[i - 4] = val;
|
|
sip.mask.addr[i - 4] = msk;
|
|
}
|
|
}
|
|
sport = &ipv6->sport;
|
|
dport = &ipv6->dport;
|
|
tcp_fin = ipv6->tcp_fin;
|
|
tcp_syn = ipv6->tcp_syn;
|
|
tcp_rst = ipv6->tcp_rst;
|
|
tcp_psh = ipv6->tcp_psh;
|
|
tcp_ack = ipv6->tcp_ack;
|
|
tcp_urg = ipv6->tcp_urg;
|
|
sip_eq_dip = ipv6->sip_eq_dip;
|
|
sport_eq_dport = ipv6->sport_eq_dport;
|
|
seq_zero = ipv6->seq_zero;
|
|
}
|
|
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_IP4,
|
|
ipv4 ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L3_FRAGMENT,
|
|
fragment);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_L3_FRAG_OFS_GT0, 0, 0);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L3_OPTIONS,
|
|
options);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_IP4_L3_TTL_GT0,
|
|
ttl);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_TOS,
|
|
ds.value, ds.mask);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_IP4_DIP,
|
|
dip.value.addr, dip.mask.addr);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS2_HK_L3_IP4_SIP,
|
|
sip.value.addr, sip.mask.addr);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_DIP_EQ_SIP,
|
|
sip_eq_dip);
|
|
val = proto.value[0];
|
|
msk = proto.mask[0];
|
|
type = IS2_TYPE_IP_UDP_TCP;
|
|
if (msk == 0xff && (val == 6 || val == 17)) {
|
|
/* UDP/TCP protocol match */
|
|
tcp = (val == 6 ?
|
|
OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_TCP, tcp);
|
|
vcap_key_l4_port_set(vcap, &data,
|
|
VCAP_IS2_HK_L4_DPORT, dport);
|
|
vcap_key_l4_port_set(vcap, &data,
|
|
VCAP_IS2_HK_L4_SPORT, sport);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_RNG, 0, 0);
|
|
vcap_key_bit_set(vcap, &data,
|
|
VCAP_IS2_HK_L4_SPORT_EQ_DPORT,
|
|
sport_eq_dport);
|
|
vcap_key_bit_set(vcap, &data,
|
|
VCAP_IS2_HK_L4_SEQUENCE_EQ0,
|
|
seq_zero);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_FIN,
|
|
tcp_fin);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_SYN,
|
|
tcp_syn);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_RST,
|
|
tcp_rst);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_PSH,
|
|
tcp_psh);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_ACK,
|
|
tcp_ack);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS2_HK_L4_URG,
|
|
tcp_urg);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_1588_DOM,
|
|
0, 0);
|
|
vcap_key_set(vcap, &data, VCAP_IS2_HK_L4_1588_VER,
|
|
0, 0);
|
|
} else {
|
|
if (msk == 0) {
|
|
/* Any IP protocol match */
|
|
type_mask = IS2_TYPE_MASK_IP_ANY;
|
|
} else {
|
|
/* Non-UDP/TCP protocol match */
|
|
type = IS2_TYPE_IP_OTHER;
|
|
for (i = 0; i < 6; i++) {
|
|
payload.value[i] = ip_data->value[i];
|
|
payload.mask[i] = ip_data->mask[i];
|
|
}
|
|
}
|
|
vcap_key_bytes_set(vcap, &data,
|
|
VCAP_IS2_HK_IP4_L3_PROTO,
|
|
proto.value, proto.mask);
|
|
vcap_key_bytes_set(vcap, &data,
|
|
VCAP_IS2_HK_L3_PAYLOAD,
|
|
payload.value, payload.mask);
|
|
}
|
|
break;
|
|
}
|
|
case OCELOT_VCAP_KEY_ANY:
|
|
default:
|
|
type = 0;
|
|
type_mask = 0;
|
|
count = vcap->entry_width / 2;
|
|
/* Iterate over the non-common part of the key and
|
|
* clear entry data
|
|
*/
|
|
for (i = vcap->keys[VCAP_IS2_HK_L2_DMAC].offset;
|
|
i < count; i += ENTRY_WIDTH) {
|
|
vcap_key_field_set(&data, i, min(32u, count - i), 0, 0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
vcap_key_set(vcap, &data, VCAP_IS2_TYPE, type, type_mask);
|
|
is2_action_set(ocelot, &data, filter);
|
|
vcap_data_set(data.counter, data.counter_offset,
|
|
vcap->counter_width, filter->stats.pkts);
|
|
|
|
/* Write row */
|
|
vcap_entry2cache(ocelot, vcap, &data);
|
|
vcap_action2cache(ocelot, vcap, &data);
|
|
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL);
|
|
}
|
|
|
|
static void is1_action_set(struct ocelot *ocelot, struct vcap_data *data,
|
|
const struct ocelot_vcap_filter *filter)
|
|
{
|
|
const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS1];
|
|
const struct ocelot_vcap_action *a = &filter->action;
|
|
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_VID_REPLACE_ENA,
|
|
a->vid_replace_ena);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_VID_ADD_VAL, a->vid);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_VLAN_POP_CNT_ENA,
|
|
a->vlan_pop_cnt_ena);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_VLAN_POP_CNT,
|
|
a->vlan_pop_cnt);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_PCP_DEI_ENA, a->pcp_dei_ena);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_PCP_VAL, a->pcp);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_DEI_VAL, a->dei);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_QOS_ENA, a->qos_ena);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_QOS_VAL, a->qos_val);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_PAG_OVERRIDE_MASK,
|
|
a->pag_override_mask);
|
|
vcap_action_set(vcap, data, VCAP_IS1_ACT_PAG_VAL, a->pag_val);
|
|
}
|
|
|
|
static void is1_entry_set(struct ocelot *ocelot, int ix,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
const struct vcap_props *vcap = &ocelot->vcap[VCAP_IS1];
|
|
struct ocelot_vcap_key_vlan *tag = &filter->vlan;
|
|
struct ocelot_vcap_u64 payload;
|
|
struct vcap_data data;
|
|
int row = ix / 2;
|
|
u32 type;
|
|
|
|
memset(&payload, 0, sizeof(payload));
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
/* Read row */
|
|
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL);
|
|
vcap_cache2entry(ocelot, vcap, &data);
|
|
vcap_cache2action(ocelot, vcap, &data);
|
|
|
|
data.tg_sw = VCAP_TG_HALF;
|
|
data.type = IS1_ACTION_TYPE_NORMAL;
|
|
vcap_data_offset_get(vcap, &data, ix);
|
|
data.tg = (data.tg & ~data.tg_mask);
|
|
if (filter->prio != 0)
|
|
data.tg |= data.tg_value;
|
|
|
|
vcap_key_set(vcap, &data, VCAP_IS1_HK_LOOKUP, filter->lookup, 0x3);
|
|
vcap_key_set(vcap, &data, VCAP_IS1_HK_IGR_PORT_MASK, 0,
|
|
~filter->ingress_port_mask);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_L2_MC, filter->dmac_mc);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_L2_BC, filter->dmac_bc);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_VLAN_TAGGED, tag->tagged);
|
|
vcap_key_set(vcap, &data, VCAP_IS1_HK_VID,
|
|
tag->vid.value, tag->vid.mask);
|
|
vcap_key_set(vcap, &data, VCAP_IS1_HK_PCP,
|
|
tag->pcp.value[0], tag->pcp.mask[0]);
|
|
type = IS1_TYPE_S1_NORMAL;
|
|
|
|
switch (filter->key_type) {
|
|
case OCELOT_VCAP_KEY_ETYPE: {
|
|
struct ocelot_vcap_key_etype *etype = &filter->key.etype;
|
|
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_L2_SMAC,
|
|
etype->smac.value, etype->smac.mask);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_ETYPE,
|
|
etype->etype.value, etype->etype.mask);
|
|
break;
|
|
}
|
|
case OCELOT_VCAP_KEY_IPV4: {
|
|
struct ocelot_vcap_key_ipv4 *ipv4 = &filter->key.ipv4;
|
|
struct ocelot_vcap_udp_tcp *sport = &ipv4->sport;
|
|
struct ocelot_vcap_udp_tcp *dport = &ipv4->dport;
|
|
enum ocelot_vcap_bit tcp_udp = OCELOT_VCAP_BIT_0;
|
|
struct ocelot_vcap_u8 proto = ipv4->proto;
|
|
struct ocelot_vcap_ipv4 sip = ipv4->sip;
|
|
u32 val, msk;
|
|
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_IP_SNAP,
|
|
OCELOT_VCAP_BIT_1);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_IP4,
|
|
OCELOT_VCAP_BIT_1);
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_ETYPE_LEN,
|
|
OCELOT_VCAP_BIT_1);
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_L3_IP4_SIP,
|
|
sip.value.addr, sip.mask.addr);
|
|
|
|
val = proto.value[0];
|
|
msk = proto.mask[0];
|
|
|
|
if ((val == NEXTHDR_TCP || val == NEXTHDR_UDP) && msk == 0xff)
|
|
tcp_udp = OCELOT_VCAP_BIT_1;
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TCP_UDP, tcp_udp);
|
|
|
|
if (tcp_udp) {
|
|
enum ocelot_vcap_bit tcp = OCELOT_VCAP_BIT_0;
|
|
|
|
if (val == NEXTHDR_TCP)
|
|
tcp = OCELOT_VCAP_BIT_1;
|
|
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TCP, tcp);
|
|
vcap_key_l4_port_set(vcap, &data, VCAP_IS1_HK_L4_SPORT,
|
|
sport);
|
|
/* Overloaded field */
|
|
vcap_key_l4_port_set(vcap, &data, VCAP_IS1_HK_ETYPE,
|
|
dport);
|
|
} else {
|
|
/* IPv4 "other" frame */
|
|
struct ocelot_vcap_u16 etype = {0};
|
|
|
|
/* Overloaded field */
|
|
etype.value[0] = proto.value[0];
|
|
etype.mask[0] = proto.mask[0];
|
|
|
|
vcap_key_bytes_set(vcap, &data, VCAP_IS1_HK_ETYPE,
|
|
etype.value, etype.mask);
|
|
}
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
vcap_key_bit_set(vcap, &data, VCAP_IS1_HK_TYPE,
|
|
type ? OCELOT_VCAP_BIT_1 : OCELOT_VCAP_BIT_0);
|
|
|
|
is1_action_set(ocelot, &data, filter);
|
|
vcap_data_set(data.counter, data.counter_offset,
|
|
vcap->counter_width, filter->stats.pkts);
|
|
|
|
/* Write row */
|
|
vcap_entry2cache(ocelot, vcap, &data);
|
|
vcap_action2cache(ocelot, vcap, &data);
|
|
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL);
|
|
}
|
|
|
|
static void es0_action_set(struct ocelot *ocelot, struct vcap_data *data,
|
|
const struct ocelot_vcap_filter *filter)
|
|
{
|
|
const struct vcap_props *vcap = &ocelot->vcap[VCAP_ES0];
|
|
const struct ocelot_vcap_action *a = &filter->action;
|
|
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_PUSH_OUTER_TAG,
|
|
a->push_outer_tag);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_PUSH_INNER_TAG,
|
|
a->push_inner_tag);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_TPID_SEL,
|
|
a->tag_a_tpid_sel);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_VID_SEL,
|
|
a->tag_a_vid_sel);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_A_PCP_SEL,
|
|
a->tag_a_pcp_sel);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_VID_A_VAL, a->vid_a_val);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_PCP_A_VAL, a->pcp_a_val);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_TPID_SEL,
|
|
a->tag_b_tpid_sel);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_VID_SEL,
|
|
a->tag_b_vid_sel);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_TAG_B_PCP_SEL,
|
|
a->tag_b_pcp_sel);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_VID_B_VAL, a->vid_b_val);
|
|
vcap_action_set(vcap, data, VCAP_ES0_ACT_PCP_B_VAL, a->pcp_b_val);
|
|
}
|
|
|
|
static void es0_entry_set(struct ocelot *ocelot, int ix,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
const struct vcap_props *vcap = &ocelot->vcap[VCAP_ES0];
|
|
struct ocelot_vcap_key_vlan *tag = &filter->vlan;
|
|
struct ocelot_vcap_u64 payload;
|
|
struct vcap_data data;
|
|
int row = ix;
|
|
|
|
memset(&payload, 0, sizeof(payload));
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
/* Read row */
|
|
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_ALL);
|
|
vcap_cache2entry(ocelot, vcap, &data);
|
|
vcap_cache2action(ocelot, vcap, &data);
|
|
|
|
data.tg_sw = VCAP_TG_FULL;
|
|
data.type = ES0_ACTION_TYPE_NORMAL;
|
|
vcap_data_offset_get(vcap, &data, ix);
|
|
data.tg = (data.tg & ~data.tg_mask);
|
|
if (filter->prio != 0)
|
|
data.tg |= data.tg_value;
|
|
|
|
vcap_key_set(vcap, &data, VCAP_ES0_IGR_PORT, filter->ingress_port.value,
|
|
filter->ingress_port.mask);
|
|
vcap_key_set(vcap, &data, VCAP_ES0_EGR_PORT, filter->egress_port.value,
|
|
filter->egress_port.mask);
|
|
vcap_key_bit_set(vcap, &data, VCAP_ES0_L2_MC, filter->dmac_mc);
|
|
vcap_key_bit_set(vcap, &data, VCAP_ES0_L2_BC, filter->dmac_bc);
|
|
vcap_key_set(vcap, &data, VCAP_ES0_VID,
|
|
tag->vid.value, tag->vid.mask);
|
|
vcap_key_set(vcap, &data, VCAP_ES0_PCP,
|
|
tag->pcp.value[0], tag->pcp.mask[0]);
|
|
|
|
es0_action_set(ocelot, &data, filter);
|
|
vcap_data_set(data.counter, data.counter_offset,
|
|
vcap->counter_width, filter->stats.pkts);
|
|
|
|
/* Write row */
|
|
vcap_entry2cache(ocelot, vcap, &data);
|
|
vcap_action2cache(ocelot, vcap, &data);
|
|
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_WRITE, VCAP_SEL_ALL);
|
|
}
|
|
|
|
static void vcap_entry_get(struct ocelot *ocelot, int ix,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
const struct vcap_props *vcap = &ocelot->vcap[filter->block_id];
|
|
struct vcap_data data;
|
|
int row, count;
|
|
u32 cnt;
|
|
|
|
if (filter->block_id == VCAP_ES0)
|
|
data.tg_sw = VCAP_TG_FULL;
|
|
else
|
|
data.tg_sw = VCAP_TG_HALF;
|
|
|
|
count = (1 << (data.tg_sw - 1));
|
|
row = (ix / count);
|
|
vcap_row_cmd(ocelot, vcap, row, VCAP_CMD_READ, VCAP_SEL_COUNTER);
|
|
vcap_cache2action(ocelot, vcap, &data);
|
|
vcap_data_offset_get(vcap, &data, ix);
|
|
cnt = vcap_data_get(data.counter, data.counter_offset,
|
|
vcap->counter_width);
|
|
|
|
filter->stats.pkts = cnt;
|
|
}
|
|
|
|
static void vcap_entry_set(struct ocelot *ocelot, int ix,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
if (filter->block_id == VCAP_IS1)
|
|
return is1_entry_set(ocelot, ix, filter);
|
|
if (filter->block_id == VCAP_IS2)
|
|
return is2_entry_set(ocelot, ix, filter);
|
|
if (filter->block_id == VCAP_ES0)
|
|
return es0_entry_set(ocelot, ix, filter);
|
|
}
|
|
|
|
static int ocelot_vcap_policer_add(struct ocelot *ocelot, u32 pol_ix,
|
|
struct ocelot_policer *pol)
|
|
{
|
|
struct qos_policer_conf pp = { 0 };
|
|
|
|
if (!pol)
|
|
return -EINVAL;
|
|
|
|
pp.mode = MSCC_QOS_RATE_MODE_DATA;
|
|
pp.pir = pol->rate;
|
|
pp.pbs = pol->burst;
|
|
|
|
return qos_policer_conf_set(ocelot, 0, pol_ix, &pp);
|
|
}
|
|
|
|
static void ocelot_vcap_policer_del(struct ocelot *ocelot,
|
|
struct ocelot_vcap_block *block,
|
|
u32 pol_ix)
|
|
{
|
|
struct ocelot_vcap_filter *filter;
|
|
struct qos_policer_conf pp = {0};
|
|
int index = -1;
|
|
|
|
if (pol_ix < block->pol_lpr)
|
|
return;
|
|
|
|
list_for_each_entry(filter, &block->rules, list) {
|
|
index++;
|
|
if (filter->block_id == VCAP_IS2 &&
|
|
filter->action.police_ena &&
|
|
filter->action.pol_ix < pol_ix) {
|
|
filter->action.pol_ix += 1;
|
|
ocelot_vcap_policer_add(ocelot, filter->action.pol_ix,
|
|
&filter->action.pol);
|
|
is2_entry_set(ocelot, index, filter);
|
|
}
|
|
}
|
|
|
|
pp.mode = MSCC_QOS_RATE_MODE_DISABLED;
|
|
qos_policer_conf_set(ocelot, 0, pol_ix, &pp);
|
|
|
|
block->pol_lpr++;
|
|
}
|
|
|
|
static void ocelot_vcap_filter_add_to_block(struct ocelot *ocelot,
|
|
struct ocelot_vcap_block *block,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
struct ocelot_vcap_filter *tmp;
|
|
struct list_head *pos, *n;
|
|
|
|
if (filter->block_id == VCAP_IS2 && filter->action.police_ena) {
|
|
block->pol_lpr--;
|
|
filter->action.pol_ix = block->pol_lpr;
|
|
ocelot_vcap_policer_add(ocelot, filter->action.pol_ix,
|
|
&filter->action.pol);
|
|
}
|
|
|
|
block->count++;
|
|
|
|
if (list_empty(&block->rules)) {
|
|
list_add(&filter->list, &block->rules);
|
|
return;
|
|
}
|
|
|
|
list_for_each_safe(pos, n, &block->rules) {
|
|
tmp = list_entry(pos, struct ocelot_vcap_filter, list);
|
|
if (filter->prio < tmp->prio)
|
|
break;
|
|
}
|
|
list_add(&filter->list, pos->prev);
|
|
}
|
|
|
|
static int ocelot_vcap_block_get_filter_index(struct ocelot_vcap_block *block,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
struct ocelot_vcap_filter *tmp;
|
|
int index = 0;
|
|
|
|
list_for_each_entry(tmp, &block->rules, list) {
|
|
if (filter->id == tmp->id)
|
|
return index;
|
|
index++;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
static struct ocelot_vcap_filter*
|
|
ocelot_vcap_block_find_filter_by_index(struct ocelot_vcap_block *block,
|
|
int index)
|
|
{
|
|
struct ocelot_vcap_filter *tmp;
|
|
int i = 0;
|
|
|
|
list_for_each_entry(tmp, &block->rules, list) {
|
|
if (i == index)
|
|
return tmp;
|
|
++i;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
struct ocelot_vcap_filter *
|
|
ocelot_vcap_block_find_filter_by_id(struct ocelot_vcap_block *block, int id)
|
|
{
|
|
struct ocelot_vcap_filter *filter;
|
|
|
|
list_for_each_entry(filter, &block->rules, list)
|
|
if (filter->id == id)
|
|
return filter;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* If @on=false, then SNAP, ARP, IP and OAM frames will not match on keys based
|
|
* on destination and source MAC addresses, but only on higher-level protocol
|
|
* information. The only frame types to match on keys containing MAC addresses
|
|
* in this case are non-SNAP, non-ARP, non-IP and non-OAM frames.
|
|
*
|
|
* If @on=true, then the above frame types (SNAP, ARP, IP and OAM) will match
|
|
* on MAC_ETYPE keys such as destination and source MAC on this ingress port.
|
|
* However the setting has the side effect of making these frames not matching
|
|
* on any _other_ keys than MAC_ETYPE ones.
|
|
*/
|
|
static void ocelot_match_all_as_mac_etype(struct ocelot *ocelot, int port,
|
|
int lookup, bool on)
|
|
{
|
|
u32 val = 0;
|
|
|
|
if (on)
|
|
val = ANA_PORT_VCAP_S2_CFG_S2_SNAP_DIS(BIT(lookup)) |
|
|
ANA_PORT_VCAP_S2_CFG_S2_ARP_DIS(BIT(lookup)) |
|
|
ANA_PORT_VCAP_S2_CFG_S2_IP_TCPUDP_DIS(BIT(lookup)) |
|
|
ANA_PORT_VCAP_S2_CFG_S2_IP_OTHER_DIS(BIT(lookup)) |
|
|
ANA_PORT_VCAP_S2_CFG_S2_OAM_DIS(BIT(lookup));
|
|
|
|
ocelot_rmw_gix(ocelot, val,
|
|
ANA_PORT_VCAP_S2_CFG_S2_SNAP_DIS(BIT(lookup)) |
|
|
ANA_PORT_VCAP_S2_CFG_S2_ARP_DIS(BIT(lookup)) |
|
|
ANA_PORT_VCAP_S2_CFG_S2_IP_TCPUDP_DIS(BIT(lookup)) |
|
|
ANA_PORT_VCAP_S2_CFG_S2_IP_OTHER_DIS(BIT(lookup)) |
|
|
ANA_PORT_VCAP_S2_CFG_S2_OAM_DIS(BIT(lookup)),
|
|
ANA_PORT_VCAP_S2_CFG, port);
|
|
}
|
|
|
|
static bool
|
|
ocelot_vcap_is_problematic_mac_etype(struct ocelot_vcap_filter *filter)
|
|
{
|
|
u16 proto, mask;
|
|
|
|
if (filter->key_type != OCELOT_VCAP_KEY_ETYPE)
|
|
return false;
|
|
|
|
proto = ntohs(*(__be16 *)filter->key.etype.etype.value);
|
|
mask = ntohs(*(__be16 *)filter->key.etype.etype.mask);
|
|
|
|
/* ETH_P_ALL match, so all protocols below are included */
|
|
if (mask == 0)
|
|
return true;
|
|
if (proto == ETH_P_ARP)
|
|
return true;
|
|
if (proto == ETH_P_IP)
|
|
return true;
|
|
if (proto == ETH_P_IPV6)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
ocelot_vcap_is_problematic_non_mac_etype(struct ocelot_vcap_filter *filter)
|
|
{
|
|
if (filter->key_type == OCELOT_VCAP_KEY_SNAP)
|
|
return true;
|
|
if (filter->key_type == OCELOT_VCAP_KEY_ARP)
|
|
return true;
|
|
if (filter->key_type == OCELOT_VCAP_KEY_IPV4)
|
|
return true;
|
|
if (filter->key_type == OCELOT_VCAP_KEY_IPV6)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
static bool
|
|
ocelot_exclusive_mac_etype_filter_rules(struct ocelot *ocelot,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
|
|
struct ocelot_vcap_filter *tmp;
|
|
unsigned long port;
|
|
int i;
|
|
|
|
/* We only have the S2_IP_TCPUDP_DIS set of knobs for VCAP IS2 */
|
|
if (filter->block_id != VCAP_IS2)
|
|
return true;
|
|
|
|
if (ocelot_vcap_is_problematic_mac_etype(filter)) {
|
|
/* Search for any non-MAC_ETYPE rules on the port */
|
|
for (i = 0; i < block->count; i++) {
|
|
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
|
|
if (tmp->ingress_port_mask & filter->ingress_port_mask &&
|
|
tmp->lookup == filter->lookup &&
|
|
ocelot_vcap_is_problematic_non_mac_etype(tmp))
|
|
return false;
|
|
}
|
|
|
|
for_each_set_bit(port, &filter->ingress_port_mask,
|
|
ocelot->num_phys_ports)
|
|
ocelot_match_all_as_mac_etype(ocelot, port,
|
|
filter->lookup, true);
|
|
} else if (ocelot_vcap_is_problematic_non_mac_etype(filter)) {
|
|
/* Search for any MAC_ETYPE rules on the port */
|
|
for (i = 0; i < block->count; i++) {
|
|
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
|
|
if (tmp->ingress_port_mask & filter->ingress_port_mask &&
|
|
tmp->lookup == filter->lookup &&
|
|
ocelot_vcap_is_problematic_mac_etype(tmp))
|
|
return false;
|
|
}
|
|
|
|
for_each_set_bit(port, &filter->ingress_port_mask,
|
|
ocelot->num_phys_ports)
|
|
ocelot_match_all_as_mac_etype(ocelot, port,
|
|
filter->lookup, false);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int ocelot_vcap_filter_add(struct ocelot *ocelot,
|
|
struct ocelot_vcap_filter *filter,
|
|
struct netlink_ext_ack *extack)
|
|
{
|
|
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
|
|
int i, index;
|
|
|
|
if (!ocelot_exclusive_mac_etype_filter_rules(ocelot, filter)) {
|
|
NL_SET_ERR_MSG_MOD(extack,
|
|
"Cannot mix MAC_ETYPE with non-MAC_ETYPE rules, use the other IS2 lookup");
|
|
return -EBUSY;
|
|
}
|
|
|
|
/* Add filter to the linked list */
|
|
ocelot_vcap_filter_add_to_block(ocelot, block, filter);
|
|
|
|
/* Get the index of the inserted filter */
|
|
index = ocelot_vcap_block_get_filter_index(block, filter);
|
|
if (index < 0)
|
|
return index;
|
|
|
|
/* Move down the rules to make place for the new filter */
|
|
for (i = block->count - 1; i > index; i--) {
|
|
struct ocelot_vcap_filter *tmp;
|
|
|
|
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
|
|
/* Read back the filter's counters before moving it */
|
|
vcap_entry_get(ocelot, i - 1, tmp);
|
|
vcap_entry_set(ocelot, i, tmp);
|
|
}
|
|
|
|
/* Now insert the new filter */
|
|
vcap_entry_set(ocelot, index, filter);
|
|
return 0;
|
|
}
|
|
|
|
static void ocelot_vcap_block_remove_filter(struct ocelot *ocelot,
|
|
struct ocelot_vcap_block *block,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
struct ocelot_vcap_filter *tmp;
|
|
struct list_head *pos, *q;
|
|
|
|
list_for_each_safe(pos, q, &block->rules) {
|
|
tmp = list_entry(pos, struct ocelot_vcap_filter, list);
|
|
if (tmp->id == filter->id) {
|
|
if (tmp->block_id == VCAP_IS2 &&
|
|
tmp->action.police_ena)
|
|
ocelot_vcap_policer_del(ocelot, block,
|
|
tmp->action.pol_ix);
|
|
|
|
list_del(pos);
|
|
kfree(tmp);
|
|
}
|
|
}
|
|
|
|
block->count--;
|
|
}
|
|
|
|
int ocelot_vcap_filter_del(struct ocelot *ocelot,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
|
|
struct ocelot_vcap_filter del_filter;
|
|
int i, index;
|
|
|
|
/* Need to inherit the block_id so that vcap_entry_set()
|
|
* does not get confused and knows where to install it.
|
|
*/
|
|
memset(&del_filter, 0, sizeof(del_filter));
|
|
del_filter.block_id = filter->block_id;
|
|
|
|
/* Gets index of the filter */
|
|
index = ocelot_vcap_block_get_filter_index(block, filter);
|
|
if (index < 0)
|
|
return index;
|
|
|
|
/* Delete filter */
|
|
ocelot_vcap_block_remove_filter(ocelot, block, filter);
|
|
|
|
/* Move up all the blocks over the deleted filter */
|
|
for (i = index; i < block->count; i++) {
|
|
struct ocelot_vcap_filter *tmp;
|
|
|
|
tmp = ocelot_vcap_block_find_filter_by_index(block, i);
|
|
/* Read back the filter's counters before moving it */
|
|
vcap_entry_get(ocelot, i + 1, tmp);
|
|
vcap_entry_set(ocelot, i, tmp);
|
|
}
|
|
|
|
/* Now delete the last filter, because it is duplicated */
|
|
vcap_entry_set(ocelot, block->count, &del_filter);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ocelot_vcap_filter_stats_update(struct ocelot *ocelot,
|
|
struct ocelot_vcap_filter *filter)
|
|
{
|
|
struct ocelot_vcap_block *block = &ocelot->block[filter->block_id];
|
|
struct ocelot_vcap_filter tmp;
|
|
int index;
|
|
|
|
index = ocelot_vcap_block_get_filter_index(block, filter);
|
|
if (index < 0)
|
|
return index;
|
|
|
|
vcap_entry_get(ocelot, index, filter);
|
|
|
|
/* After we get the result we need to clear the counters */
|
|
tmp = *filter;
|
|
tmp.stats.pkts = 0;
|
|
vcap_entry_set(ocelot, index, &tmp);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ocelot_vcap_init_one(struct ocelot *ocelot,
|
|
const struct vcap_props *vcap)
|
|
{
|
|
struct vcap_data data;
|
|
|
|
memset(&data, 0, sizeof(data));
|
|
|
|
vcap_entry2cache(ocelot, vcap, &data);
|
|
ocelot_target_write(ocelot, vcap->target, vcap->entry_count,
|
|
VCAP_CORE_MV_CFG);
|
|
vcap_cmd(ocelot, vcap, 0, VCAP_CMD_INITIALIZE, VCAP_SEL_ENTRY);
|
|
|
|
vcap_action2cache(ocelot, vcap, &data);
|
|
ocelot_target_write(ocelot, vcap->target, vcap->action_count,
|
|
VCAP_CORE_MV_CFG);
|
|
vcap_cmd(ocelot, vcap, 0, VCAP_CMD_INITIALIZE,
|
|
VCAP_SEL_ACTION | VCAP_SEL_COUNTER);
|
|
}
|
|
|
|
static void ocelot_vcap_detect_constants(struct ocelot *ocelot,
|
|
struct vcap_props *vcap)
|
|
{
|
|
int counter_memory_width;
|
|
int num_default_actions;
|
|
int version;
|
|
|
|
version = ocelot_target_read(ocelot, vcap->target,
|
|
VCAP_CONST_VCAP_VER);
|
|
/* Only version 0 VCAP supported for now */
|
|
if (WARN_ON(version != 0))
|
|
return;
|
|
|
|
/* Width in bits of type-group field */
|
|
vcap->tg_width = ocelot_target_read(ocelot, vcap->target,
|
|
VCAP_CONST_ENTRY_TG_WIDTH);
|
|
/* Number of subwords per TCAM row */
|
|
vcap->sw_count = ocelot_target_read(ocelot, vcap->target,
|
|
VCAP_CONST_ENTRY_SWCNT);
|
|
/* Number of rows in TCAM. There can be this many full keys, or double
|
|
* this number half keys, or 4 times this number quarter keys.
|
|
*/
|
|
vcap->entry_count = ocelot_target_read(ocelot, vcap->target,
|
|
VCAP_CONST_ENTRY_CNT);
|
|
/* Assuming there are 4 subwords per TCAM row, their layout in the
|
|
* actual TCAM (not in the cache) would be:
|
|
*
|
|
* | SW 3 | TG 3 | SW 2 | TG 2 | SW 1 | TG 1 | SW 0 | TG 0 |
|
|
*
|
|
* (where SW=subword and TG=Type-Group).
|
|
*
|
|
* What VCAP_CONST_ENTRY_CNT is giving us is the width of one full TCAM
|
|
* row. But when software accesses the TCAM through the cache
|
|
* registers, the Type-Group values are written through another set of
|
|
* registers VCAP_TG_DAT, and therefore, it appears as though the 4
|
|
* subwords are contiguous in the cache memory.
|
|
* Important mention: regardless of the number of key entries per row
|
|
* (and therefore of key size: 1 full key or 2 half keys or 4 quarter
|
|
* keys), software always has to configure 4 Type-Group values. For
|
|
* example, in the case of 1 full key, the driver needs to set all 4
|
|
* Type-Group to be full key.
|
|
*
|
|
* For this reason, we need to fix up the value that the hardware is
|
|
* giving us. We don't actually care about the width of the entry in
|
|
* the TCAM. What we care about is the width of the entry in the cache
|
|
* registers, which is how we get to interact with it. And since the
|
|
* VCAP_ENTRY_DAT cache registers access only the subwords and not the
|
|
* Type-Groups, this means we need to subtract the width of the
|
|
* Type-Groups when packing and unpacking key entry data in a TCAM row.
|
|
*/
|
|
vcap->entry_width = ocelot_target_read(ocelot, vcap->target,
|
|
VCAP_CONST_ENTRY_WIDTH);
|
|
vcap->entry_width -= vcap->tg_width * vcap->sw_count;
|
|
num_default_actions = ocelot_target_read(ocelot, vcap->target,
|
|
VCAP_CONST_ACTION_DEF_CNT);
|
|
vcap->action_count = vcap->entry_count + num_default_actions;
|
|
vcap->action_width = ocelot_target_read(ocelot, vcap->target,
|
|
VCAP_CONST_ACTION_WIDTH);
|
|
/* The width of the counter memory, this is the complete width of all
|
|
* counter-fields associated with one full-word entry. There is one
|
|
* counter per entry sub-word (see CAP_CORE::ENTRY_SWCNT for number of
|
|
* subwords.)
|
|
*/
|
|
vcap->counter_words = vcap->sw_count;
|
|
counter_memory_width = ocelot_target_read(ocelot, vcap->target,
|
|
VCAP_CONST_CNT_WIDTH);
|
|
vcap->counter_width = counter_memory_width / vcap->counter_words;
|
|
}
|
|
|
|
int ocelot_vcap_init(struct ocelot *ocelot)
|
|
{
|
|
int i;
|
|
|
|
/* Create a policer that will drop the frames for the cpu.
|
|
* This policer will be used as action in the acl rules to drop
|
|
* frames.
|
|
*/
|
|
ocelot_write_gix(ocelot, 0x299, ANA_POL_MODE_CFG,
|
|
OCELOT_POLICER_DISCARD);
|
|
ocelot_write_gix(ocelot, 0x1, ANA_POL_PIR_CFG,
|
|
OCELOT_POLICER_DISCARD);
|
|
ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_PIR_STATE,
|
|
OCELOT_POLICER_DISCARD);
|
|
ocelot_write_gix(ocelot, 0x0, ANA_POL_CIR_CFG,
|
|
OCELOT_POLICER_DISCARD);
|
|
ocelot_write_gix(ocelot, 0x3fffff, ANA_POL_CIR_STATE,
|
|
OCELOT_POLICER_DISCARD);
|
|
|
|
for (i = 0; i < OCELOT_NUM_VCAP_BLOCKS; i++) {
|
|
struct ocelot_vcap_block *block = &ocelot->block[i];
|
|
struct vcap_props *vcap = &ocelot->vcap[i];
|
|
|
|
INIT_LIST_HEAD(&block->rules);
|
|
block->pol_lpr = OCELOT_POLICER_DISCARD - 1;
|
|
|
|
ocelot_vcap_detect_constants(ocelot, vcap);
|
|
ocelot_vcap_init_one(ocelot, vcap);
|
|
}
|
|
|
|
INIT_LIST_HEAD(&ocelot->dummy_rules);
|
|
|
|
return 0;
|
|
}
|