1
0
mirror of https://github.com/physwizz/a155-U-u1.git synced 2024-11-19 13:27:49 +00:00
a155-U-u1/kernel-5.10/drivers/net/ethernet/intel/ice/ice_virtchnl_pf.c
2024-03-11 06:53:12 +11:00

4168 lines
110 KiB
C

// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
#include "ice.h"
#include "ice_base.h"
#include "ice_lib.h"
#include "ice_fltr.h"
/**
* ice_validate_vf_id - helper to check if VF ID is valid
* @pf: pointer to the PF structure
* @vf_id: the ID of the VF to check
*/
static int ice_validate_vf_id(struct ice_pf *pf, u16 vf_id)
{
/* vf_id range is only valid for 0-255, and should always be unsigned */
if (vf_id >= pf->num_alloc_vfs) {
dev_err(ice_pf_to_dev(pf), "Invalid VF ID: %u\n", vf_id);
return -EINVAL;
}
return 0;
}
/**
* ice_check_vf_init - helper to check if VF init complete
* @pf: pointer to the PF structure
* @vf: the pointer to the VF to check
*/
static int ice_check_vf_init(struct ice_pf *pf, struct ice_vf *vf)
{
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
dev_err(ice_pf_to_dev(pf), "VF ID: %u in reset. Try again.\n",
vf->vf_id);
return -EBUSY;
}
return 0;
}
/**
* ice_err_to_virt_err - translate errors for VF return code
* @ice_err: error return code
*/
static enum virtchnl_status_code ice_err_to_virt_err(enum ice_status ice_err)
{
switch (ice_err) {
case ICE_SUCCESS:
return VIRTCHNL_STATUS_SUCCESS;
case ICE_ERR_BAD_PTR:
case ICE_ERR_INVAL_SIZE:
case ICE_ERR_DEVICE_NOT_SUPPORTED:
case ICE_ERR_PARAM:
case ICE_ERR_CFG:
return VIRTCHNL_STATUS_ERR_PARAM;
case ICE_ERR_NO_MEMORY:
return VIRTCHNL_STATUS_ERR_NO_MEMORY;
case ICE_ERR_NOT_READY:
case ICE_ERR_RESET_FAILED:
case ICE_ERR_FW_API_VER:
case ICE_ERR_AQ_ERROR:
case ICE_ERR_AQ_TIMEOUT:
case ICE_ERR_AQ_FULL:
case ICE_ERR_AQ_NO_WORK:
case ICE_ERR_AQ_EMPTY:
return VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
default:
return VIRTCHNL_STATUS_ERR_NOT_SUPPORTED;
}
}
/**
* ice_vc_vf_broadcast - Broadcast a message to all VFs on PF
* @pf: pointer to the PF structure
* @v_opcode: operation code
* @v_retval: return value
* @msg: pointer to the msg buffer
* @msglen: msg length
*/
static void
ice_vc_vf_broadcast(struct ice_pf *pf, enum virtchnl_ops v_opcode,
enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
{
struct ice_hw *hw = &pf->hw;
unsigned int i;
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
/* Not all vfs are enabled so skip the ones that are not */
if (!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states))
continue;
/* Ignore return value on purpose - a given VF may fail, but
* we need to keep going and send to all of them
*/
ice_aq_send_msg_to_vf(hw, vf->vf_id, v_opcode, v_retval, msg,
msglen, NULL);
}
}
/**
* ice_set_pfe_link - Set the link speed/status of the virtchnl_pf_event
* @vf: pointer to the VF structure
* @pfe: pointer to the virtchnl_pf_event to set link speed/status for
* @ice_link_speed: link speed specified by ICE_AQ_LINK_SPEED_*
* @link_up: whether or not to set the link up/down
*/
static void
ice_set_pfe_link(struct ice_vf *vf, struct virtchnl_pf_event *pfe,
int ice_link_speed, bool link_up)
{
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED) {
pfe->event_data.link_event_adv.link_status = link_up;
/* Speed in Mbps */
pfe->event_data.link_event_adv.link_speed =
ice_conv_link_speed_to_virtchnl(true, ice_link_speed);
} else {
pfe->event_data.link_event.link_status = link_up;
/* Legacy method for virtchnl link speeds */
pfe->event_data.link_event.link_speed =
(enum virtchnl_link_speed)
ice_conv_link_speed_to_virtchnl(false, ice_link_speed);
}
}
/**
* ice_vf_has_no_qs_ena - check if the VF has any Rx or Tx queues enabled
* @vf: the VF to check
*
* Returns true if the VF has no Rx and no Tx queues enabled and returns false
* otherwise
*/
static bool ice_vf_has_no_qs_ena(struct ice_vf *vf)
{
return (!bitmap_weight(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF) &&
!bitmap_weight(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF));
}
/**
* ice_is_vf_link_up - check if the VF's link is up
* @vf: VF to check if link is up
*/
static bool ice_is_vf_link_up(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
if (ice_check_vf_init(pf, vf))
return false;
if (ice_vf_has_no_qs_ena(vf))
return false;
else if (vf->link_forced)
return vf->link_up;
else
return pf->hw.port_info->phy.link_info.link_info &
ICE_AQ_LINK_UP;
}
/**
* ice_vc_notify_vf_link_state - Inform a VF of link status
* @vf: pointer to the VF structure
*
* send a link status message to a single VF
*/
static void ice_vc_notify_vf_link_state(struct ice_vf *vf)
{
struct virtchnl_pf_event pfe = { 0 };
struct ice_hw *hw = &vf->pf->hw;
pfe.event = VIRTCHNL_EVENT_LINK_CHANGE;
pfe.severity = PF_EVENT_SEVERITY_INFO;
if (ice_is_vf_link_up(vf))
ice_set_pfe_link(vf, &pfe,
hw->port_info->phy.link_info.link_speed, true);
else
ice_set_pfe_link(vf, &pfe, ICE_AQ_LINK_SPEED_UNKNOWN, false);
ice_aq_send_msg_to_vf(hw, vf->vf_id, VIRTCHNL_OP_EVENT,
VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe,
sizeof(pfe), NULL);
}
/**
* ice_vf_invalidate_vsi - invalidate vsi_idx/vsi_num to remove VSI access
* @vf: VF to remove access to VSI for
*/
static void ice_vf_invalidate_vsi(struct ice_vf *vf)
{
vf->lan_vsi_idx = ICE_NO_VSI;
vf->lan_vsi_num = ICE_NO_VSI;
}
/**
* ice_vf_vsi_release - invalidate the VF's VSI after freeing it
* @vf: invalidate this VF's VSI after freeing it
*/
static void ice_vf_vsi_release(struct ice_vf *vf)
{
ice_vsi_release(vf->pf->vsi[vf->lan_vsi_idx]);
ice_vf_invalidate_vsi(vf);
}
/**
* ice_free_vf_res - Free a VF's resources
* @vf: pointer to the VF info
*/
static void ice_free_vf_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
int i, last_vector_idx;
/* First, disable VF's configuration API to prevent OS from
* accessing the VF's VSI after it's freed or invalidated.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
/* free VSI and disconnect it from the parent uplink */
if (vf->lan_vsi_idx != ICE_NO_VSI) {
ice_vf_vsi_release(vf);
vf->num_mac = 0;
}
last_vector_idx = vf->first_vector_idx + pf->num_msix_per_vf - 1;
/* clear VF MDD event information */
memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
/* Disable interrupts so that VF starts in a known state */
for (i = vf->first_vector_idx; i <= last_vector_idx; i++) {
wr32(&pf->hw, GLINT_DYN_CTL(i), GLINT_DYN_CTL_CLEARPBA_M);
ice_flush(&pf->hw);
}
/* reset some of the state variables keeping track of the resources */
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
}
/**
* ice_dis_vf_mappings
* @vf: pointer to the VF structure
*/
static void ice_dis_vf_mappings(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
struct device *dev;
int first, last, v;
struct ice_hw *hw;
hw = &pf->hw;
vsi = pf->vsi[vf->lan_vsi_idx];
dev = ice_pf_to_dev(pf);
wr32(hw, VPINT_ALLOC(vf->vf_id), 0);
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), 0);
first = vf->first_vector_idx;
last = first + pf->num_msix_per_vf - 1;
for (v = first; v <= last; v++) {
u32 reg;
reg = (((1 << GLINT_VECT2FUNC_IS_PF_S) &
GLINT_VECT2FUNC_IS_PF_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG)
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), 0);
else
dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG)
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), 0);
else
dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
}
/**
* ice_sriov_free_msix_res - Reset/free any used MSIX resources
* @pf: pointer to the PF structure
*
* Since no MSIX entries are taken from the pf->irq_tracker then just clear
* the pf->sriov_base_vector.
*
* Returns 0 on success, and -EINVAL on error.
*/
static int ice_sriov_free_msix_res(struct ice_pf *pf)
{
struct ice_res_tracker *res;
if (!pf)
return -EINVAL;
res = pf->irq_tracker;
if (!res)
return -EINVAL;
/* give back irq_tracker resources used */
WARN_ON(pf->sriov_base_vector < res->num_entries);
pf->sriov_base_vector = 0;
return 0;
}
/**
* ice_set_vf_state_qs_dis - Set VF queues state to disabled
* @vf: pointer to the VF structure
*/
void ice_set_vf_state_qs_dis(struct ice_vf *vf)
{
/* Clear Rx/Tx enabled queues flag */
bitmap_zero(vf->txq_ena, ICE_MAX_RSS_QS_PER_VF);
bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
}
/**
* ice_dis_vf_qs - Disable the VF queues
* @vf: pointer to the VF structure
*/
static void ice_dis_vf_qs(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = pf->vsi[vf->lan_vsi_idx];
ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, vf->vf_id);
ice_vsi_stop_all_rx_rings(vsi);
ice_set_vf_state_qs_dis(vf);
}
/**
* ice_free_vfs - Free all VFs
* @pf: pointer to the PF structure
*/
void ice_free_vfs(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
unsigned int tmp, i;
if (!pf->vf)
return;
while (test_and_set_bit(__ICE_VF_DIS, pf->state))
usleep_range(1000, 2000);
/* Disable IOV before freeing resources. This lets any VF drivers
* running in the host get themselves cleaned up before we yank
* the carpet out from underneath their feet.
*/
if (!pci_vfs_assigned(pf->pdev))
pci_disable_sriov(pf->pdev);
else
dev_warn(dev, "VFs are assigned - not disabling SR-IOV\n");
tmp = pf->num_alloc_vfs;
pf->num_qps_per_vf = 0;
pf->num_alloc_vfs = 0;
for (i = 0; i < tmp; i++) {
struct ice_vf *vf = &pf->vf[i];
mutex_lock(&vf->cfg_lock);
ice_dis_vf_qs(vf);
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states)) {
/* disable VF qp mappings and set VF disable state */
ice_dis_vf_mappings(vf);
set_bit(ICE_VF_STATE_DIS, vf->vf_states);
ice_free_vf_res(vf);
}
mutex_unlock(&vf->cfg_lock);
mutex_destroy(&vf->cfg_lock);
}
if (ice_sriov_free_msix_res(pf))
dev_err(dev, "Failed to free MSIX resources used by SR-IOV\n");
devm_kfree(dev, pf->vf);
pf->vf = NULL;
/* This check is for when the driver is unloaded while VFs are
* assigned. Setting the number of VFs to 0 through sysfs is caught
* before this function ever gets called.
*/
if (!pci_vfs_assigned(pf->pdev)) {
unsigned int vf_id;
/* Acknowledge VFLR for all VFs. Without this, VFs will fail to
* work correctly when SR-IOV gets re-enabled.
*/
for (vf_id = 0; vf_id < tmp; vf_id++) {
u32 reg_idx, bit_idx;
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
}
}
clear_bit(__ICE_VF_DIS, pf->state);
clear_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
}
/**
* ice_trigger_vf_reset - Reset a VF on HW
* @vf: pointer to the VF structure
* @is_vflr: true if VFLR was issued, false if not
* @is_pfr: true if the reset was triggered due to a previous PFR
*
* Trigger hardware to start a reset for a particular VF. Expects the caller
* to wait the proper amount of time to allow hardware to reset the VF before
* it cleans up and restores VF functionality.
*/
static void ice_trigger_vf_reset(struct ice_vf *vf, bool is_vflr, bool is_pfr)
{
struct ice_pf *pf = vf->pf;
u32 reg, reg_idx, bit_idx;
unsigned int vf_abs_id, i;
struct device *dev;
struct ice_hw *hw;
dev = ice_pf_to_dev(pf);
hw = &pf->hw;
vf_abs_id = vf->vf_id + hw->func_caps.vf_base_id;
/* Inform VF that it is no longer active, as a warning */
clear_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
/* Disable VF's configuration API during reset. The flag is re-enabled
* when it's safe again to access VF's VSI.
*/
clear_bit(ICE_VF_STATE_INIT, vf->vf_states);
/* VF_MBX_ARQLEN and VF_MBX_ATQLEN are cleared by PFR, so the driver
* needs to clear them in the case of VFR/VFLR. If this is done for
* PFR, it can mess up VF resets because the VF driver may already
* have started cleanup by the time we get here.
*/
if (!is_pfr) {
wr32(hw, VF_MBX_ARQLEN(vf->vf_id), 0);
wr32(hw, VF_MBX_ATQLEN(vf->vf_id), 0);
}
/* In the case of a VFLR, the HW has already reset the VF and we
* just need to clean up, so don't hit the VFRTRIG register.
*/
if (!is_vflr) {
/* reset VF using VPGEN_VFRTRIG reg */
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg |= VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
}
/* clear the VFLR bit in GLGEN_VFLRSTAT */
reg_idx = (vf_abs_id) / 32;
bit_idx = (vf_abs_id) % 32;
wr32(hw, GLGEN_VFLRSTAT(reg_idx), BIT(bit_idx));
ice_flush(hw);
wr32(hw, PF_PCI_CIAA,
VF_DEVICE_STATUS | (vf_abs_id << PF_PCI_CIAA_VF_NUM_S));
for (i = 0; i < ICE_PCI_CIAD_WAIT_COUNT; i++) {
reg = rd32(hw, PF_PCI_CIAD);
/* no transactions pending so stop polling */
if ((reg & VF_TRANS_PENDING_M) == 0)
break;
dev_err(dev, "VF %u PCI transactions stuck\n", vf->vf_id);
udelay(ICE_PCI_CIAD_WAIT_DELAY_US);
}
}
/**
* ice_vsi_manage_pvid - Enable or disable port VLAN for VSI
* @vsi: the VSI to update
* @pvid_info: VLAN ID and QoS used to set the PVID VSI context field
* @enable: true for enable PVID false for disable
*/
static int ice_vsi_manage_pvid(struct ice_vsi *vsi, u16 pvid_info, bool enable)
{
struct ice_hw *hw = &vsi->back->hw;
struct ice_aqc_vsi_props *info;
struct ice_vsi_ctx *ctxt;
enum ice_status status;
int ret = 0;
ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
if (!ctxt)
return -ENOMEM;
ctxt->info = vsi->info;
info = &ctxt->info;
if (enable) {
info->vlan_flags = ICE_AQ_VSI_VLAN_MODE_UNTAGGED |
ICE_AQ_VSI_PVLAN_INSERT_PVID |
ICE_AQ_VSI_VLAN_EMOD_STR;
info->sw_flags2 |= ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
} else {
info->vlan_flags = ICE_AQ_VSI_VLAN_EMOD_NOTHING |
ICE_AQ_VSI_VLAN_MODE_ALL;
info->sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
}
info->pvid = cpu_to_le16(pvid_info);
info->valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
ICE_AQ_VSI_PROP_SW_VALID);
status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
if (status) {
dev_info(ice_hw_to_dev(hw), "update VSI for port VLAN failed, err %s aq_err %s\n",
ice_stat_str(status),
ice_aq_str(hw->adminq.sq_last_status));
ret = -EIO;
goto out;
}
vsi->info.vlan_flags = info->vlan_flags;
vsi->info.sw_flags2 = info->sw_flags2;
vsi->info.pvid = info->pvid;
out:
kfree(ctxt);
return ret;
}
/**
* ice_vf_get_port_info - Get the VF's port info structure
* @vf: VF used to get the port info structure for
*/
static struct ice_port_info *ice_vf_get_port_info(struct ice_vf *vf)
{
return vf->pf->hw.port_info;
}
/**
* ice_vf_vsi_setup - Set up a VF VSI
* @vf: VF to setup VSI for
*
* Returns pointer to the successfully allocated VSI struct on success,
* otherwise returns NULL on failure.
*/
static struct ice_vsi *ice_vf_vsi_setup(struct ice_vf *vf)
{
struct ice_port_info *pi = ice_vf_get_port_info(vf);
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = ice_vsi_setup(pf, pi, ICE_VSI_VF, vf->vf_id);
if (!vsi) {
dev_err(ice_pf_to_dev(pf), "Failed to create VF VSI\n");
ice_vf_invalidate_vsi(vf);
return NULL;
}
vf->lan_vsi_idx = vsi->idx;
vf->lan_vsi_num = vsi->vsi_num;
return vsi;
}
/**
* ice_calc_vf_first_vector_idx - Calculate MSIX vector index in the PF space
* @pf: pointer to PF structure
* @vf: pointer to VF that the first MSIX vector index is being calculated for
*
* This returns the first MSIX vector index in PF space that is used by this VF.
* This index is used when accessing PF relative registers such as
* GLINT_VECT2FUNC and GLINT_DYN_CTL.
* This will always be the OICR index in the AVF driver so any functionality
* using vf->first_vector_idx for queue configuration will have to increment by
* 1 to avoid meddling with the OICR index.
*/
static int ice_calc_vf_first_vector_idx(struct ice_pf *pf, struct ice_vf *vf)
{
return pf->sriov_base_vector + vf->vf_id * pf->num_msix_per_vf;
}
/**
* ice_vf_rebuild_host_vlan_cfg - add VLAN 0 filter or rebuild the Port VLAN
* @vf: VF to add MAC filters for
*
* Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
* always re-adds either a VLAN 0 or port VLAN based filter after reset.
*/
static int ice_vf_rebuild_host_vlan_cfg(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
struct device *dev = ice_pf_to_dev(vf->pf);
u16 vlan_id = 0;
int err;
if (vf->port_vlan_info) {
err = ice_vsi_manage_pvid(vsi, vf->port_vlan_info, true);
if (err) {
dev_err(dev, "failed to configure port VLAN via VSI parameters for VF %u, error %d\n",
vf->vf_id, err);
return err;
}
vlan_id = vf->port_vlan_info & VLAN_VID_MASK;
}
/* vlan_id will either be 0 or the port VLAN number */
err = ice_vsi_add_vlan(vsi, vlan_id, ICE_FWD_TO_VSI);
if (err) {
dev_err(dev, "failed to add %s VLAN %u filter for VF %u, error %d\n",
vf->port_vlan_info ? "port" : "", vlan_id, vf->vf_id,
err);
return err;
}
return 0;
}
/**
* ice_vf_rebuild_host_mac_cfg - add broadcast and the VF's perm_addr/LAA
* @vf: VF to add MAC filters for
*
* Called after a VF VSI has been re-added/rebuilt during reset. The PF driver
* always re-adds a broadcast filter and the VF's perm_addr/LAA after reset.
*/
static int ice_vf_rebuild_host_mac_cfg(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
struct device *dev = ice_pf_to_dev(vf->pf);
enum ice_status status;
u8 broadcast[ETH_ALEN];
eth_broadcast_addr(broadcast);
status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
if (status) {
dev_err(dev, "failed to add broadcast MAC filter for VF %u, error %s\n",
vf->vf_id, ice_stat_str(status));
return ice_status_to_errno(status);
}
vf->num_mac++;
if (is_valid_ether_addr(vf->dflt_lan_addr.addr)) {
status = ice_fltr_add_mac(vsi, vf->dflt_lan_addr.addr,
ICE_FWD_TO_VSI);
if (status) {
dev_err(dev, "failed to add default unicast MAC filter %pM for VF %u, error %s\n",
&vf->dflt_lan_addr.addr[0], vf->vf_id,
ice_stat_str(status));
return ice_status_to_errno(status);
}
vf->num_mac++;
}
return 0;
}
/**
* ice_vf_set_host_trust_cfg - set trust setting based on pre-reset value
* @vf: VF to configure trust setting for
*/
static void ice_vf_set_host_trust_cfg(struct ice_vf *vf)
{
if (vf->trusted)
set_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
else
clear_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
}
/**
* ice_ena_vf_msix_mappings - enable VF MSIX mappings in hardware
* @vf: VF to enable MSIX mappings for
*
* Some of the registers need to be indexed/configured using hardware global
* device values and other registers need 0-based values, which represent PF
* based values.
*/
static void ice_ena_vf_msix_mappings(struct ice_vf *vf)
{
int device_based_first_msix, device_based_last_msix;
int pf_based_first_msix, pf_based_last_msix, v;
struct ice_pf *pf = vf->pf;
int device_based_vf_id;
struct ice_hw *hw;
u32 reg;
hw = &pf->hw;
pf_based_first_msix = vf->first_vector_idx;
pf_based_last_msix = (pf_based_first_msix + pf->num_msix_per_vf) - 1;
device_based_first_msix = pf_based_first_msix +
pf->hw.func_caps.common_cap.msix_vector_first_id;
device_based_last_msix =
(device_based_first_msix + pf->num_msix_per_vf) - 1;
device_based_vf_id = vf->vf_id + hw->func_caps.vf_base_id;
reg = (((device_based_first_msix << VPINT_ALLOC_FIRST_S) &
VPINT_ALLOC_FIRST_M) |
((device_based_last_msix << VPINT_ALLOC_LAST_S) &
VPINT_ALLOC_LAST_M) | VPINT_ALLOC_VALID_M);
wr32(hw, VPINT_ALLOC(vf->vf_id), reg);
reg = (((device_based_first_msix << VPINT_ALLOC_PCI_FIRST_S)
& VPINT_ALLOC_PCI_FIRST_M) |
((device_based_last_msix << VPINT_ALLOC_PCI_LAST_S) &
VPINT_ALLOC_PCI_LAST_M) | VPINT_ALLOC_PCI_VALID_M);
wr32(hw, VPINT_ALLOC_PCI(vf->vf_id), reg);
/* map the interrupts to its functions */
for (v = pf_based_first_msix; v <= pf_based_last_msix; v++) {
reg = (((device_based_vf_id << GLINT_VECT2FUNC_VF_NUM_S) &
GLINT_VECT2FUNC_VF_NUM_M) |
((hw->pf_id << GLINT_VECT2FUNC_PF_NUM_S) &
GLINT_VECT2FUNC_PF_NUM_M));
wr32(hw, GLINT_VECT2FUNC(v), reg);
}
/* Map mailbox interrupt to VF MSI-X vector 0 */
wr32(hw, VPINT_MBX_CTL(device_based_vf_id), VPINT_MBX_CTL_CAUSE_ENA_M);
}
/**
* ice_ena_vf_q_mappings - enable Rx/Tx queue mappings for a VF
* @vf: VF to enable the mappings for
* @max_txq: max Tx queues allowed on the VF's VSI
* @max_rxq: max Rx queues allowed on the VF's VSI
*/
static void ice_ena_vf_q_mappings(struct ice_vf *vf, u16 max_txq, u16 max_rxq)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
struct device *dev = ice_pf_to_dev(vf->pf);
struct ice_hw *hw = &vf->pf->hw;
u32 reg;
/* set regardless of mapping mode */
wr32(hw, VPLAN_TXQ_MAPENA(vf->vf_id), VPLAN_TXQ_MAPENA_TX_ENA_M);
/* VF Tx queues allocation */
if (vsi->tx_mapping_mode == ICE_VSI_MAP_CONTIG) {
/* set the VF PF Tx queue range
* VFNUMQ value should be set to (number of queues - 1). A value
* of 0 means 1 queue and a value of 255 means 256 queues
*/
reg = (((vsi->txq_map[0] << VPLAN_TX_QBASE_VFFIRSTQ_S) &
VPLAN_TX_QBASE_VFFIRSTQ_M) |
(((max_txq - 1) << VPLAN_TX_QBASE_VFNUMQ_S) &
VPLAN_TX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_TX_QBASE(vf->vf_id), reg);
} else {
dev_err(dev, "Scattered mode for VF Tx queues is not yet implemented\n");
}
/* set regardless of mapping mode */
wr32(hw, VPLAN_RXQ_MAPENA(vf->vf_id), VPLAN_RXQ_MAPENA_RX_ENA_M);
/* VF Rx queues allocation */
if (vsi->rx_mapping_mode == ICE_VSI_MAP_CONTIG) {
/* set the VF PF Rx queue range
* VFNUMQ value should be set to (number of queues - 1). A value
* of 0 means 1 queue and a value of 255 means 256 queues
*/
reg = (((vsi->rxq_map[0] << VPLAN_RX_QBASE_VFFIRSTQ_S) &
VPLAN_RX_QBASE_VFFIRSTQ_M) |
(((max_rxq - 1) << VPLAN_RX_QBASE_VFNUMQ_S) &
VPLAN_RX_QBASE_VFNUMQ_M));
wr32(hw, VPLAN_RX_QBASE(vf->vf_id), reg);
} else {
dev_err(dev, "Scattered mode for VF Rx queues is not yet implemented\n");
}
}
/**
* ice_ena_vf_mappings - enable VF MSIX and queue mapping
* @vf: pointer to the VF structure
*/
static void ice_ena_vf_mappings(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
ice_ena_vf_msix_mappings(vf);
ice_ena_vf_q_mappings(vf, vsi->alloc_txq, vsi->alloc_rxq);
}
/**
* ice_determine_res
* @pf: pointer to the PF structure
* @avail_res: available resources in the PF structure
* @max_res: maximum resources that can be given per VF
* @min_res: minimum resources that can be given per VF
*
* Returns non-zero value if resources (queues/vectors) are available or
* returns zero if PF cannot accommodate for all num_alloc_vfs.
*/
static int
ice_determine_res(struct ice_pf *pf, u16 avail_res, u16 max_res, u16 min_res)
{
bool checked_min_res = false;
int res;
/* start by checking if PF can assign max number of resources for
* all num_alloc_vfs.
* if yes, return number per VF
* If no, divide by 2 and roundup, check again
* repeat the loop till we reach a point where even minimum resources
* are not available, in that case return 0
*/
res = max_res;
while ((res >= min_res) && !checked_min_res) {
int num_all_res;
num_all_res = pf->num_alloc_vfs * res;
if (num_all_res <= avail_res)
return res;
if (res == min_res)
checked_min_res = true;
res = DIV_ROUND_UP(res, 2);
}
return 0;
}
/**
* ice_calc_vf_reg_idx - Calculate the VF's register index in the PF space
* @vf: VF to calculate the register index for
* @q_vector: a q_vector associated to the VF
*/
int ice_calc_vf_reg_idx(struct ice_vf *vf, struct ice_q_vector *q_vector)
{
struct ice_pf *pf;
if (!vf || !q_vector)
return -EINVAL;
pf = vf->pf;
/* always add one to account for the OICR being the first MSIX */
return pf->sriov_base_vector + pf->num_msix_per_vf * vf->vf_id +
q_vector->v_idx + 1;
}
/**
* ice_get_max_valid_res_idx - Get the max valid resource index
* @res: pointer to the resource to find the max valid index for
*
* Start from the end of the ice_res_tracker and return right when we find the
* first res->list entry with the ICE_RES_VALID_BIT set. This function is only
* valid for SR-IOV because it is the only consumer that manipulates the
* res->end and this is always called when res->end is set to res->num_entries.
*/
static int ice_get_max_valid_res_idx(struct ice_res_tracker *res)
{
int i;
if (!res)
return -EINVAL;
for (i = res->num_entries - 1; i >= 0; i--)
if (res->list[i] & ICE_RES_VALID_BIT)
return i;
return 0;
}
/**
* ice_sriov_set_msix_res - Set any used MSIX resources
* @pf: pointer to PF structure
* @num_msix_needed: number of MSIX vectors needed for all SR-IOV VFs
*
* This function allows SR-IOV resources to be taken from the end of the PF's
* allowed HW MSIX vectors so that the irq_tracker will not be affected. We
* just set the pf->sriov_base_vector and return success.
*
* If there are not enough resources available, return an error. This should
* always be caught by ice_set_per_vf_res().
*
* Return 0 on success, and -EINVAL when there are not enough MSIX vectors
* in the PF's space available for SR-IOV.
*/
static int ice_sriov_set_msix_res(struct ice_pf *pf, u16 num_msix_needed)
{
u16 total_vectors = pf->hw.func_caps.common_cap.num_msix_vectors;
int vectors_used = pf->irq_tracker->num_entries;
int sriov_base_vector;
sriov_base_vector = total_vectors - num_msix_needed;
/* make sure we only grab irq_tracker entries from the list end and
* that we have enough available MSIX vectors
*/
if (sriov_base_vector < vectors_used)
return -EINVAL;
pf->sriov_base_vector = sriov_base_vector;
return 0;
}
/**
* ice_set_per_vf_res - check if vectors and queues are available
* @pf: pointer to the PF structure
*
* First, determine HW interrupts from common pool. If we allocate fewer VFs, we
* get more vectors and can enable more queues per VF. Note that this does not
* grab any vectors from the SW pool already allocated. Also note, that all
* vector counts include one for each VF's miscellaneous interrupt vector
* (i.e. OICR).
*
* Minimum VFs - 2 vectors, 1 queue pair
* Small VFs - 5 vectors, 4 queue pairs
* Medium VFs - 17 vectors, 16 queue pairs
*
* Second, determine number of queue pairs per VF by starting with a pre-defined
* maximum each VF supports. If this is not possible, then we adjust based on
* queue pairs available on the device.
*
* Lastly, set queue and MSI-X VF variables tracked by the PF so it can be used
* by each VF during VF initialization and reset.
*/
static int ice_set_per_vf_res(struct ice_pf *pf)
{
int max_valid_res_idx = ice_get_max_valid_res_idx(pf->irq_tracker);
int msix_avail_per_vf, msix_avail_for_sriov;
struct device *dev = ice_pf_to_dev(pf);
u16 num_msix_per_vf, num_txq, num_rxq;
if (!pf->num_alloc_vfs || max_valid_res_idx < 0)
return -EINVAL;
/* determine MSI-X resources per VF */
msix_avail_for_sriov = pf->hw.func_caps.common_cap.num_msix_vectors -
pf->irq_tracker->num_entries;
msix_avail_per_vf = msix_avail_for_sriov / pf->num_alloc_vfs;
if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MED) {
num_msix_per_vf = ICE_NUM_VF_MSIX_MED;
} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_SMALL) {
num_msix_per_vf = ICE_NUM_VF_MSIX_SMALL;
} else if (msix_avail_per_vf >= ICE_NUM_VF_MSIX_MULTIQ_MIN) {
num_msix_per_vf = ICE_NUM_VF_MSIX_MULTIQ_MIN;
} else if (msix_avail_per_vf >= ICE_MIN_INTR_PER_VF) {
num_msix_per_vf = ICE_MIN_INTR_PER_VF;
} else {
dev_err(dev, "Only %d MSI-X interrupts available for SR-IOV. Not enough to support minimum of %d MSI-X interrupts per VF for %d VFs\n",
msix_avail_for_sriov, ICE_MIN_INTR_PER_VF,
pf->num_alloc_vfs);
return -EIO;
}
/* determine queue resources per VF */
num_txq = ice_determine_res(pf, ice_get_avail_txq_count(pf),
min_t(u16,
num_msix_per_vf - ICE_NONQ_VECS_VF,
ICE_MAX_RSS_QS_PER_VF),
ICE_MIN_QS_PER_VF);
num_rxq = ice_determine_res(pf, ice_get_avail_rxq_count(pf),
min_t(u16,
num_msix_per_vf - ICE_NONQ_VECS_VF,
ICE_MAX_RSS_QS_PER_VF),
ICE_MIN_QS_PER_VF);
if (!num_txq || !num_rxq) {
dev_err(dev, "Not enough queues to support minimum of %d queue pairs per VF for %d VFs\n",
ICE_MIN_QS_PER_VF, pf->num_alloc_vfs);
return -EIO;
}
if (ice_sriov_set_msix_res(pf, num_msix_per_vf * pf->num_alloc_vfs)) {
dev_err(dev, "Unable to set MSI-X resources for %d VFs\n",
pf->num_alloc_vfs);
return -EINVAL;
}
/* only allow equal Tx/Rx queue count (i.e. queue pairs) */
pf->num_qps_per_vf = min_t(int, num_txq, num_rxq);
pf->num_msix_per_vf = num_msix_per_vf;
dev_info(dev, "Enabling %d VFs with %d vectors and %d queues per VF\n",
pf->num_alloc_vfs, pf->num_msix_per_vf, pf->num_qps_per_vf);
return 0;
}
/**
* ice_clear_vf_reset_trigger - enable VF to access hardware
* @vf: VF to enabled hardware access for
*/
static void ice_clear_vf_reset_trigger(struct ice_vf *vf)
{
struct ice_hw *hw = &vf->pf->hw;
u32 reg;
reg = rd32(hw, VPGEN_VFRTRIG(vf->vf_id));
reg &= ~VPGEN_VFRTRIG_VFSWR_M;
wr32(hw, VPGEN_VFRTRIG(vf->vf_id), reg);
ice_flush(hw);
}
/**
* ice_vf_set_vsi_promisc - set given VF VSI to given promiscuous mode(s)
* @vf: pointer to the VF info
* @vsi: the VSI being configured
* @promisc_m: mask of promiscuous config bits
* @rm_promisc: promisc flag request from the VF to remove or add filter
*
* This function configures VF VSI promiscuous mode, based on the VF requests,
* for Unicast, Multicast and VLAN
*/
static enum ice_status
ice_vf_set_vsi_promisc(struct ice_vf *vf, struct ice_vsi *vsi, u8 promisc_m,
bool rm_promisc)
{
struct ice_pf *pf = vf->pf;
enum ice_status status = 0;
struct ice_hw *hw;
hw = &pf->hw;
if (vsi->num_vlan) {
status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
rm_promisc);
} else if (vf->port_vlan_info) {
if (rm_promisc)
status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
vf->port_vlan_info);
else
status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
vf->port_vlan_info);
} else {
if (rm_promisc)
status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
0);
else
status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
0);
}
return status;
}
static void ice_vf_clear_counters(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
vf->num_mac = 0;
vsi->num_vlan = 0;
memset(&vf->mdd_tx_events, 0, sizeof(vf->mdd_tx_events));
memset(&vf->mdd_rx_events, 0, sizeof(vf->mdd_rx_events));
}
/**
* ice_vf_pre_vsi_rebuild - tasks to be done prior to VSI rebuild
* @vf: VF to perform pre VSI rebuild tasks
*
* These tasks are items that don't need to be amortized since they are most
* likely called in a for loop with all VF(s) in the reset_all_vfs() case.
*/
static void ice_vf_pre_vsi_rebuild(struct ice_vf *vf)
{
ice_vf_clear_counters(vf);
ice_clear_vf_reset_trigger(vf);
}
/**
* ice_vf_rebuild_host_cfg - host admin configuration is persistent across reset
* @vf: VF to rebuild host configuration on
*/
static void ice_vf_rebuild_host_cfg(struct ice_vf *vf)
{
struct device *dev = ice_pf_to_dev(vf->pf);
ice_vf_set_host_trust_cfg(vf);
if (ice_vf_rebuild_host_mac_cfg(vf))
dev_err(dev, "failed to rebuild default MAC configuration for VF %d\n",
vf->vf_id);
if (ice_vf_rebuild_host_vlan_cfg(vf))
dev_err(dev, "failed to rebuild VLAN configuration for VF %u\n",
vf->vf_id);
}
/**
* ice_vf_rebuild_vsi_with_release - release and setup the VF's VSI
* @vf: VF to release and setup the VSI for
*
* This is only called when a single VF is being reset (i.e. VFR, VFLR, host VF
* configuration change, etc.).
*/
static int ice_vf_rebuild_vsi_with_release(struct ice_vf *vf)
{
ice_vf_vsi_release(vf);
if (!ice_vf_vsi_setup(vf))
return -ENOMEM;
return 0;
}
/**
* ice_vf_rebuild_vsi - rebuild the VF's VSI
* @vf: VF to rebuild the VSI for
*
* This is only called when all VF(s) are being reset (i.e. PCIe Reset on the
* host, PFR, CORER, etc.).
*/
static int ice_vf_rebuild_vsi(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = pf->vsi[vf->lan_vsi_idx];
if (ice_vsi_rebuild(vsi, true)) {
dev_err(ice_pf_to_dev(pf), "failed to rebuild VF %d VSI\n",
vf->vf_id);
return -EIO;
}
/* vsi->idx will remain the same in this case so don't update
* vf->lan_vsi_idx
*/
vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
vf->lan_vsi_num = vsi->vsi_num;
return 0;
}
/**
* ice_vf_set_initialized - VF is ready for VIRTCHNL communication
* @vf: VF to set in initialized state
*
* After this function the VF will be ready to receive/handle the
* VIRTCHNL_OP_GET_VF_RESOURCES message
*/
static void ice_vf_set_initialized(struct ice_vf *vf)
{
ice_set_vf_state_qs_dis(vf);
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
clear_bit(ICE_VF_STATE_DIS, vf->vf_states);
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
}
/**
* ice_vf_post_vsi_rebuild - tasks to do after the VF's VSI have been rebuilt
* @vf: VF to perform tasks on
*/
static void ice_vf_post_vsi_rebuild(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct ice_hw *hw;
hw = &pf->hw;
ice_vf_rebuild_host_cfg(vf);
ice_vf_set_initialized(vf);
ice_ena_vf_mappings(vf);
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}
/**
* ice_reset_all_vfs - reset all allocated VFs in one go
* @pf: pointer to the PF structure
* @is_vflr: true if VFLR was issued, false if not
*
* First, tell the hardware to reset each VF, then do all the waiting in one
* chunk, and finally finish restoring each VF after the wait. This is useful
* during PF routines which need to reset all VFs, as otherwise it must perform
* these resets in a serialized fashion.
*
* Returns true if any VFs were reset, and false otherwise.
*/
bool ice_reset_all_vfs(struct ice_pf *pf, bool is_vflr)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
struct ice_vf *vf;
int v, i;
/* If we don't have any VFs, then there is nothing to reset */
if (!pf->num_alloc_vfs)
return false;
/* If VFs have been disabled, there is no need to reset */
if (test_and_set_bit(__ICE_VF_DIS, pf->state))
return false;
/* Begin reset on all VFs at once */
ice_for_each_vf(pf, v)
ice_trigger_vf_reset(&pf->vf[v], is_vflr, true);
/* HW requires some time to make sure it can flush the FIFO for a VF
* when it resets it. Poll the VPGEN_VFRSTAT register for each VF in
* sequence to make sure that it has completed. We'll keep track of
* the VFs using a simple iterator that increments once that VF has
* finished resetting.
*/
for (i = 0, v = 0; i < 10 && v < pf->num_alloc_vfs; i++) {
/* Check each VF in sequence */
while (v < pf->num_alloc_vfs) {
u32 reg;
vf = &pf->vf[v];
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
if (!(reg & VPGEN_VFRSTAT_VFRD_M)) {
/* only delay if the check failed */
usleep_range(10, 20);
break;
}
/* If the current VF has finished resetting, move on
* to the next VF in sequence.
*/
v++;
}
}
/* Display a warning if at least one VF didn't manage to reset in
* time, but continue on with the operation.
*/
if (v < pf->num_alloc_vfs)
dev_warn(dev, "VF reset check timeout\n");
/* free VF resources to begin resetting the VSI state */
ice_for_each_vf(pf, v) {
vf = &pf->vf[v];
mutex_lock(&vf->cfg_lock);
ice_vf_pre_vsi_rebuild(vf);
ice_vf_rebuild_vsi(vf);
ice_vf_post_vsi_rebuild(vf);
mutex_unlock(&vf->cfg_lock);
}
ice_flush(hw);
clear_bit(__ICE_VF_DIS, pf->state);
return true;
}
/**
* ice_is_vf_disabled
* @vf: pointer to the VF info
*
* Returns true if the PF or VF is disabled, false otherwise.
*/
static bool ice_is_vf_disabled(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
/* If the PF has been disabled, there is no need resetting VF until
* PF is active again. Similarly, if the VF has been disabled, this
* means something else is resetting the VF, so we shouldn't continue.
* Otherwise, set disable VF state bit for actual reset, and continue.
*/
return (test_bit(__ICE_VF_DIS, pf->state) ||
test_bit(ICE_VF_STATE_DIS, vf->vf_states));
}
/**
* ice_reset_vf - Reset a particular VF
* @vf: pointer to the VF structure
* @is_vflr: true if VFLR was issued, false if not
*
* Returns true if the VF is currently in reset, resets successfully, or resets
* are disabled and false otherwise.
*/
bool ice_reset_vf(struct ice_vf *vf, bool is_vflr)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
struct device *dev;
struct ice_hw *hw;
bool rsd = false;
u8 promisc_m;
u32 reg;
int i;
lockdep_assert_held(&vf->cfg_lock);
dev = ice_pf_to_dev(pf);
if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
dev_dbg(dev, "Trying to reset VF %d, but all VF resets are disabled\n",
vf->vf_id);
return true;
}
if (ice_is_vf_disabled(vf)) {
dev_dbg(dev, "VF is already disabled, there is no need for resetting it, telling VM, all is fine %d\n",
vf->vf_id);
return true;
}
/* Set VF disable bit state here, before triggering reset */
set_bit(ICE_VF_STATE_DIS, vf->vf_states);
ice_trigger_vf_reset(vf, is_vflr, false);
vsi = pf->vsi[vf->lan_vsi_idx];
ice_dis_vf_qs(vf);
/* Call Disable LAN Tx queue AQ whether or not queues are
* enabled. This is needed for successful completion of VFR.
*/
ice_dis_vsi_txq(vsi->port_info, vsi->idx, 0, 0, NULL, NULL,
NULL, ICE_VF_RESET, vf->vf_id, NULL);
hw = &pf->hw;
/* poll VPGEN_VFRSTAT reg to make sure
* that reset is complete
*/
for (i = 0; i < 10; i++) {
/* VF reset requires driver to first reset the VF and then
* poll the status register to make sure that the reset
* completed successfully.
*/
reg = rd32(hw, VPGEN_VFRSTAT(vf->vf_id));
if (reg & VPGEN_VFRSTAT_VFRD_M) {
rsd = true;
break;
}
/* only sleep if the reset is not done */
usleep_range(10, 20);
}
/* Display a warning if VF didn't manage to reset in time, but need to
* continue on with the operation.
*/
if (!rsd)
dev_warn(dev, "VF reset check timeout on VF %d\n", vf->vf_id);
/* disable promiscuous modes in case they were enabled
* ignore any error if disabling process failed
*/
if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) {
if (vf->port_vlan_info || vsi->num_vlan)
promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
else
promisc_m = ICE_UCAST_PROMISC_BITS;
vsi = pf->vsi[vf->lan_vsi_idx];
if (ice_vf_set_vsi_promisc(vf, vsi, promisc_m, true))
dev_err(dev, "disabling promiscuous mode failed\n");
}
ice_vf_pre_vsi_rebuild(vf);
if (ice_vf_rebuild_vsi_with_release(vf)) {
dev_err(dev, "Failed to release and setup the VF%u's VSI\n", vf->vf_id);
return false;
}
ice_vf_post_vsi_rebuild(vf);
return true;
}
/**
* ice_vc_notify_link_state - Inform all VFs on a PF of link status
* @pf: pointer to the PF structure
*/
void ice_vc_notify_link_state(struct ice_pf *pf)
{
int i;
ice_for_each_vf(pf, i)
ice_vc_notify_vf_link_state(&pf->vf[i]);
}
/**
* ice_vc_notify_reset - Send pending reset message to all VFs
* @pf: pointer to the PF structure
*
* indicate a pending reset to all VFs on a given PF
*/
void ice_vc_notify_reset(struct ice_pf *pf)
{
struct virtchnl_pf_event pfe;
if (!pf->num_alloc_vfs)
return;
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
ice_vc_vf_broadcast(pf, VIRTCHNL_OP_EVENT, VIRTCHNL_STATUS_SUCCESS,
(u8 *)&pfe, sizeof(struct virtchnl_pf_event));
}
/**
* ice_vc_notify_vf_reset - Notify VF of a reset event
* @vf: pointer to the VF structure
*/
static void ice_vc_notify_vf_reset(struct ice_vf *vf)
{
struct virtchnl_pf_event pfe;
struct ice_pf *pf;
if (!vf)
return;
pf = vf->pf;
if (ice_validate_vf_id(pf, vf->vf_id))
return;
/* Bail out if VF is in disabled state, neither initialized, nor active
* state - otherwise proceed with notifications
*/
if ((!test_bit(ICE_VF_STATE_INIT, vf->vf_states) &&
!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) ||
test_bit(ICE_VF_STATE_DIS, vf->vf_states))
return;
pfe.event = VIRTCHNL_EVENT_RESET_IMPENDING;
pfe.severity = PF_EVENT_SEVERITY_CERTAIN_DOOM;
ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, VIRTCHNL_OP_EVENT,
VIRTCHNL_STATUS_SUCCESS, (u8 *)&pfe, sizeof(pfe),
NULL);
}
/**
* ice_init_vf_vsi_res - initialize/setup VF VSI resources
* @vf: VF to initialize/setup the VSI for
*
* This function creates a VSI for the VF, adds a VLAN 0 filter, and sets up the
* VF VSI's broadcast filter and is only used during initial VF creation.
*/
static int ice_init_vf_vsi_res(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
u8 broadcast[ETH_ALEN];
enum ice_status status;
struct ice_vsi *vsi;
struct device *dev;
int err;
vf->first_vector_idx = ice_calc_vf_first_vector_idx(pf, vf);
dev = ice_pf_to_dev(pf);
vsi = ice_vf_vsi_setup(vf);
if (!vsi)
return -ENOMEM;
err = ice_vsi_add_vlan(vsi, 0, ICE_FWD_TO_VSI);
if (err) {
dev_warn(dev, "Failed to add VLAN 0 filter for VF %d\n",
vf->vf_id);
goto release_vsi;
}
eth_broadcast_addr(broadcast);
status = ice_fltr_add_mac(vsi, broadcast, ICE_FWD_TO_VSI);
if (status) {
dev_err(dev, "Failed to add broadcast MAC filter for VF %d, status %s\n",
vf->vf_id, ice_stat_str(status));
err = ice_status_to_errno(status);
goto release_vsi;
}
vf->num_mac = 1;
return 0;
release_vsi:
ice_vf_vsi_release(vf);
return err;
}
/**
* ice_start_vfs - start VFs so they are ready to be used by SR-IOV
* @pf: PF the VFs are associated with
*/
static int ice_start_vfs(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
int retval, i;
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
ice_clear_vf_reset_trigger(vf);
retval = ice_init_vf_vsi_res(vf);
if (retval) {
dev_err(ice_pf_to_dev(pf), "Failed to initialize VSI resources for VF %d, error %d\n",
vf->vf_id, retval);
goto teardown;
}
set_bit(ICE_VF_STATE_INIT, vf->vf_states);
ice_ena_vf_mappings(vf);
wr32(hw, VFGEN_RSTAT(vf->vf_id), VIRTCHNL_VFR_VFACTIVE);
}
ice_flush(hw);
return 0;
teardown:
for (i = i - 1; i >= 0; i--) {
struct ice_vf *vf = &pf->vf[i];
ice_dis_vf_mappings(vf);
ice_vf_vsi_release(vf);
}
return retval;
}
/**
* ice_set_dflt_settings - set VF defaults during initialization/creation
* @pf: PF holding reference to all VFs for default configuration
*/
static void ice_set_dflt_settings_vfs(struct ice_pf *pf)
{
int i;
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
vf->pf = pf;
vf->vf_id = i;
vf->vf_sw_id = pf->first_sw;
/* assign default capabilities */
set_bit(ICE_VIRTCHNL_VF_CAP_L2, &vf->vf_caps);
vf->spoofchk = true;
vf->num_vf_qs = pf->num_qps_per_vf;
mutex_init(&vf->cfg_lock);
}
}
/**
* ice_alloc_vfs - allocate num_vfs in the PF structure
* @pf: PF to store the allocated VFs in
* @num_vfs: number of VFs to allocate
*/
static int ice_alloc_vfs(struct ice_pf *pf, int num_vfs)
{
struct ice_vf *vfs;
vfs = devm_kcalloc(ice_pf_to_dev(pf), num_vfs, sizeof(*vfs),
GFP_KERNEL);
if (!vfs)
return -ENOMEM;
pf->vf = vfs;
pf->num_alloc_vfs = num_vfs;
return 0;
}
/**
* ice_ena_vfs - enable VFs so they are ready to be used
* @pf: pointer to the PF structure
* @num_vfs: number of VFs to enable
*/
static int ice_ena_vfs(struct ice_pf *pf, u16 num_vfs)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
int ret;
/* Disable global interrupt 0 so we don't try to handle the VFLR. */
wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S);
set_bit(__ICE_OICR_INTR_DIS, pf->state);
ice_flush(hw);
ret = pci_enable_sriov(pf->pdev, num_vfs);
if (ret) {
pf->num_alloc_vfs = 0;
goto err_unroll_intr;
}
ret = ice_alloc_vfs(pf, num_vfs);
if (ret)
goto err_pci_disable_sriov;
if (ice_set_per_vf_res(pf)) {
dev_err(dev, "Not enough resources for %d VFs, try with fewer number of VFs\n",
num_vfs);
ret = -ENOSPC;
goto err_unroll_sriov;
}
ice_set_dflt_settings_vfs(pf);
if (ice_start_vfs(pf)) {
dev_err(dev, "Failed to start VF(s)\n");
ret = -EAGAIN;
goto err_unroll_sriov;
}
clear_bit(__ICE_VF_DIS, pf->state);
return 0;
err_unroll_sriov:
devm_kfree(dev, pf->vf);
pf->vf = NULL;
pf->num_alloc_vfs = 0;
err_pci_disable_sriov:
pci_disable_sriov(pf->pdev);
err_unroll_intr:
/* rearm interrupts here */
ice_irq_dynamic_ena(hw, NULL, NULL);
clear_bit(__ICE_OICR_INTR_DIS, pf->state);
return ret;
}
/**
* ice_pci_sriov_ena - Enable or change number of VFs
* @pf: pointer to the PF structure
* @num_vfs: number of VFs to allocate
*
* Returns 0 on success and negative on failure
*/
static int ice_pci_sriov_ena(struct ice_pf *pf, int num_vfs)
{
int pre_existing_vfs = pci_num_vf(pf->pdev);
struct device *dev = ice_pf_to_dev(pf);
int err;
if (pre_existing_vfs && pre_existing_vfs != num_vfs)
ice_free_vfs(pf);
else if (pre_existing_vfs && pre_existing_vfs == num_vfs)
return 0;
if (num_vfs > pf->num_vfs_supported) {
dev_err(dev, "Can't enable %d VFs, max VFs supported is %d\n",
num_vfs, pf->num_vfs_supported);
return -EOPNOTSUPP;
}
dev_info(dev, "Enabling %d VFs\n", num_vfs);
err = ice_ena_vfs(pf, num_vfs);
if (err) {
dev_err(dev, "Failed to enable SR-IOV: %d\n", err);
return err;
}
set_bit(ICE_FLAG_SRIOV_ENA, pf->flags);
return 0;
}
/**
* ice_check_sriov_allowed - check if SR-IOV is allowed based on various checks
* @pf: PF to enabled SR-IOV on
*/
static int ice_check_sriov_allowed(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags)) {
dev_err(dev, "This device is not capable of SR-IOV\n");
return -EOPNOTSUPP;
}
if (ice_is_safe_mode(pf)) {
dev_err(dev, "SR-IOV cannot be configured - Device is in Safe Mode\n");
return -EOPNOTSUPP;
}
if (!ice_pf_state_is_nominal(pf)) {
dev_err(dev, "Cannot enable SR-IOV, device not ready\n");
return -EBUSY;
}
return 0;
}
/**
* ice_sriov_configure - Enable or change number of VFs via sysfs
* @pdev: pointer to a pci_dev structure
* @num_vfs: number of VFs to allocate or 0 to free VFs
*
* This function is called when the user updates the number of VFs in sysfs. On
* success return whatever num_vfs was set to by the caller. Return negative on
* failure.
*/
int ice_sriov_configure(struct pci_dev *pdev, int num_vfs)
{
struct ice_pf *pf = pci_get_drvdata(pdev);
struct device *dev = ice_pf_to_dev(pf);
int err;
err = ice_check_sriov_allowed(pf);
if (err)
return err;
if (!num_vfs) {
if (!pci_vfs_assigned(pdev)) {
ice_free_vfs(pf);
return 0;
}
dev_err(dev, "can't free VFs because some are assigned to VMs.\n");
return -EBUSY;
}
err = ice_pci_sriov_ena(pf, num_vfs);
if (err)
return err;
return num_vfs;
}
/**
* ice_process_vflr_event - Free VF resources via IRQ calls
* @pf: pointer to the PF structure
*
* called from the VFLR IRQ handler to
* free up VF resources and state variables
*/
void ice_process_vflr_event(struct ice_pf *pf)
{
struct ice_hw *hw = &pf->hw;
unsigned int vf_id;
u32 reg;
if (!test_and_clear_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
!pf->num_alloc_vfs)
return;
ice_for_each_vf(pf, vf_id) {
struct ice_vf *vf = &pf->vf[vf_id];
u32 reg_idx, bit_idx;
reg_idx = (hw->func_caps.vf_base_id + vf_id) / 32;
bit_idx = (hw->func_caps.vf_base_id + vf_id) % 32;
/* read GLGEN_VFLRSTAT register to find out the flr VFs */
reg = rd32(hw, GLGEN_VFLRSTAT(reg_idx));
if (reg & BIT(bit_idx)) {
/* GLGEN_VFLRSTAT bit will be cleared in ice_reset_vf */
mutex_lock(&vf->cfg_lock);
ice_reset_vf(vf, true);
mutex_unlock(&vf->cfg_lock);
}
}
}
/**
* ice_vc_reset_vf - Perform software reset on the VF after informing the AVF
* @vf: pointer to the VF info
*/
static void ice_vc_reset_vf(struct ice_vf *vf)
{
ice_vc_notify_vf_reset(vf);
ice_reset_vf(vf, false);
}
/**
* ice_get_vf_from_pfq - get the VF who owns the PF space queue passed in
* @pf: PF used to index all VFs
* @pfq: queue index relative to the PF's function space
*
* If no VF is found who owns the pfq then return NULL, otherwise return a
* pointer to the VF who owns the pfq
*/
static struct ice_vf *ice_get_vf_from_pfq(struct ice_pf *pf, u16 pfq)
{
unsigned int vf_id;
ice_for_each_vf(pf, vf_id) {
struct ice_vf *vf = &pf->vf[vf_id];
struct ice_vsi *vsi;
u16 rxq_idx;
vsi = pf->vsi[vf->lan_vsi_idx];
ice_for_each_rxq(vsi, rxq_idx)
if (vsi->rxq_map[rxq_idx] == pfq)
return vf;
}
return NULL;
}
/**
* ice_globalq_to_pfq - convert from global queue index to PF space queue index
* @pf: PF used for conversion
* @globalq: global queue index used to convert to PF space queue index
*/
static u32 ice_globalq_to_pfq(struct ice_pf *pf, u32 globalq)
{
return globalq - pf->hw.func_caps.common_cap.rxq_first_id;
}
/**
* ice_vf_lan_overflow_event - handle LAN overflow event for a VF
* @pf: PF that the LAN overflow event happened on
* @event: structure holding the event information for the LAN overflow event
*
* Determine if the LAN overflow event was caused by a VF queue. If it was not
* caused by a VF, do nothing. If a VF caused this LAN overflow event trigger a
* reset on the offending VF.
*/
void
ice_vf_lan_overflow_event(struct ice_pf *pf, struct ice_rq_event_info *event)
{
u32 gldcb_rtctq, queue;
struct ice_vf *vf;
gldcb_rtctq = le32_to_cpu(event->desc.params.lan_overflow.prtdcb_ruptq);
dev_dbg(ice_pf_to_dev(pf), "GLDCB_RTCTQ: 0x%08x\n", gldcb_rtctq);
/* event returns device global Rx queue number */
queue = (gldcb_rtctq & GLDCB_RTCTQ_RXQNUM_M) >>
GLDCB_RTCTQ_RXQNUM_S;
vf = ice_get_vf_from_pfq(pf, ice_globalq_to_pfq(pf, queue));
if (!vf)
return;
mutex_lock(&vf->cfg_lock);
ice_vc_reset_vf(vf);
mutex_unlock(&vf->cfg_lock);
}
/**
* ice_vc_send_msg_to_vf - Send message to VF
* @vf: pointer to the VF info
* @v_opcode: virtual channel opcode
* @v_retval: virtual channel return value
* @msg: pointer to the msg buffer
* @msglen: msg length
*
* send msg to VF
*/
static int
ice_vc_send_msg_to_vf(struct ice_vf *vf, u32 v_opcode,
enum virtchnl_status_code v_retval, u8 *msg, u16 msglen)
{
enum ice_status aq_ret;
struct device *dev;
struct ice_pf *pf;
if (!vf)
return -EINVAL;
pf = vf->pf;
if (ice_validate_vf_id(pf, vf->vf_id))
return -EINVAL;
dev = ice_pf_to_dev(pf);
aq_ret = ice_aq_send_msg_to_vf(&pf->hw, vf->vf_id, v_opcode, v_retval,
msg, msglen, NULL);
if (aq_ret && pf->hw.mailboxq.sq_last_status != ICE_AQ_RC_ENOSYS) {
dev_info(dev, "Unable to send the message to VF %d ret %s aq_err %s\n",
vf->vf_id, ice_stat_str(aq_ret),
ice_aq_str(pf->hw.mailboxq.sq_last_status));
return -EIO;
}
return 0;
}
/**
* ice_vc_get_ver_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to request the API version used by the PF
*/
static int ice_vc_get_ver_msg(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_version_info info = {
VIRTCHNL_VERSION_MAJOR, VIRTCHNL_VERSION_MINOR
};
vf->vf_ver = *(struct virtchnl_version_info *)msg;
/* VFs running the 1.0 API expect to get 1.0 back or they will cry. */
if (VF_IS_V10(&vf->vf_ver))
info.minor = VIRTCHNL_VERSION_MINOR_NO_VF_CAPS;
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_VERSION,
VIRTCHNL_STATUS_SUCCESS, (u8 *)&info,
sizeof(struct virtchnl_version_info));
}
/**
* ice_vc_get_max_frame_size - get max frame size allowed for VF
* @vf: VF used to determine max frame size
*
* Max frame size is determined based on the current port's max frame size and
* whether a port VLAN is configured on this VF. The VF is not aware whether
* it's in a port VLAN so the PF needs to account for this in max frame size
* checks and sending the max frame size to the VF.
*/
static u16 ice_vc_get_max_frame_size(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
struct ice_port_info *pi = vsi->port_info;
u16 max_frame_size;
max_frame_size = pi->phy.link_info.max_frame_size;
if (vf->port_vlan_info)
max_frame_size -= VLAN_HLEN;
return max_frame_size;
}
/**
* ice_vc_get_vf_res_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to request its resources
*/
static int ice_vc_get_vf_res_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vf_resource *vfres = NULL;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int len = 0;
int ret;
if (ice_check_vf_init(pf, vf)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
len = sizeof(struct virtchnl_vf_resource);
vfres = kzalloc(len, GFP_KERNEL);
if (!vfres) {
v_ret = VIRTCHNL_STATUS_ERR_NO_MEMORY;
len = 0;
goto err;
}
if (VF_IS_V11(&vf->vf_ver))
vf->driver_caps = *(u32 *)msg;
else
vf->driver_caps = VIRTCHNL_VF_OFFLOAD_L2 |
VIRTCHNL_VF_OFFLOAD_RSS_REG |
VIRTCHNL_VF_OFFLOAD_VLAN;
vfres->vf_cap_flags = VIRTCHNL_VF_OFFLOAD_L2;
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto err;
}
if (!vsi->info.pvid)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_VLAN;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PF) {
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PF;
} else {
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_AQ)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_AQ;
else
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_REG;
}
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RSS_PCTYPE_V2;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_ENCAP_CSUM;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_RX_POLLING)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_RX_POLLING;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_WB_ON_ITR)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_WB_ON_ITR;
if (vf->driver_caps & VIRTCHNL_VF_OFFLOAD_REQ_QUEUES)
vfres->vf_cap_flags |= VIRTCHNL_VF_OFFLOAD_REQ_QUEUES;
if (vf->driver_caps & VIRTCHNL_VF_CAP_ADV_LINK_SPEED)
vfres->vf_cap_flags |= VIRTCHNL_VF_CAP_ADV_LINK_SPEED;
vfres->num_vsis = 1;
/* Tx and Rx queue are equal for VF */
vfres->num_queue_pairs = vsi->num_txq;
vfres->max_vectors = pf->num_msix_per_vf;
vfres->rss_key_size = ICE_VSIQF_HKEY_ARRAY_SIZE;
vfres->rss_lut_size = ICE_VSIQF_HLUT_ARRAY_SIZE;
vfres->max_mtu = ice_vc_get_max_frame_size(vf);
vfres->vsi_res[0].vsi_id = vf->lan_vsi_num;
vfres->vsi_res[0].vsi_type = VIRTCHNL_VSI_SRIOV;
vfres->vsi_res[0].num_queue_pairs = vsi->num_txq;
ether_addr_copy(vfres->vsi_res[0].default_mac_addr,
vf->dflt_lan_addr.addr);
/* match guest capabilities */
vf->driver_caps = vfres->vf_cap_flags;
set_bit(ICE_VF_STATE_ACTIVE, vf->vf_states);
err:
/* send the response back to the VF */
ret = ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_VF_RESOURCES, v_ret,
(u8 *)vfres, len);
kfree(vfres);
return ret;
}
/**
* ice_vc_reset_vf_msg
* @vf: pointer to the VF info
*
* called from the VF to reset itself,
* unlike other virtchnl messages, PF driver
* doesn't send the response back to the VF
*/
static void ice_vc_reset_vf_msg(struct ice_vf *vf)
{
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
ice_reset_vf(vf, false);
}
/**
* ice_find_vsi_from_id
* @pf: the PF structure to search for the VSI
* @id: ID of the VSI it is searching for
*
* searches for the VSI with the given ID
*/
static struct ice_vsi *ice_find_vsi_from_id(struct ice_pf *pf, u16 id)
{
int i;
ice_for_each_vsi(pf, i)
if (pf->vsi[i] && pf->vsi[i]->vsi_num == id)
return pf->vsi[i];
return NULL;
}
/**
* ice_vc_isvalid_vsi_id
* @vf: pointer to the VF info
* @vsi_id: VF relative VSI ID
*
* check for the valid VSI ID
*/
static bool ice_vc_isvalid_vsi_id(struct ice_vf *vf, u16 vsi_id)
{
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
vsi = ice_find_vsi_from_id(pf, vsi_id);
return (vsi && (vsi->vf_id == vf->vf_id));
}
/**
* ice_vc_isvalid_q_id
* @vf: pointer to the VF info
* @vsi_id: VSI ID
* @qid: VSI relative queue ID
*
* check for the valid queue ID
*/
static bool ice_vc_isvalid_q_id(struct ice_vf *vf, u16 vsi_id, u8 qid)
{
struct ice_vsi *vsi = ice_find_vsi_from_id(vf->pf, vsi_id);
/* allocated Tx and Rx queues should be always equal for VF VSI */
return (vsi && (qid < vsi->alloc_txq));
}
/**
* ice_vc_isvalid_ring_len
* @ring_len: length of ring
*
* check for the valid ring count, should be multiple of ICE_REQ_DESC_MULTIPLE
* or zero
*/
static bool ice_vc_isvalid_ring_len(u16 ring_len)
{
return ring_len == 0 ||
(ring_len >= ICE_MIN_NUM_DESC &&
ring_len <= ICE_MAX_NUM_DESC &&
!(ring_len % ICE_REQ_DESC_MULTIPLE));
}
/**
* ice_vc_config_rss_key
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Configure the VF's RSS key
*/
static int ice_vc_config_rss_key(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_rss_key *vrk =
(struct virtchnl_rss_key *)msg;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vrk->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (vrk->key_len != ICE_VSIQF_HKEY_ARRAY_SIZE) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (ice_set_rss(vsi, vrk->key, NULL, 0))
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_KEY, v_ret,
NULL, 0);
}
/**
* ice_vc_config_rss_lut
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Configure the VF's RSS LUT
*/
static int ice_vc_config_rss_lut(struct ice_vf *vf, u8 *msg)
{
struct virtchnl_rss_lut *vrl = (struct virtchnl_rss_lut *)msg;
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vrl->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (vrl->lut_entries != ICE_VSIQF_HLUT_ARRAY_SIZE) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!test_bit(ICE_FLAG_RSS_ENA, vf->pf->flags)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (ice_set_rss(vsi, NULL, vrl->lut, ICE_VSIQF_HLUT_ARRAY_SIZE))
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_RSS_LUT, v_ret,
NULL, 0);
}
/**
* ice_wait_on_vf_reset - poll to make sure a given VF is ready after reset
* @vf: The VF being resseting
*
* The max poll time is about ~800ms, which is about the maximum time it takes
* for a VF to be reset and/or a VF driver to be removed.
*/
static void ice_wait_on_vf_reset(struct ice_vf *vf)
{
int i;
for (i = 0; i < ICE_MAX_VF_RESET_TRIES; i++) {
if (test_bit(ICE_VF_STATE_INIT, vf->vf_states))
break;
msleep(ICE_MAX_VF_RESET_SLEEP_MS);
}
}
/**
* ice_check_vf_ready_for_cfg - check if VF is ready to be configured/queried
* @vf: VF to check if it's ready to be configured/queried
*
* The purpose of this function is to make sure the VF is not in reset, not
* disabled, and initialized so it can be configured and/or queried by a host
* administrator.
*/
static int ice_check_vf_ready_for_cfg(struct ice_vf *vf)
{
struct ice_pf *pf;
ice_wait_on_vf_reset(vf);
if (ice_is_vf_disabled(vf))
return -EINVAL;
pf = vf->pf;
if (ice_check_vf_init(pf, vf))
return -EBUSY;
return 0;
}
/**
* ice_set_vf_spoofchk
* @netdev: network interface device structure
* @vf_id: VF identifier
* @ena: flag to enable or disable feature
*
* Enable or disable VF spoof checking
*/
int ice_set_vf_spoofchk(struct net_device *netdev, int vf_id, bool ena)
{
struct ice_netdev_priv *np = netdev_priv(netdev);
struct ice_pf *pf = np->vsi->back;
struct ice_vsi_ctx *ctx;
struct ice_vsi *vf_vsi;
enum ice_status status;
struct device *dev;
struct ice_vf *vf;
int ret;
dev = ice_pf_to_dev(pf);
if (ice_validate_vf_id(pf, vf_id))
return -EINVAL;
vf = &pf->vf[vf_id];
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
return ret;
vf_vsi = pf->vsi[vf->lan_vsi_idx];
if (!vf_vsi) {
netdev_err(netdev, "VSI %d for VF %d is null\n",
vf->lan_vsi_idx, vf->vf_id);
return -EINVAL;
}
if (vf_vsi->type != ICE_VSI_VF) {
netdev_err(netdev, "Type %d of VSI %d for VF %d is no ICE_VSI_VF\n",
vf_vsi->type, vf_vsi->vsi_num, vf->vf_id);
return -ENODEV;
}
if (ena == vf->spoofchk) {
dev_dbg(dev, "VF spoofchk already %s\n", ena ? "ON" : "OFF");
return 0;
}
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->info.sec_flags = vf_vsi->info.sec_flags;
ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
if (ena) {
ctx->info.sec_flags |=
ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
} else {
ctx->info.sec_flags &=
~(ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S));
}
status = ice_update_vsi(&pf->hw, vf_vsi->idx, ctx, NULL);
if (status) {
dev_err(dev, "Failed to %sable spoofchk on VF %d VSI %d\n error %s\n",
ena ? "en" : "dis", vf->vf_id, vf_vsi->vsi_num,
ice_stat_str(status));
ret = -EIO;
goto out;
}
/* only update spoofchk state and VSI context on success */
vf_vsi->info.sec_flags = ctx->info.sec_flags;
vf->spoofchk = ena;
out:
kfree(ctx);
return ret;
}
/**
* ice_is_any_vf_in_promisc - check if any VF(s) are in promiscuous mode
* @pf: PF structure for accessing VF(s)
*
* Return false if no VF(s) are in unicast and/or multicast promiscuous mode,
* else return true
*/
bool ice_is_any_vf_in_promisc(struct ice_pf *pf)
{
int vf_idx;
ice_for_each_vf(pf, vf_idx) {
struct ice_vf *vf = &pf->vf[vf_idx];
/* found a VF that has promiscuous mode configured */
if (test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states))
return true;
}
return false;
}
/**
* ice_vc_cfg_promiscuous_mode_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to configure VF VSIs promiscuous mode
*/
static int ice_vc_cfg_promiscuous_mode_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_promisc_info *info =
(struct virtchnl_promisc_info *)msg;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
struct device *dev;
bool rm_promisc;
int ret = 0;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, info->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps)) {
dev_err(dev, "Unprivileged VF %d is attempting to configure promiscuous mode\n",
vf->vf_id);
/* Leave v_ret alone, lie to the VF on purpose. */
goto error_param;
}
rm_promisc = !(info->flags & FLAG_VF_UNICAST_PROMISC) &&
!(info->flags & FLAG_VF_MULTICAST_PROMISC);
if (vsi->num_vlan || vf->port_vlan_info) {
struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
struct net_device *pf_netdev;
if (!pf_vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
pf_netdev = pf_vsi->netdev;
ret = ice_set_vf_spoofchk(pf_netdev, vf->vf_id, rm_promisc);
if (ret) {
dev_err(dev, "Failed to update spoofchk to %s for VF %d VSI %d when setting promiscuous mode\n",
rm_promisc ? "ON" : "OFF", vf->vf_id,
vsi->vsi_num);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
}
ret = ice_cfg_vlan_pruning(vsi, true, !rm_promisc);
if (ret) {
dev_err(dev, "Failed to configure VLAN pruning in promiscuous mode\n");
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
}
if (!test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags)) {
bool set_dflt_vsi = !!(info->flags & FLAG_VF_UNICAST_PROMISC);
if (set_dflt_vsi && !ice_is_dflt_vsi_in_use(pf->first_sw))
/* only attempt to set the default forwarding VSI if
* it's not currently set
*/
ret = ice_set_dflt_vsi(pf->first_sw, vsi);
else if (!set_dflt_vsi &&
ice_is_vsi_dflt_vsi(pf->first_sw, vsi))
/* only attempt to free the default forwarding VSI if we
* are the owner
*/
ret = ice_clear_dflt_vsi(pf->first_sw);
if (ret) {
dev_err(dev, "%sable VF %d as the default VSI failed, error %d\n",
set_dflt_vsi ? "en" : "dis", vf->vf_id, ret);
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
goto error_param;
}
} else {
enum ice_status status;
u8 promisc_m;
if (info->flags & FLAG_VF_UNICAST_PROMISC) {
if (vf->port_vlan_info || vsi->num_vlan)
promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
else
promisc_m = ICE_UCAST_PROMISC_BITS;
} else if (info->flags & FLAG_VF_MULTICAST_PROMISC) {
if (vf->port_vlan_info || vsi->num_vlan)
promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
else
promisc_m = ICE_MCAST_PROMISC_BITS;
} else {
if (vf->port_vlan_info || vsi->num_vlan)
promisc_m = ICE_UCAST_VLAN_PROMISC_BITS;
else
promisc_m = ICE_UCAST_PROMISC_BITS;
}
/* Configure multicast/unicast with or without VLAN promiscuous
* mode
*/
status = ice_vf_set_vsi_promisc(vf, vsi, promisc_m, rm_promisc);
if (status) {
dev_err(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d failed, error: %s\n",
rm_promisc ? "dis" : "en", vf->vf_id,
ice_stat_str(status));
v_ret = ice_err_to_virt_err(status);
goto error_param;
} else {
dev_dbg(dev, "%sable Tx/Rx filter promiscuous mode on VF-%d succeeded\n",
rm_promisc ? "dis" : "en", vf->vf_id);
}
}
if (info->flags & FLAG_VF_MULTICAST_PROMISC)
set_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
else
clear_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states);
if (info->flags & FLAG_VF_UNICAST_PROMISC)
set_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
else
clear_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states);
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE,
v_ret, NULL, 0);
}
/**
* ice_vc_get_stats_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to get VSI stats
*/
static int ice_vc_get_stats_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
struct ice_eth_stats stats = { 0 };
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
ice_update_eth_stats(vsi);
stats = vsi->eth_stats;
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_GET_STATS, v_ret,
(u8 *)&stats, sizeof(stats));
}
/**
* ice_vc_validate_vqs_bitmaps - validate Rx/Tx queue bitmaps from VIRTCHNL
* @vqs: virtchnl_queue_select structure containing bitmaps to validate
*
* Return true on successful validation, else false
*/
static bool ice_vc_validate_vqs_bitmaps(struct virtchnl_queue_select *vqs)
{
if ((!vqs->rx_queues && !vqs->tx_queues) ||
vqs->rx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF) ||
vqs->tx_queues >= BIT(ICE_MAX_RSS_QS_PER_VF))
return false;
return true;
}
/**
* ice_vf_ena_txq_interrupt - enable Tx queue interrupt via QINT_TQCTL
* @vsi: VSI of the VF to configure
* @q_idx: VF queue index used to determine the queue in the PF's space
*/
static void ice_vf_ena_txq_interrupt(struct ice_vsi *vsi, u32 q_idx)
{
struct ice_hw *hw = &vsi->back->hw;
u32 pfq = vsi->txq_map[q_idx];
u32 reg;
reg = rd32(hw, QINT_TQCTL(pfq));
/* MSI-X index 0 in the VF's space is always for the OICR, which means
* this is most likely a poll mode VF driver, so don't enable an
* interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
*/
if (!(reg & QINT_TQCTL_MSIX_INDX_M))
return;
wr32(hw, QINT_TQCTL(pfq), reg | QINT_TQCTL_CAUSE_ENA_M);
}
/**
* ice_vf_ena_rxq_interrupt - enable Tx queue interrupt via QINT_RQCTL
* @vsi: VSI of the VF to configure
* @q_idx: VF queue index used to determine the queue in the PF's space
*/
static void ice_vf_ena_rxq_interrupt(struct ice_vsi *vsi, u32 q_idx)
{
struct ice_hw *hw = &vsi->back->hw;
u32 pfq = vsi->rxq_map[q_idx];
u32 reg;
reg = rd32(hw, QINT_RQCTL(pfq));
/* MSI-X index 0 in the VF's space is always for the OICR, which means
* this is most likely a poll mode VF driver, so don't enable an
* interrupt that was never configured via VIRTCHNL_OP_CONFIG_IRQ_MAP
*/
if (!(reg & QINT_RQCTL_MSIX_INDX_M))
return;
wr32(hw, QINT_RQCTL(pfq), reg | QINT_RQCTL_CAUSE_ENA_M);
}
/**
* ice_vc_ena_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to enable all or specific queue(s)
*/
static int ice_vc_ena_qs_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
unsigned long q_map;
u16 vf_q_id;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_validate_vqs_bitmaps(vqs)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Enable only Rx rings, Tx rings were enabled by the FW when the
* Tx queue group list was configured and the context bits were
* programmed using ice_vsi_cfg_txqs
*/
q_map = vqs->rx_queues;
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Skip queue if enabled */
if (test_bit(vf_q_id, vf->rxq_ena))
continue;
if (ice_vsi_ctrl_one_rx_ring(vsi, true, vf_q_id, true)) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to enable Rx ring %d on VSI %d\n",
vf_q_id, vsi->vsi_num);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
ice_vf_ena_rxq_interrupt(vsi, vf_q_id);
set_bit(vf_q_id, vf->rxq_ena);
}
vsi = pf->vsi[vf->lan_vsi_idx];
q_map = vqs->tx_queues;
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Skip queue if enabled */
if (test_bit(vf_q_id, vf->txq_ena))
continue;
ice_vf_ena_txq_interrupt(vsi, vf_q_id);
set_bit(vf_q_id, vf->txq_ena);
}
/* Set flag to indicate that queues are enabled */
if (v_ret == VIRTCHNL_STATUS_SUCCESS)
set_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_QUEUES, v_ret,
NULL, 0);
}
/**
* ice_vc_dis_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to disable all or specific
* queue(s)
*/
static int ice_vc_dis_qs_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_queue_select *vqs =
(struct virtchnl_queue_select *)msg;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
unsigned long q_map;
u16 vf_q_id;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) &&
!test_bit(ICE_VF_STATE_QS_ENA, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vqs->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_validate_vqs_bitmaps(vqs)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (vqs->tx_queues) {
q_map = vqs->tx_queues;
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
struct ice_ring *ring = vsi->tx_rings[vf_q_id];
struct ice_txq_meta txq_meta = { 0 };
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!test_bit(vf_q_id, vf->txq_ena))
dev_dbg(ice_pf_to_dev(vsi->back), "Queue %u on VSI %u is not enabled, but stopping it anyway\n",
vf_q_id, vsi->vsi_num);
ice_fill_txq_meta(vsi, ring, &txq_meta);
if (ice_vsi_stop_tx_ring(vsi, ICE_NO_RESET, vf->vf_id,
ring, &txq_meta)) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Tx ring %d on VSI %d\n",
vf_q_id, vsi->vsi_num);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Clear enabled queues flag */
clear_bit(vf_q_id, vf->txq_ena);
}
}
q_map = vqs->rx_queues;
/* speed up Rx queue disable by batching them if possible */
if (q_map &&
bitmap_equal(&q_map, vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF)) {
if (ice_vsi_stop_all_rx_rings(vsi)) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop all Rx rings on VSI %d\n",
vsi->vsi_num);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
bitmap_zero(vf->rxq_ena, ICE_MAX_RSS_QS_PER_VF);
} else if (q_map) {
for_each_set_bit(vf_q_id, &q_map, ICE_MAX_RSS_QS_PER_VF) {
if (!ice_vc_isvalid_q_id(vf, vqs->vsi_id, vf_q_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Skip queue if not enabled */
if (!test_bit(vf_q_id, vf->rxq_ena))
continue;
if (ice_vsi_ctrl_one_rx_ring(vsi, false, vf_q_id,
true)) {
dev_err(ice_pf_to_dev(vsi->back), "Failed to stop Rx ring %d on VSI %d\n",
vf_q_id, vsi->vsi_num);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Clear enabled queues flag */
clear_bit(vf_q_id, vf->rxq_ena);
}
}
/* Clear enabled queues flag */
if (v_ret == VIRTCHNL_STATUS_SUCCESS && ice_vf_has_no_qs_ena(vf))
clear_bit(ICE_VF_STATE_QS_ENA, vf->vf_states);
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_QUEUES, v_ret,
NULL, 0);
}
/**
* ice_cfg_interrupt
* @vf: pointer to the VF info
* @vsi: the VSI being configured
* @vector_id: vector ID
* @map: vector map for mapping vectors to queues
* @q_vector: structure for interrupt vector
* configure the IRQ to queue map
*/
static int
ice_cfg_interrupt(struct ice_vf *vf, struct ice_vsi *vsi, u16 vector_id,
struct virtchnl_vector_map *map,
struct ice_q_vector *q_vector)
{
u16 vsi_q_id, vsi_q_id_idx;
unsigned long qmap;
q_vector->num_ring_rx = 0;
q_vector->num_ring_tx = 0;
qmap = map->rxq_map;
for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
vsi_q_id = vsi_q_id_idx;
if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
return VIRTCHNL_STATUS_ERR_PARAM;
q_vector->num_ring_rx++;
q_vector->rx.itr_idx = map->rxitr_idx;
vsi->rx_rings[vsi_q_id]->q_vector = q_vector;
ice_cfg_rxq_interrupt(vsi, vsi_q_id, vector_id,
q_vector->rx.itr_idx);
}
qmap = map->txq_map;
for_each_set_bit(vsi_q_id_idx, &qmap, ICE_MAX_RSS_QS_PER_VF) {
vsi_q_id = vsi_q_id_idx;
if (!ice_vc_isvalid_q_id(vf, vsi->vsi_num, vsi_q_id))
return VIRTCHNL_STATUS_ERR_PARAM;
q_vector->num_ring_tx++;
q_vector->tx.itr_idx = map->txitr_idx;
vsi->tx_rings[vsi_q_id]->q_vector = q_vector;
ice_cfg_txq_interrupt(vsi, vsi_q_id, vector_id,
q_vector->tx.itr_idx);
}
return VIRTCHNL_STATUS_SUCCESS;
}
/**
* ice_vc_cfg_irq_map_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to configure the IRQ to queue map
*/
static int ice_vc_cfg_irq_map_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
u16 num_q_vectors_mapped, vsi_id, vector_id;
struct virtchnl_irq_map_info *irqmap_info;
struct virtchnl_vector_map *map;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int i;
irqmap_info = (struct virtchnl_irq_map_info *)msg;
num_q_vectors_mapped = irqmap_info->num_vectors;
/* Check to make sure number of VF vectors mapped is not greater than
* number of VF vectors originally allocated, and check that
* there is actually at least a single VF queue vector mapped
*/
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
pf->num_msix_per_vf < num_q_vectors_mapped ||
!num_q_vectors_mapped) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
for (i = 0; i < num_q_vectors_mapped; i++) {
struct ice_q_vector *q_vector;
map = &irqmap_info->vecmap[i];
vector_id = map->vector_id;
vsi_id = map->vsi_id;
/* vector_id is always 0-based for each VF, and can never be
* larger than or equal to the max allowed interrupts per VF
*/
if (!(vector_id < pf->num_msix_per_vf) ||
!ice_vc_isvalid_vsi_id(vf, vsi_id) ||
(!vector_id && (map->rxq_map || map->txq_map))) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* No need to map VF miscellaneous or rogue vector */
if (!vector_id)
continue;
/* Subtract non queue vector from vector_id passed by VF
* to get actual number of VSI queue vector array index
*/
q_vector = vsi->q_vectors[vector_id - ICE_NONQ_VECS_VF];
if (!q_vector) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* lookout for the invalid queue index */
v_ret = (enum virtchnl_status_code)
ice_cfg_interrupt(vf, vsi, vector_id, map, q_vector);
if (v_ret)
goto error_param;
}
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_IRQ_MAP, v_ret,
NULL, 0);
}
/**
* ice_vc_cfg_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* called from the VF to configure the Rx/Tx queues
*/
static int ice_vc_cfg_qs_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vsi_queue_config_info *qci =
(struct virtchnl_vsi_queue_config_info *)msg;
struct virtchnl_queue_pair_info *qpi;
u16 num_rxq = 0, num_txq = 0;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
int i;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, qci->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (qci->num_queue_pairs > ICE_MAX_RSS_QS_PER_VF ||
qci->num_queue_pairs > min_t(u16, vsi->alloc_txq, vsi->alloc_rxq)) {
dev_err(ice_pf_to_dev(pf), "VF-%d requesting more than supported number of queues: %d\n",
vf->vf_id, min_t(u16, vsi->alloc_txq, vsi->alloc_rxq));
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
for (i = 0; i < qci->num_queue_pairs; i++) {
qpi = &qci->qpair[i];
if (qpi->txq.vsi_id != qci->vsi_id ||
qpi->rxq.vsi_id != qci->vsi_id ||
qpi->rxq.queue_id != qpi->txq.queue_id ||
qpi->txq.headwb_enabled ||
!ice_vc_isvalid_ring_len(qpi->txq.ring_len) ||
!ice_vc_isvalid_ring_len(qpi->rxq.ring_len) ||
!ice_vc_isvalid_q_id(vf, qci->vsi_id, qpi->txq.queue_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* copy Tx queue info from VF into VSI */
if (qpi->txq.ring_len > 0) {
num_txq++;
vsi->tx_rings[i]->dma = qpi->txq.dma_ring_addr;
vsi->tx_rings[i]->count = qpi->txq.ring_len;
}
/* copy Rx queue info from VF into VSI */
if (qpi->rxq.ring_len > 0) {
u16 max_frame_size = ice_vc_get_max_frame_size(vf);
num_rxq++;
vsi->rx_rings[i]->dma = qpi->rxq.dma_ring_addr;
vsi->rx_rings[i]->count = qpi->rxq.ring_len;
if (qpi->rxq.databuffer_size != 0 &&
(qpi->rxq.databuffer_size > ((16 * 1024) - 128) ||
qpi->rxq.databuffer_size < 1024)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi->rx_buf_len = qpi->rxq.databuffer_size;
vsi->rx_rings[i]->rx_buf_len = vsi->rx_buf_len;
if (qpi->rxq.max_pkt_size > max_frame_size ||
qpi->rxq.max_pkt_size < 64) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
}
vsi->max_frame = qpi->rxq.max_pkt_size;
/* add space for the port VLAN since the VF driver is not
* expected to account for it in the MTU calculation
*/
if (vf->port_vlan_info)
vsi->max_frame += VLAN_HLEN;
}
/* VF can request to configure less than allocated queues or default
* allocated queues. So update the VSI with new number
*/
vsi->num_txq = num_txq;
vsi->num_rxq = num_rxq;
/* All queues of VF VSI are in TC 0 */
vsi->tc_cfg.tc_info[0].qcount_tx = num_txq;
vsi->tc_cfg.tc_info[0].qcount_rx = num_rxq;
if (ice_vsi_cfg_lan_txqs(vsi) || ice_vsi_cfg_rxqs(vsi))
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_CONFIG_VSI_QUEUES, v_ret,
NULL, 0);
}
/**
* ice_is_vf_trusted
* @vf: pointer to the VF info
*/
static bool ice_is_vf_trusted(struct ice_vf *vf)
{
return test_bit(ICE_VIRTCHNL_VF_CAP_PRIVILEGE, &vf->vf_caps);
}
/**
* ice_can_vf_change_mac
* @vf: pointer to the VF info
*
* Return true if the VF is allowed to change its MAC filters, false otherwise
*/
static bool ice_can_vf_change_mac(struct ice_vf *vf)
{
/* If the VF MAC address has been set administratively (via the
* ndo_set_vf_mac command), then deny permission to the VF to
* add/delete unicast MAC addresses, unless the VF is trusted
*/
if (vf->pf_set_mac && !ice_is_vf_trusted(vf))
return false;
return true;
}
/**
* ice_vc_add_mac_addr - attempt to add the MAC address passed in
* @vf: pointer to the VF info
* @vsi: pointer to the VF's VSI
* @mac_addr: MAC address to add
*/
static int
ice_vc_add_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
{
struct device *dev = ice_pf_to_dev(vf->pf);
enum ice_status status;
int ret = 0;
/* default unicast MAC already added */
if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
return 0;
if (is_unicast_ether_addr(mac_addr) && !ice_can_vf_change_mac(vf)) {
dev_err(dev, "VF attempting to override administratively set MAC address, bring down and up the VF interface to resume normal operation\n");
return -EPERM;
}
status = ice_fltr_add_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
if (status == ICE_ERR_ALREADY_EXISTS) {
dev_dbg(dev, "MAC %pM already exists for VF %d\n", mac_addr,
vf->vf_id);
/* don't return since we might need to update
* the primary MAC in ice_vfhw_mac_add() below
*/
ret = -EEXIST;
} else if (status) {
dev_err(dev, "Failed to add MAC %pM for VF %d\n, error %s\n",
mac_addr, vf->vf_id, ice_stat_str(status));
return -EIO;
} else {
vf->num_mac++;
}
/* Set the default LAN address to the latest unicast MAC address added
* by the VF. The default LAN address is reported by the PF via
* ndo_get_vf_config.
*/
if (is_unicast_ether_addr(mac_addr))
ether_addr_copy(vf->dflt_lan_addr.addr, mac_addr);
return ret;
}
/**
* ice_vc_del_mac_addr - attempt to delete the MAC address passed in
* @vf: pointer to the VF info
* @vsi: pointer to the VF's VSI
* @mac_addr: MAC address to delete
*/
static int
ice_vc_del_mac_addr(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr)
{
struct device *dev = ice_pf_to_dev(vf->pf);
enum ice_status status;
if (!ice_can_vf_change_mac(vf) &&
ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
return 0;
status = ice_fltr_remove_mac(vsi, mac_addr, ICE_FWD_TO_VSI);
if (status == ICE_ERR_DOES_NOT_EXIST) {
dev_err(dev, "MAC %pM does not exist for VF %d\n", mac_addr,
vf->vf_id);
return -ENOENT;
} else if (status) {
dev_err(dev, "Failed to delete MAC %pM for VF %d, error %s\n",
mac_addr, vf->vf_id, ice_stat_str(status));
return -EIO;
}
if (ether_addr_equal(mac_addr, vf->dflt_lan_addr.addr))
eth_zero_addr(vf->dflt_lan_addr.addr);
vf->num_mac--;
return 0;
}
/**
* ice_vc_handle_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
* @set: true if MAC filters are being set, false otherwise
*
* add guest MAC address filter
*/
static int
ice_vc_handle_mac_addr_msg(struct ice_vf *vf, u8 *msg, bool set)
{
int (*ice_vc_cfg_mac)
(struct ice_vf *vf, struct ice_vsi *vsi, u8 *mac_addr);
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_ether_addr_list *al =
(struct virtchnl_ether_addr_list *)msg;
struct ice_pf *pf = vf->pf;
enum virtchnl_ops vc_op;
struct ice_vsi *vsi;
int i;
if (set) {
vc_op = VIRTCHNL_OP_ADD_ETH_ADDR;
ice_vc_cfg_mac = ice_vc_add_mac_addr;
} else {
vc_op = VIRTCHNL_OP_DEL_ETH_ADDR;
ice_vc_cfg_mac = ice_vc_del_mac_addr;
}
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states) ||
!ice_vc_isvalid_vsi_id(vf, al->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto handle_mac_exit;
}
/* If this VF is not privileged, then we can't add more than a
* limited number of addresses. Check to make sure that the
* additions do not push us over the limit.
*/
if (set && !ice_is_vf_trusted(vf) &&
(vf->num_mac + al->num_elements) > ICE_MAX_MACADDR_PER_VF) {
dev_err(ice_pf_to_dev(pf), "Can't add more MAC addresses, because VF-%d is not trusted, switch the VF to trusted mode in order to add more functionalities\n",
vf->vf_id);
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto handle_mac_exit;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto handle_mac_exit;
}
for (i = 0; i < al->num_elements; i++) {
u8 *mac_addr = al->list[i].addr;
int result;
if (is_broadcast_ether_addr(mac_addr) ||
is_zero_ether_addr(mac_addr))
continue;
result = ice_vc_cfg_mac(vf, vsi, mac_addr);
if (result == -EEXIST || result == -ENOENT) {
continue;
} else if (result) {
v_ret = VIRTCHNL_STATUS_ERR_ADMIN_QUEUE_ERROR;
goto handle_mac_exit;
}
}
handle_mac_exit:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, vc_op, v_ret, NULL, 0);
}
/**
* ice_vc_add_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* add guest MAC address filter
*/
static int ice_vc_add_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_handle_mac_addr_msg(vf, msg, true);
}
/**
* ice_vc_del_mac_addr_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* remove guest MAC address filter
*/
static int ice_vc_del_mac_addr_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_handle_mac_addr_msg(vf, msg, false);
}
/**
* ice_vc_request_qs_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* VFs get a default number of queues but can use this message to request a
* different number. If the request is successful, PF will reset the VF and
* return 0. If unsuccessful, PF will send message informing VF of number of
* available queue pairs via virtchnl message response to VF.
*/
static int ice_vc_request_qs_msg(struct ice_vf *vf, u8 *msg)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vf_res_request *vfres =
(struct virtchnl_vf_res_request *)msg;
u16 req_queues = vfres->num_queue_pairs;
struct ice_pf *pf = vf->pf;
u16 max_allowed_vf_queues;
u16 tx_rx_queue_left;
struct device *dev;
u16 cur_queues;
dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
cur_queues = vf->num_vf_qs;
tx_rx_queue_left = min_t(u16, ice_get_avail_txq_count(pf),
ice_get_avail_rxq_count(pf));
max_allowed_vf_queues = tx_rx_queue_left + cur_queues;
if (!req_queues) {
dev_err(dev, "VF %d tried to request 0 queues. Ignoring.\n",
vf->vf_id);
} else if (req_queues > ICE_MAX_RSS_QS_PER_VF) {
dev_err(dev, "VF %d tried to request more than %d queues.\n",
vf->vf_id, ICE_MAX_RSS_QS_PER_VF);
vfres->num_queue_pairs = ICE_MAX_RSS_QS_PER_VF;
} else if (req_queues > cur_queues &&
req_queues - cur_queues > tx_rx_queue_left) {
dev_warn(dev, "VF %d requested %u more queues, but only %u left.\n",
vf->vf_id, req_queues - cur_queues, tx_rx_queue_left);
vfres->num_queue_pairs = min_t(u16, max_allowed_vf_queues,
ICE_MAX_RSS_QS_PER_VF);
} else {
/* request is successful, then reset VF */
vf->num_req_qs = req_queues;
ice_vc_reset_vf(vf);
dev_info(dev, "VF %d granted request of %u queues.\n",
vf->vf_id, req_queues);
return 0;
}
error_param:
/* send the response to the VF */
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_REQUEST_QUEUES,
v_ret, (u8 *)vfres, sizeof(*vfres));
}
/**
* ice_set_vf_port_vlan
* @netdev: network interface device structure
* @vf_id: VF identifier
* @vlan_id: VLAN ID being set
* @qos: priority setting
* @vlan_proto: VLAN protocol
*
* program VF Port VLAN ID and/or QoS
*/
int
ice_set_vf_port_vlan(struct net_device *netdev, int vf_id, u16 vlan_id, u8 qos,
__be16 vlan_proto)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct device *dev;
struct ice_vf *vf;
u16 vlanprio;
int ret;
dev = ice_pf_to_dev(pf);
if (ice_validate_vf_id(pf, vf_id))
return -EINVAL;
if (vlan_id >= VLAN_N_VID || qos > 7) {
dev_err(dev, "Invalid Port VLAN parameters for VF %d, ID %d, QoS %d\n",
vf_id, vlan_id, qos);
return -EINVAL;
}
if (vlan_proto != htons(ETH_P_8021Q)) {
dev_err(dev, "VF VLAN protocol is not supported\n");
return -EPROTONOSUPPORT;
}
vf = &pf->vf[vf_id];
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
return ret;
vlanprio = vlan_id | (qos << VLAN_PRIO_SHIFT);
if (vf->port_vlan_info == vlanprio) {
/* duplicate request, so just return success */
dev_dbg(dev, "Duplicate pvid %d request\n", vlanprio);
return 0;
}
mutex_lock(&vf->cfg_lock);
vf->port_vlan_info = vlanprio;
if (vf->port_vlan_info)
dev_info(dev, "Setting VLAN %d, QoS 0x%x on VF %d\n",
vlan_id, qos, vf_id);
else
dev_info(dev, "Clearing port VLAN on VF %d\n", vf_id);
ice_vc_reset_vf(vf);
mutex_unlock(&vf->cfg_lock);
return 0;
}
/**
* ice_vf_vlan_offload_ena - determine if capabilities support VLAN offloads
* @caps: VF driver negotiated capabilities
*
* Return true if VIRTCHNL_VF_OFFLOAD_VLAN capability is set, else return false
*/
static bool ice_vf_vlan_offload_ena(u32 caps)
{
return !!(caps & VIRTCHNL_VF_OFFLOAD_VLAN);
}
/**
* ice_vc_process_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
* @add_v: Add VLAN if true, otherwise delete VLAN
*
* Process virtchnl op to add or remove programmed guest VLAN ID
*/
static int ice_vc_process_vlan_msg(struct ice_vf *vf, u8 *msg, bool add_v)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct virtchnl_vlan_filter_list *vfl =
(struct virtchnl_vlan_filter_list *)msg;
struct ice_pf *pf = vf->pf;
bool vlan_promisc = false;
struct ice_vsi *vsi;
struct device *dev;
struct ice_hw *hw;
int status = 0;
u8 promisc_m;
int i;
dev = ice_pf_to_dev(pf);
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vc_isvalid_vsi_id(vf, vfl->vsi_id)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
for (i = 0; i < vfl->num_elements; i++) {
if (vfl->vlan_id[i] >= VLAN_N_VID) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "invalid VF VLAN id %d\n",
vfl->vlan_id[i]);
goto error_param;
}
}
hw = &pf->hw;
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (add_v && !ice_is_vf_trusted(vf) &&
vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
vf->vf_id);
/* There is no need to let VF know about being not trusted,
* so we can just return success message here
*/
goto error_param;
}
if (vsi->info.pvid) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if ((test_bit(ICE_VF_STATE_UC_PROMISC, vf->vf_states) ||
test_bit(ICE_VF_STATE_MC_PROMISC, vf->vf_states)) &&
test_bit(ICE_FLAG_VF_TRUE_PROMISC_ENA, pf->flags))
vlan_promisc = true;
if (add_v) {
for (i = 0; i < vfl->num_elements; i++) {
u16 vid = vfl->vlan_id[i];
if (!ice_is_vf_trusted(vf) &&
vsi->num_vlan >= ICE_MAX_VLAN_PER_VF) {
dev_info(dev, "VF-%d is not trusted, switch the VF to trusted mode, in order to add more VLAN addresses\n",
vf->vf_id);
/* There is no need to let VF know about being
* not trusted, so we can just return success
* message here as well.
*/
goto error_param;
}
/* we add VLAN 0 by default for each VF so we can enable
* Tx VLAN anti-spoof without triggering MDD events so
* we don't need to add it again here
*/
if (!vid)
continue;
status = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
if (status) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Enable VLAN pruning when non-zero VLAN is added */
if (!vlan_promisc && vid &&
!ice_vsi_is_vlan_pruning_ena(vsi)) {
status = ice_cfg_vlan_pruning(vsi, true, false);
if (status) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "Enable VLAN pruning on VLAN ID: %d failed error-%d\n",
vid, status);
goto error_param;
}
} else if (vlan_promisc) {
/* Enable Ucast/Mcast VLAN promiscuous mode */
promisc_m = ICE_PROMISC_VLAN_TX |
ICE_PROMISC_VLAN_RX;
status = ice_set_vsi_promisc(hw, vsi->idx,
promisc_m, vid);
if (status) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
dev_err(dev, "Enable Unicast/multicast promiscuous mode on VLAN ID:%d failed error-%d\n",
vid, status);
}
}
}
} else {
/* In case of non_trusted VF, number of VLAN elements passed
* to PF for removal might be greater than number of VLANs
* filter programmed for that VF - So, use actual number of
* VLANS added earlier with add VLAN opcode. In order to avoid
* removing VLAN that doesn't exist, which result to sending
* erroneous failed message back to the VF
*/
int num_vf_vlan;
num_vf_vlan = vsi->num_vlan;
for (i = 0; i < vfl->num_elements && i < num_vf_vlan; i++) {
u16 vid = vfl->vlan_id[i];
/* we add VLAN 0 by default for each VF so we can enable
* Tx VLAN anti-spoof without triggering MDD events so
* we don't want a VIRTCHNL request to remove it
*/
if (!vid)
continue;
/* Make sure ice_vsi_kill_vlan is successful before
* updating VLAN information
*/
status = ice_vsi_kill_vlan(vsi, vid);
if (status) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
/* Disable VLAN pruning when only VLAN 0 is left */
if (vsi->num_vlan == 1 &&
ice_vsi_is_vlan_pruning_ena(vsi))
ice_cfg_vlan_pruning(vsi, false, false);
/* Disable Unicast/Multicast VLAN promiscuous mode */
if (vlan_promisc) {
promisc_m = ICE_PROMISC_VLAN_TX |
ICE_PROMISC_VLAN_RX;
ice_clear_vsi_promisc(hw, vsi->idx,
promisc_m, vid);
}
}
}
error_param:
/* send the response to the VF */
if (add_v)
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ADD_VLAN, v_ret,
NULL, 0);
else
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DEL_VLAN, v_ret,
NULL, 0);
}
/**
* ice_vc_add_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* Add and program guest VLAN ID
*/
static int ice_vc_add_vlan_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_process_vlan_msg(vf, msg, true);
}
/**
* ice_vc_remove_vlan_msg
* @vf: pointer to the VF info
* @msg: pointer to the msg buffer
*
* remove programmed guest VLAN ID
*/
static int ice_vc_remove_vlan_msg(struct ice_vf *vf, u8 *msg)
{
return ice_vc_process_vlan_msg(vf, msg, false);
}
/**
* ice_vc_ena_vlan_stripping
* @vf: pointer to the VF info
*
* Enable VLAN header stripping for a given VF
*/
static int ice_vc_ena_vlan_stripping(struct ice_vf *vf)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (ice_vsi_manage_vlan_stripping(vsi, true))
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_ENABLE_VLAN_STRIPPING,
v_ret, NULL, 0);
}
/**
* ice_vc_dis_vlan_stripping
* @vf: pointer to the VF info
*
* Disable VLAN header stripping for a given VF
*/
static int ice_vc_dis_vlan_stripping(struct ice_vf *vf)
{
enum virtchnl_status_code v_ret = VIRTCHNL_STATUS_SUCCESS;
struct ice_pf *pf = vf->pf;
struct ice_vsi *vsi;
if (!test_bit(ICE_VF_STATE_ACTIVE, vf->vf_states)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (!ice_vf_vlan_offload_ena(vf->driver_caps)) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi) {
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
goto error_param;
}
if (ice_vsi_manage_vlan_stripping(vsi, false))
v_ret = VIRTCHNL_STATUS_ERR_PARAM;
error_param:
return ice_vc_send_msg_to_vf(vf, VIRTCHNL_OP_DISABLE_VLAN_STRIPPING,
v_ret, NULL, 0);
}
/**
* ice_vf_init_vlan_stripping - enable/disable VLAN stripping on initialization
* @vf: VF to enable/disable VLAN stripping for on initialization
*
* If the VIRTCHNL_VF_OFFLOAD_VLAN flag is set enable VLAN stripping, else if
* the flag is cleared then we want to disable stripping. For example, the flag
* will be cleared when port VLANs are configured by the administrator before
* passing the VF to the guest or if the AVF driver doesn't support VLAN
* offloads.
*/
static int ice_vf_init_vlan_stripping(struct ice_vf *vf)
{
struct ice_vsi *vsi = vf->pf->vsi[vf->lan_vsi_idx];
if (!vsi)
return -EINVAL;
/* don't modify stripping if port VLAN is configured */
if (vsi->info.pvid)
return 0;
if (ice_vf_vlan_offload_ena(vf->driver_caps))
return ice_vsi_manage_vlan_stripping(vsi, true);
else
return ice_vsi_manage_vlan_stripping(vsi, false);
}
/**
* ice_vc_process_vf_msg - Process request from VF
* @pf: pointer to the PF structure
* @event: pointer to the AQ event
*
* called from the common asq/arq handler to
* process request from VF
*/
void ice_vc_process_vf_msg(struct ice_pf *pf, struct ice_rq_event_info *event)
{
u32 v_opcode = le32_to_cpu(event->desc.cookie_high);
s16 vf_id = le16_to_cpu(event->desc.retval);
u16 msglen = event->msg_len;
u8 *msg = event->msg_buf;
struct ice_vf *vf = NULL;
struct device *dev;
int err = 0;
dev = ice_pf_to_dev(pf);
if (ice_validate_vf_id(pf, vf_id)) {
err = -EINVAL;
goto error_handler;
}
vf = &pf->vf[vf_id];
/* Check if VF is disabled. */
if (test_bit(ICE_VF_STATE_DIS, vf->vf_states)) {
err = -EPERM;
goto error_handler;
}
/* Perform basic checks on the msg */
err = virtchnl_vc_validate_vf_msg(&vf->vf_ver, v_opcode, msg, msglen);
if (err) {
if (err == VIRTCHNL_STATUS_ERR_PARAM)
err = -EPERM;
else
err = -EINVAL;
}
error_handler:
if (err) {
ice_vc_send_msg_to_vf(vf, v_opcode, VIRTCHNL_STATUS_ERR_PARAM,
NULL, 0);
dev_err(dev, "Invalid message from VF %d, opcode %d, len %d, error %d\n",
vf_id, v_opcode, msglen, err);
return;
}
/* VF is being configured in another context that triggers a VFR, so no
* need to process this message
*/
if (!mutex_trylock(&vf->cfg_lock)) {
dev_info(dev, "VF %u is being configured in another context that will trigger a VFR, so there is no need to handle this message\n",
vf->vf_id);
return;
}
switch (v_opcode) {
case VIRTCHNL_OP_VERSION:
err = ice_vc_get_ver_msg(vf, msg);
break;
case VIRTCHNL_OP_GET_VF_RESOURCES:
err = ice_vc_get_vf_res_msg(vf, msg);
if (ice_vf_init_vlan_stripping(vf))
dev_err(dev, "Failed to initialize VLAN stripping for VF %d\n",
vf->vf_id);
ice_vc_notify_vf_link_state(vf);
break;
case VIRTCHNL_OP_RESET_VF:
ice_vc_reset_vf_msg(vf);
break;
case VIRTCHNL_OP_ADD_ETH_ADDR:
err = ice_vc_add_mac_addr_msg(vf, msg);
break;
case VIRTCHNL_OP_DEL_ETH_ADDR:
err = ice_vc_del_mac_addr_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_VSI_QUEUES:
err = ice_vc_cfg_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_ENABLE_QUEUES:
err = ice_vc_ena_qs_msg(vf, msg);
ice_vc_notify_vf_link_state(vf);
break;
case VIRTCHNL_OP_DISABLE_QUEUES:
err = ice_vc_dis_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_REQUEST_QUEUES:
err = ice_vc_request_qs_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_IRQ_MAP:
err = ice_vc_cfg_irq_map_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_RSS_KEY:
err = ice_vc_config_rss_key(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_RSS_LUT:
err = ice_vc_config_rss_lut(vf, msg);
break;
case VIRTCHNL_OP_GET_STATS:
err = ice_vc_get_stats_msg(vf, msg);
break;
case VIRTCHNL_OP_CONFIG_PROMISCUOUS_MODE:
err = ice_vc_cfg_promiscuous_mode_msg(vf, msg);
break;
case VIRTCHNL_OP_ADD_VLAN:
err = ice_vc_add_vlan_msg(vf, msg);
break;
case VIRTCHNL_OP_DEL_VLAN:
err = ice_vc_remove_vlan_msg(vf, msg);
break;
case VIRTCHNL_OP_ENABLE_VLAN_STRIPPING:
err = ice_vc_ena_vlan_stripping(vf);
break;
case VIRTCHNL_OP_DISABLE_VLAN_STRIPPING:
err = ice_vc_dis_vlan_stripping(vf);
break;
case VIRTCHNL_OP_UNKNOWN:
default:
dev_err(dev, "Unsupported opcode %d from VF %d\n", v_opcode,
vf_id);
err = ice_vc_send_msg_to_vf(vf, v_opcode,
VIRTCHNL_STATUS_ERR_NOT_SUPPORTED,
NULL, 0);
break;
}
if (err) {
/* Helper function cares less about error return values here
* as it is busy with pending work.
*/
dev_info(dev, "PF failed to honor VF %d, opcode %d, error %d\n",
vf_id, v_opcode, err);
}
mutex_unlock(&vf->cfg_lock);
}
/**
* ice_get_vf_cfg
* @netdev: network interface device structure
* @vf_id: VF identifier
* @ivi: VF configuration structure
*
* return VF configuration
*/
int
ice_get_vf_cfg(struct net_device *netdev, int vf_id, struct ifla_vf_info *ivi)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vf *vf;
if (ice_validate_vf_id(pf, vf_id))
return -EINVAL;
vf = &pf->vf[vf_id];
if (ice_check_vf_init(pf, vf))
return -EBUSY;
ivi->vf = vf_id;
ether_addr_copy(ivi->mac, vf->dflt_lan_addr.addr);
/* VF configuration for VLAN and applicable QoS */
ivi->vlan = vf->port_vlan_info & VLAN_VID_MASK;
ivi->qos = (vf->port_vlan_info & VLAN_PRIO_MASK) >> VLAN_PRIO_SHIFT;
ivi->trusted = vf->trusted;
ivi->spoofchk = vf->spoofchk;
if (!vf->link_forced)
ivi->linkstate = IFLA_VF_LINK_STATE_AUTO;
else if (vf->link_up)
ivi->linkstate = IFLA_VF_LINK_STATE_ENABLE;
else
ivi->linkstate = IFLA_VF_LINK_STATE_DISABLE;
ivi->max_tx_rate = vf->tx_rate;
ivi->min_tx_rate = 0;
return 0;
}
/**
* ice_unicast_mac_exists - check if the unicast MAC exists on the PF's switch
* @pf: PF used to reference the switch's rules
* @umac: unicast MAC to compare against existing switch rules
*
* Return true on the first/any match, else return false
*/
static bool ice_unicast_mac_exists(struct ice_pf *pf, u8 *umac)
{
struct ice_sw_recipe *mac_recipe_list =
&pf->hw.switch_info->recp_list[ICE_SW_LKUP_MAC];
struct ice_fltr_mgmt_list_entry *list_itr;
struct list_head *rule_head;
struct mutex *rule_lock; /* protect MAC filter list access */
rule_head = &mac_recipe_list->filt_rules;
rule_lock = &mac_recipe_list->filt_rule_lock;
mutex_lock(rule_lock);
list_for_each_entry(list_itr, rule_head, list_entry) {
u8 *existing_mac = &list_itr->fltr_info.l_data.mac.mac_addr[0];
if (ether_addr_equal(existing_mac, umac)) {
mutex_unlock(rule_lock);
return true;
}
}
mutex_unlock(rule_lock);
return false;
}
/**
* ice_set_vf_mac
* @netdev: network interface device structure
* @vf_id: VF identifier
* @mac: MAC address
*
* program VF MAC address
*/
int ice_set_vf_mac(struct net_device *netdev, int vf_id, u8 *mac)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vf *vf;
int ret;
if (ice_validate_vf_id(pf, vf_id))
return -EINVAL;
if (is_multicast_ether_addr(mac)) {
netdev_err(netdev, "%pM not a valid unicast address\n", mac);
return -EINVAL;
}
vf = &pf->vf[vf_id];
/* nothing left to do, unicast MAC already set */
if (ether_addr_equal(vf->dflt_lan_addr.addr, mac))
return 0;
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
return ret;
if (ice_unicast_mac_exists(pf, mac)) {
netdev_err(netdev, "Unicast MAC %pM already exists on this PF. Preventing setting VF %u unicast MAC address to %pM\n",
mac, vf_id, mac);
return -EINVAL;
}
mutex_lock(&vf->cfg_lock);
/* VF is notified of its new MAC via the PF's response to the
* VIRTCHNL_OP_GET_VF_RESOURCES message after the VF has been reset
*/
ether_addr_copy(vf->dflt_lan_addr.addr, mac);
if (is_zero_ether_addr(mac)) {
/* VF will send VIRTCHNL_OP_ADD_ETH_ADDR message with its MAC */
vf->pf_set_mac = false;
netdev_info(netdev, "Removing MAC on VF %d. VF driver will be reinitialized\n",
vf->vf_id);
} else {
/* PF will add MAC rule for the VF */
vf->pf_set_mac = true;
netdev_info(netdev, "Setting MAC %pM on VF %d. VF driver will be reinitialized\n",
mac, vf_id);
}
ice_vc_reset_vf(vf);
mutex_unlock(&vf->cfg_lock);
return 0;
}
/**
* ice_set_vf_trust
* @netdev: network interface device structure
* @vf_id: VF identifier
* @trusted: Boolean value to enable/disable trusted VF
*
* Enable or disable a given VF as trusted
*/
int ice_set_vf_trust(struct net_device *netdev, int vf_id, bool trusted)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vf *vf;
int ret;
if (ice_validate_vf_id(pf, vf_id))
return -EINVAL;
vf = &pf->vf[vf_id];
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
return ret;
/* Check if already trusted */
if (trusted == vf->trusted)
return 0;
mutex_lock(&vf->cfg_lock);
vf->trusted = trusted;
ice_vc_reset_vf(vf);
dev_info(ice_pf_to_dev(pf), "VF %u is now %strusted\n",
vf_id, trusted ? "" : "un");
mutex_unlock(&vf->cfg_lock);
return 0;
}
/**
* ice_set_vf_link_state
* @netdev: network interface device structure
* @vf_id: VF identifier
* @link_state: required link state
*
* Set VF's link state, irrespective of physical link state status
*/
int ice_set_vf_link_state(struct net_device *netdev, int vf_id, int link_state)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_vf *vf;
int ret;
if (ice_validate_vf_id(pf, vf_id))
return -EINVAL;
vf = &pf->vf[vf_id];
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
return ret;
switch (link_state) {
case IFLA_VF_LINK_STATE_AUTO:
vf->link_forced = false;
break;
case IFLA_VF_LINK_STATE_ENABLE:
vf->link_forced = true;
vf->link_up = true;
break;
case IFLA_VF_LINK_STATE_DISABLE:
vf->link_forced = true;
vf->link_up = false;
break;
default:
return -EINVAL;
}
ice_vc_notify_vf_link_state(vf);
return 0;
}
/**
* ice_get_vf_stats - populate some stats for the VF
* @netdev: the netdev of the PF
* @vf_id: the host OS identifier (0-255)
* @vf_stats: pointer to the OS memory to be initialized
*/
int ice_get_vf_stats(struct net_device *netdev, int vf_id,
struct ifla_vf_stats *vf_stats)
{
struct ice_pf *pf = ice_netdev_to_pf(netdev);
struct ice_eth_stats *stats;
struct ice_vsi *vsi;
struct ice_vf *vf;
int ret;
if (ice_validate_vf_id(pf, vf_id))
return -EINVAL;
vf = &pf->vf[vf_id];
ret = ice_check_vf_ready_for_cfg(vf);
if (ret)
return ret;
vsi = pf->vsi[vf->lan_vsi_idx];
if (!vsi)
return -EINVAL;
ice_update_eth_stats(vsi);
stats = &vsi->eth_stats;
memset(vf_stats, 0, sizeof(*vf_stats));
vf_stats->rx_packets = stats->rx_unicast + stats->rx_broadcast +
stats->rx_multicast;
vf_stats->tx_packets = stats->tx_unicast + stats->tx_broadcast +
stats->tx_multicast;
vf_stats->rx_bytes = stats->rx_bytes;
vf_stats->tx_bytes = stats->tx_bytes;
vf_stats->broadcast = stats->rx_broadcast;
vf_stats->multicast = stats->rx_multicast;
vf_stats->rx_dropped = stats->rx_discards;
vf_stats->tx_dropped = stats->tx_discards;
return 0;
}
/**
* ice_print_vf_rx_mdd_event - print VF Rx malicious driver detect event
* @vf: pointer to the VF structure
*/
void ice_print_vf_rx_mdd_event(struct ice_vf *vf)
{
struct ice_pf *pf = vf->pf;
struct device *dev;
dev = ice_pf_to_dev(pf);
dev_info(dev, "%d Rx Malicious Driver Detection events detected on PF %d VF %d MAC %pM. mdd-auto-reset-vfs=%s\n",
vf->mdd_rx_events.count, pf->hw.pf_id, vf->vf_id,
vf->dflt_lan_addr.addr,
test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)
? "on" : "off");
}
/**
* ice_print_vfs_mdd_event - print VFs malicious driver detect event
* @pf: pointer to the PF structure
*
* Called from ice_handle_mdd_event to rate limit and print VFs MDD events.
*/
void ice_print_vfs_mdd_events(struct ice_pf *pf)
{
struct device *dev = ice_pf_to_dev(pf);
struct ice_hw *hw = &pf->hw;
int i;
/* check that there are pending MDD events to print */
if (!test_and_clear_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state))
return;
/* VF MDD event logs are rate limited to one second intervals */
if (time_is_after_jiffies(pf->last_printed_mdd_jiffies + HZ * 1))
return;
pf->last_printed_mdd_jiffies = jiffies;
ice_for_each_vf(pf, i) {
struct ice_vf *vf = &pf->vf[i];
/* only print Rx MDD event message if there are new events */
if (vf->mdd_rx_events.count != vf->mdd_rx_events.last_printed) {
vf->mdd_rx_events.last_printed =
vf->mdd_rx_events.count;
ice_print_vf_rx_mdd_event(vf);
}
/* only print Tx MDD event message if there are new events */
if (vf->mdd_tx_events.count != vf->mdd_tx_events.last_printed) {
vf->mdd_tx_events.last_printed =
vf->mdd_tx_events.count;
dev_info(dev, "%d Tx Malicious Driver Detection events detected on PF %d VF %d MAC %pM.\n",
vf->mdd_tx_events.count, hw->pf_id, i,
vf->dflt_lan_addr.addr);
}
}
}
/**
* ice_restore_all_vfs_msi_state - restore VF MSI state after PF FLR
* @pdev: pointer to a pci_dev structure
*
* Called when recovering from a PF FLR to restore interrupt capability to
* the VFs.
*/
void ice_restore_all_vfs_msi_state(struct pci_dev *pdev)
{
struct pci_dev *vfdev;
u16 vf_id;
int pos;
if (!pci_num_vf(pdev))
return;
pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_SRIOV);
if (pos) {
pci_read_config_word(pdev, pos + PCI_SRIOV_VF_DID,
&vf_id);
vfdev = pci_get_device(pdev->vendor, vf_id, NULL);
while (vfdev) {
if (vfdev->is_virtfn && vfdev->physfn == pdev)
pci_restore_msi_state(vfdev);
vfdev = pci_get_device(pdev->vendor, vf_id,
vfdev);
}
}
}