mirror of
https://github.com/physwizz/a155-U-u1.git
synced 2024-11-19 13:27:49 +00:00
2016 lines
53 KiB
C
2016 lines
53 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright(c) 2013 - 2019 Intel Corporation. */
|
|
|
|
#include <linux/types.h>
|
|
#include <linux/module.h>
|
|
#include <net/ipv6.h>
|
|
#include <net/ip.h>
|
|
#include <net/tcp.h>
|
|
#include <linux/if_macvlan.h>
|
|
#include <linux/prefetch.h>
|
|
|
|
#include "fm10k.h"
|
|
|
|
#define DRV_SUMMARY "Intel(R) Ethernet Switch Host Interface Driver"
|
|
char fm10k_driver_name[] = "fm10k";
|
|
static const char fm10k_driver_string[] = DRV_SUMMARY;
|
|
static const char fm10k_copyright[] =
|
|
"Copyright(c) 2013 - 2019 Intel Corporation.";
|
|
|
|
MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
|
|
MODULE_DESCRIPTION(DRV_SUMMARY);
|
|
MODULE_LICENSE("GPL v2");
|
|
|
|
/* single workqueue for entire fm10k driver */
|
|
struct workqueue_struct *fm10k_workqueue;
|
|
|
|
/**
|
|
* fm10k_init_module - Driver Registration Routine
|
|
*
|
|
* fm10k_init_module is the first routine called when the driver is
|
|
* loaded. All it does is register with the PCI subsystem.
|
|
**/
|
|
static int __init fm10k_init_module(void)
|
|
{
|
|
int ret;
|
|
|
|
pr_info("%s\n", fm10k_driver_string);
|
|
pr_info("%s\n", fm10k_copyright);
|
|
|
|
/* create driver workqueue */
|
|
fm10k_workqueue = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0,
|
|
fm10k_driver_name);
|
|
if (!fm10k_workqueue)
|
|
return -ENOMEM;
|
|
|
|
fm10k_dbg_init();
|
|
|
|
ret = fm10k_register_pci_driver();
|
|
if (ret) {
|
|
fm10k_dbg_exit();
|
|
destroy_workqueue(fm10k_workqueue);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
module_init(fm10k_init_module);
|
|
|
|
/**
|
|
* fm10k_exit_module - Driver Exit Cleanup Routine
|
|
*
|
|
* fm10k_exit_module is called just before the driver is removed
|
|
* from memory.
|
|
**/
|
|
static void __exit fm10k_exit_module(void)
|
|
{
|
|
fm10k_unregister_pci_driver();
|
|
|
|
fm10k_dbg_exit();
|
|
|
|
/* destroy driver workqueue */
|
|
destroy_workqueue(fm10k_workqueue);
|
|
}
|
|
module_exit(fm10k_exit_module);
|
|
|
|
static bool fm10k_alloc_mapped_page(struct fm10k_ring *rx_ring,
|
|
struct fm10k_rx_buffer *bi)
|
|
{
|
|
struct page *page = bi->page;
|
|
dma_addr_t dma;
|
|
|
|
/* Only page will be NULL if buffer was consumed */
|
|
if (likely(page))
|
|
return true;
|
|
|
|
/* alloc new page for storage */
|
|
page = dev_alloc_page();
|
|
if (unlikely(!page)) {
|
|
rx_ring->rx_stats.alloc_failed++;
|
|
return false;
|
|
}
|
|
|
|
/* map page for use */
|
|
dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
|
|
|
|
/* if mapping failed free memory back to system since
|
|
* there isn't much point in holding memory we can't use
|
|
*/
|
|
if (dma_mapping_error(rx_ring->dev, dma)) {
|
|
__free_page(page);
|
|
|
|
rx_ring->rx_stats.alloc_failed++;
|
|
return false;
|
|
}
|
|
|
|
bi->dma = dma;
|
|
bi->page = page;
|
|
bi->page_offset = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fm10k_alloc_rx_buffers - Replace used receive buffers
|
|
* @rx_ring: ring to place buffers on
|
|
* @cleaned_count: number of buffers to replace
|
|
**/
|
|
void fm10k_alloc_rx_buffers(struct fm10k_ring *rx_ring, u16 cleaned_count)
|
|
{
|
|
union fm10k_rx_desc *rx_desc;
|
|
struct fm10k_rx_buffer *bi;
|
|
u16 i = rx_ring->next_to_use;
|
|
|
|
/* nothing to do */
|
|
if (!cleaned_count)
|
|
return;
|
|
|
|
rx_desc = FM10K_RX_DESC(rx_ring, i);
|
|
bi = &rx_ring->rx_buffer[i];
|
|
i -= rx_ring->count;
|
|
|
|
do {
|
|
if (!fm10k_alloc_mapped_page(rx_ring, bi))
|
|
break;
|
|
|
|
/* Refresh the desc even if buffer_addrs didn't change
|
|
* because each write-back erases this info.
|
|
*/
|
|
rx_desc->q.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
|
|
|
|
rx_desc++;
|
|
bi++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
rx_desc = FM10K_RX_DESC(rx_ring, 0);
|
|
bi = rx_ring->rx_buffer;
|
|
i -= rx_ring->count;
|
|
}
|
|
|
|
/* clear the status bits for the next_to_use descriptor */
|
|
rx_desc->d.staterr = 0;
|
|
|
|
cleaned_count--;
|
|
} while (cleaned_count);
|
|
|
|
i += rx_ring->count;
|
|
|
|
if (rx_ring->next_to_use != i) {
|
|
/* record the next descriptor to use */
|
|
rx_ring->next_to_use = i;
|
|
|
|
/* update next to alloc since we have filled the ring */
|
|
rx_ring->next_to_alloc = i;
|
|
|
|
/* Force memory writes to complete before letting h/w
|
|
* know there are new descriptors to fetch. (Only
|
|
* applicable for weak-ordered memory model archs,
|
|
* such as IA-64).
|
|
*/
|
|
wmb();
|
|
|
|
/* notify hardware of new descriptors */
|
|
writel(i, rx_ring->tail);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fm10k_reuse_rx_page - page flip buffer and store it back on the ring
|
|
* @rx_ring: rx descriptor ring to store buffers on
|
|
* @old_buff: donor buffer to have page reused
|
|
*
|
|
* Synchronizes page for reuse by the interface
|
|
**/
|
|
static void fm10k_reuse_rx_page(struct fm10k_ring *rx_ring,
|
|
struct fm10k_rx_buffer *old_buff)
|
|
{
|
|
struct fm10k_rx_buffer *new_buff;
|
|
u16 nta = rx_ring->next_to_alloc;
|
|
|
|
new_buff = &rx_ring->rx_buffer[nta];
|
|
|
|
/* update, and store next to alloc */
|
|
nta++;
|
|
rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
|
|
|
|
/* transfer page from old buffer to new buffer */
|
|
*new_buff = *old_buff;
|
|
|
|
/* sync the buffer for use by the device */
|
|
dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
|
|
old_buff->page_offset,
|
|
FM10K_RX_BUFSZ,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
|
|
static inline bool fm10k_page_is_reserved(struct page *page)
|
|
{
|
|
return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
|
|
}
|
|
|
|
static bool fm10k_can_reuse_rx_page(struct fm10k_rx_buffer *rx_buffer,
|
|
struct page *page,
|
|
unsigned int __maybe_unused truesize)
|
|
{
|
|
/* avoid re-using remote pages */
|
|
if (unlikely(fm10k_page_is_reserved(page)))
|
|
return false;
|
|
|
|
#if (PAGE_SIZE < 8192)
|
|
/* if we are only owner of page we can reuse it */
|
|
if (unlikely(page_count(page) != 1))
|
|
return false;
|
|
|
|
/* flip page offset to other buffer */
|
|
rx_buffer->page_offset ^= FM10K_RX_BUFSZ;
|
|
#else
|
|
/* move offset up to the next cache line */
|
|
rx_buffer->page_offset += truesize;
|
|
|
|
if (rx_buffer->page_offset > (PAGE_SIZE - FM10K_RX_BUFSZ))
|
|
return false;
|
|
#endif
|
|
|
|
/* Even if we own the page, we are not allowed to use atomic_set()
|
|
* This would break get_page_unless_zero() users.
|
|
*/
|
|
page_ref_inc(page);
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fm10k_add_rx_frag - Add contents of Rx buffer to sk_buff
|
|
* @rx_buffer: buffer containing page to add
|
|
* @size: packet size from rx_desc
|
|
* @rx_desc: descriptor containing length of buffer written by hardware
|
|
* @skb: sk_buff to place the data into
|
|
*
|
|
* This function will add the data contained in rx_buffer->page to the skb.
|
|
* This is done either through a direct copy if the data in the buffer is
|
|
* less than the skb header size, otherwise it will just attach the page as
|
|
* a frag to the skb.
|
|
*
|
|
* The function will then update the page offset if necessary and return
|
|
* true if the buffer can be reused by the interface.
|
|
**/
|
|
static bool fm10k_add_rx_frag(struct fm10k_rx_buffer *rx_buffer,
|
|
unsigned int size,
|
|
union fm10k_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct page *page = rx_buffer->page;
|
|
unsigned char *va = page_address(page) + rx_buffer->page_offset;
|
|
#if (PAGE_SIZE < 8192)
|
|
unsigned int truesize = FM10K_RX_BUFSZ;
|
|
#else
|
|
unsigned int truesize = ALIGN(size, 512);
|
|
#endif
|
|
unsigned int pull_len;
|
|
|
|
if (unlikely(skb_is_nonlinear(skb)))
|
|
goto add_tail_frag;
|
|
|
|
if (likely(size <= FM10K_RX_HDR_LEN)) {
|
|
memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
|
|
|
|
/* page is not reserved, we can reuse buffer as-is */
|
|
if (likely(!fm10k_page_is_reserved(page)))
|
|
return true;
|
|
|
|
/* this page cannot be reused so discard it */
|
|
__free_page(page);
|
|
return false;
|
|
}
|
|
|
|
/* we need the header to contain the greater of either ETH_HLEN or
|
|
* 60 bytes if the skb->len is less than 60 for skb_pad.
|
|
*/
|
|
pull_len = eth_get_headlen(skb->dev, va, FM10K_RX_HDR_LEN);
|
|
|
|
/* align pull length to size of long to optimize memcpy performance */
|
|
memcpy(__skb_put(skb, pull_len), va, ALIGN(pull_len, sizeof(long)));
|
|
|
|
/* update all of the pointers */
|
|
va += pull_len;
|
|
size -= pull_len;
|
|
|
|
add_tail_frag:
|
|
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
|
|
(unsigned long)va & ~PAGE_MASK, size, truesize);
|
|
|
|
return fm10k_can_reuse_rx_page(rx_buffer, page, truesize);
|
|
}
|
|
|
|
static struct sk_buff *fm10k_fetch_rx_buffer(struct fm10k_ring *rx_ring,
|
|
union fm10k_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
unsigned int size = le16_to_cpu(rx_desc->w.length);
|
|
struct fm10k_rx_buffer *rx_buffer;
|
|
struct page *page;
|
|
|
|
rx_buffer = &rx_ring->rx_buffer[rx_ring->next_to_clean];
|
|
page = rx_buffer->page;
|
|
prefetchw(page);
|
|
|
|
if (likely(!skb)) {
|
|
void *page_addr = page_address(page) +
|
|
rx_buffer->page_offset;
|
|
|
|
/* prefetch first cache line of first page */
|
|
net_prefetch(page_addr);
|
|
|
|
/* allocate a skb to store the frags */
|
|
skb = napi_alloc_skb(&rx_ring->q_vector->napi,
|
|
FM10K_RX_HDR_LEN);
|
|
if (unlikely(!skb)) {
|
|
rx_ring->rx_stats.alloc_failed++;
|
|
return NULL;
|
|
}
|
|
|
|
/* we will be copying header into skb->data in
|
|
* pskb_may_pull so it is in our interest to prefetch
|
|
* it now to avoid a possible cache miss
|
|
*/
|
|
prefetchw(skb->data);
|
|
}
|
|
|
|
/* we are reusing so sync this buffer for CPU use */
|
|
dma_sync_single_range_for_cpu(rx_ring->dev,
|
|
rx_buffer->dma,
|
|
rx_buffer->page_offset,
|
|
size,
|
|
DMA_FROM_DEVICE);
|
|
|
|
/* pull page into skb */
|
|
if (fm10k_add_rx_frag(rx_buffer, size, rx_desc, skb)) {
|
|
/* hand second half of page back to the ring */
|
|
fm10k_reuse_rx_page(rx_ring, rx_buffer);
|
|
} else {
|
|
/* we are not reusing the buffer so unmap it */
|
|
dma_unmap_page(rx_ring->dev, rx_buffer->dma,
|
|
PAGE_SIZE, DMA_FROM_DEVICE);
|
|
}
|
|
|
|
/* clear contents of rx_buffer */
|
|
rx_buffer->page = NULL;
|
|
|
|
return skb;
|
|
}
|
|
|
|
static inline void fm10k_rx_checksum(struct fm10k_ring *ring,
|
|
union fm10k_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
skb_checksum_none_assert(skb);
|
|
|
|
/* Rx checksum disabled via ethtool */
|
|
if (!(ring->netdev->features & NETIF_F_RXCSUM))
|
|
return;
|
|
|
|
/* TCP/UDP checksum error bit is set */
|
|
if (fm10k_test_staterr(rx_desc,
|
|
FM10K_RXD_STATUS_L4E |
|
|
FM10K_RXD_STATUS_L4E2 |
|
|
FM10K_RXD_STATUS_IPE |
|
|
FM10K_RXD_STATUS_IPE2)) {
|
|
ring->rx_stats.csum_err++;
|
|
return;
|
|
}
|
|
|
|
/* It must be a TCP or UDP packet with a valid checksum */
|
|
if (fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS2))
|
|
skb->encapsulation = true;
|
|
else if (!fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_L4CS))
|
|
return;
|
|
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
|
|
ring->rx_stats.csum_good++;
|
|
}
|
|
|
|
#define FM10K_RSS_L4_TYPES_MASK \
|
|
(BIT(FM10K_RSSTYPE_IPV4_TCP) | \
|
|
BIT(FM10K_RSSTYPE_IPV4_UDP) | \
|
|
BIT(FM10K_RSSTYPE_IPV6_TCP) | \
|
|
BIT(FM10K_RSSTYPE_IPV6_UDP))
|
|
|
|
static inline void fm10k_rx_hash(struct fm10k_ring *ring,
|
|
union fm10k_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
u16 rss_type;
|
|
|
|
if (!(ring->netdev->features & NETIF_F_RXHASH))
|
|
return;
|
|
|
|
rss_type = le16_to_cpu(rx_desc->w.pkt_info) & FM10K_RXD_RSSTYPE_MASK;
|
|
if (!rss_type)
|
|
return;
|
|
|
|
skb_set_hash(skb, le32_to_cpu(rx_desc->d.rss),
|
|
(BIT(rss_type) & FM10K_RSS_L4_TYPES_MASK) ?
|
|
PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
|
|
}
|
|
|
|
static void fm10k_type_trans(struct fm10k_ring *rx_ring,
|
|
union fm10k_rx_desc __maybe_unused *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
struct net_device *dev = rx_ring->netdev;
|
|
struct fm10k_l2_accel *l2_accel = rcu_dereference_bh(rx_ring->l2_accel);
|
|
|
|
/* check to see if DGLORT belongs to a MACVLAN */
|
|
if (l2_accel) {
|
|
u16 idx = le16_to_cpu(FM10K_CB(skb)->fi.w.dglort) - 1;
|
|
|
|
idx -= l2_accel->dglort;
|
|
if (idx < l2_accel->size && l2_accel->macvlan[idx])
|
|
dev = l2_accel->macvlan[idx];
|
|
else
|
|
l2_accel = NULL;
|
|
}
|
|
|
|
/* Record Rx queue, or update macvlan statistics */
|
|
if (!l2_accel)
|
|
skb_record_rx_queue(skb, rx_ring->queue_index);
|
|
else
|
|
macvlan_count_rx(netdev_priv(dev), skb->len + ETH_HLEN, true,
|
|
false);
|
|
|
|
skb->protocol = eth_type_trans(skb, dev);
|
|
}
|
|
|
|
/**
|
|
* fm10k_process_skb_fields - Populate skb header fields from Rx descriptor
|
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
|
* @rx_desc: pointer to the EOP Rx descriptor
|
|
* @skb: pointer to current skb being populated
|
|
*
|
|
* This function checks the ring, descriptor, and packet information in
|
|
* order to populate the hash, checksum, VLAN, timestamp, protocol, and
|
|
* other fields within the skb.
|
|
**/
|
|
static unsigned int fm10k_process_skb_fields(struct fm10k_ring *rx_ring,
|
|
union fm10k_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
unsigned int len = skb->len;
|
|
|
|
fm10k_rx_hash(rx_ring, rx_desc, skb);
|
|
|
|
fm10k_rx_checksum(rx_ring, rx_desc, skb);
|
|
|
|
FM10K_CB(skb)->tstamp = rx_desc->q.timestamp;
|
|
|
|
FM10K_CB(skb)->fi.w.vlan = rx_desc->w.vlan;
|
|
|
|
FM10K_CB(skb)->fi.d.glort = rx_desc->d.glort;
|
|
|
|
if (rx_desc->w.vlan) {
|
|
u16 vid = le16_to_cpu(rx_desc->w.vlan);
|
|
|
|
if ((vid & VLAN_VID_MASK) != rx_ring->vid)
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
|
|
else if (vid & VLAN_PRIO_MASK)
|
|
__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
|
|
vid & VLAN_PRIO_MASK);
|
|
}
|
|
|
|
fm10k_type_trans(rx_ring, rx_desc, skb);
|
|
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* fm10k_is_non_eop - process handling of non-EOP buffers
|
|
* @rx_ring: Rx ring being processed
|
|
* @rx_desc: Rx descriptor for current buffer
|
|
*
|
|
* This function updates next to clean. If the buffer is an EOP buffer
|
|
* this function exits returning false, otherwise it will place the
|
|
* sk_buff in the next buffer to be chained and return true indicating
|
|
* that this is in fact a non-EOP buffer.
|
|
**/
|
|
static bool fm10k_is_non_eop(struct fm10k_ring *rx_ring,
|
|
union fm10k_rx_desc *rx_desc)
|
|
{
|
|
u32 ntc = rx_ring->next_to_clean + 1;
|
|
|
|
/* fetch, update, and store next to clean */
|
|
ntc = (ntc < rx_ring->count) ? ntc : 0;
|
|
rx_ring->next_to_clean = ntc;
|
|
|
|
prefetch(FM10K_RX_DESC(rx_ring, ntc));
|
|
|
|
if (likely(fm10k_test_staterr(rx_desc, FM10K_RXD_STATUS_EOP)))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fm10k_cleanup_headers - Correct corrupted or empty headers
|
|
* @rx_ring: rx descriptor ring packet is being transacted on
|
|
* @rx_desc: pointer to the EOP Rx descriptor
|
|
* @skb: pointer to current skb being fixed
|
|
*
|
|
* Address the case where we are pulling data in on pages only
|
|
* and as such no data is present in the skb header.
|
|
*
|
|
* In addition if skb is not at least 60 bytes we need to pad it so that
|
|
* it is large enough to qualify as a valid Ethernet frame.
|
|
*
|
|
* Returns true if an error was encountered and skb was freed.
|
|
**/
|
|
static bool fm10k_cleanup_headers(struct fm10k_ring *rx_ring,
|
|
union fm10k_rx_desc *rx_desc,
|
|
struct sk_buff *skb)
|
|
{
|
|
if (unlikely((fm10k_test_staterr(rx_desc,
|
|
FM10K_RXD_STATUS_RXE)))) {
|
|
#define FM10K_TEST_RXD_BIT(rxd, bit) \
|
|
((rxd)->w.csum_err & cpu_to_le16(bit))
|
|
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_ERROR))
|
|
rx_ring->rx_stats.switch_errors++;
|
|
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_NO_DESCRIPTOR))
|
|
rx_ring->rx_stats.drops++;
|
|
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_PP_ERROR))
|
|
rx_ring->rx_stats.pp_errors++;
|
|
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_SWITCH_READY))
|
|
rx_ring->rx_stats.link_errors++;
|
|
if (FM10K_TEST_RXD_BIT(rx_desc, FM10K_RXD_ERR_TOO_BIG))
|
|
rx_ring->rx_stats.length_errors++;
|
|
dev_kfree_skb_any(skb);
|
|
rx_ring->rx_stats.errors++;
|
|
return true;
|
|
}
|
|
|
|
/* if eth_skb_pad returns an error the skb was freed */
|
|
if (eth_skb_pad(skb))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* fm10k_receive_skb - helper function to handle rx indications
|
|
* @q_vector: structure containing interrupt and ring information
|
|
* @skb: packet to send up
|
|
**/
|
|
static void fm10k_receive_skb(struct fm10k_q_vector *q_vector,
|
|
struct sk_buff *skb)
|
|
{
|
|
napi_gro_receive(&q_vector->napi, skb);
|
|
}
|
|
|
|
static int fm10k_clean_rx_irq(struct fm10k_q_vector *q_vector,
|
|
struct fm10k_ring *rx_ring,
|
|
int budget)
|
|
{
|
|
struct sk_buff *skb = rx_ring->skb;
|
|
unsigned int total_bytes = 0, total_packets = 0;
|
|
u16 cleaned_count = fm10k_desc_unused(rx_ring);
|
|
|
|
while (likely(total_packets < budget)) {
|
|
union fm10k_rx_desc *rx_desc;
|
|
|
|
/* return some buffers to hardware, one at a time is too slow */
|
|
if (cleaned_count >= FM10K_RX_BUFFER_WRITE) {
|
|
fm10k_alloc_rx_buffers(rx_ring, cleaned_count);
|
|
cleaned_count = 0;
|
|
}
|
|
|
|
rx_desc = FM10K_RX_DESC(rx_ring, rx_ring->next_to_clean);
|
|
|
|
if (!rx_desc->d.staterr)
|
|
break;
|
|
|
|
/* This memory barrier is needed to keep us from reading
|
|
* any other fields out of the rx_desc until we know the
|
|
* descriptor has been written back
|
|
*/
|
|
dma_rmb();
|
|
|
|
/* retrieve a buffer from the ring */
|
|
skb = fm10k_fetch_rx_buffer(rx_ring, rx_desc, skb);
|
|
|
|
/* exit if we failed to retrieve a buffer */
|
|
if (!skb)
|
|
break;
|
|
|
|
cleaned_count++;
|
|
|
|
/* fetch next buffer in frame if non-eop */
|
|
if (fm10k_is_non_eop(rx_ring, rx_desc))
|
|
continue;
|
|
|
|
/* verify the packet layout is correct */
|
|
if (fm10k_cleanup_headers(rx_ring, rx_desc, skb)) {
|
|
skb = NULL;
|
|
continue;
|
|
}
|
|
|
|
/* populate checksum, timestamp, VLAN, and protocol */
|
|
total_bytes += fm10k_process_skb_fields(rx_ring, rx_desc, skb);
|
|
|
|
fm10k_receive_skb(q_vector, skb);
|
|
|
|
/* reset skb pointer */
|
|
skb = NULL;
|
|
|
|
/* update budget accounting */
|
|
total_packets++;
|
|
}
|
|
|
|
/* place incomplete frames back on ring for completion */
|
|
rx_ring->skb = skb;
|
|
|
|
u64_stats_update_begin(&rx_ring->syncp);
|
|
rx_ring->stats.packets += total_packets;
|
|
rx_ring->stats.bytes += total_bytes;
|
|
u64_stats_update_end(&rx_ring->syncp);
|
|
q_vector->rx.total_packets += total_packets;
|
|
q_vector->rx.total_bytes += total_bytes;
|
|
|
|
return total_packets;
|
|
}
|
|
|
|
#define VXLAN_HLEN (sizeof(struct udphdr) + 8)
|
|
static struct ethhdr *fm10k_port_is_vxlan(struct sk_buff *skb)
|
|
{
|
|
struct fm10k_intfc *interface = netdev_priv(skb->dev);
|
|
|
|
if (interface->vxlan_port != udp_hdr(skb)->dest)
|
|
return NULL;
|
|
|
|
/* return offset of udp_hdr plus 8 bytes for VXLAN header */
|
|
return (struct ethhdr *)(skb_transport_header(skb) + VXLAN_HLEN);
|
|
}
|
|
|
|
#define FM10K_NVGRE_RESERVED0_FLAGS htons(0x9FFF)
|
|
#define NVGRE_TNI htons(0x2000)
|
|
struct fm10k_nvgre_hdr {
|
|
__be16 flags;
|
|
__be16 proto;
|
|
__be32 tni;
|
|
};
|
|
|
|
static struct ethhdr *fm10k_gre_is_nvgre(struct sk_buff *skb)
|
|
{
|
|
struct fm10k_nvgre_hdr *nvgre_hdr;
|
|
int hlen = ip_hdrlen(skb);
|
|
|
|
/* currently only IPv4 is supported due to hlen above */
|
|
if (vlan_get_protocol(skb) != htons(ETH_P_IP))
|
|
return NULL;
|
|
|
|
/* our transport header should be NVGRE */
|
|
nvgre_hdr = (struct fm10k_nvgre_hdr *)(skb_network_header(skb) + hlen);
|
|
|
|
/* verify all reserved flags are 0 */
|
|
if (nvgre_hdr->flags & FM10K_NVGRE_RESERVED0_FLAGS)
|
|
return NULL;
|
|
|
|
/* report start of ethernet header */
|
|
if (nvgre_hdr->flags & NVGRE_TNI)
|
|
return (struct ethhdr *)(nvgre_hdr + 1);
|
|
|
|
return (struct ethhdr *)(&nvgre_hdr->tni);
|
|
}
|
|
|
|
__be16 fm10k_tx_encap_offload(struct sk_buff *skb)
|
|
{
|
|
u8 l4_hdr = 0, inner_l4_hdr = 0, inner_l4_hlen;
|
|
struct ethhdr *eth_hdr;
|
|
|
|
if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
|
|
skb->inner_protocol != htons(ETH_P_TEB))
|
|
return 0;
|
|
|
|
switch (vlan_get_protocol(skb)) {
|
|
case htons(ETH_P_IP):
|
|
l4_hdr = ip_hdr(skb)->protocol;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
l4_hdr = ipv6_hdr(skb)->nexthdr;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
switch (l4_hdr) {
|
|
case IPPROTO_UDP:
|
|
eth_hdr = fm10k_port_is_vxlan(skb);
|
|
break;
|
|
case IPPROTO_GRE:
|
|
eth_hdr = fm10k_gre_is_nvgre(skb);
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
if (!eth_hdr)
|
|
return 0;
|
|
|
|
switch (eth_hdr->h_proto) {
|
|
case htons(ETH_P_IP):
|
|
inner_l4_hdr = inner_ip_hdr(skb)->protocol;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
inner_l4_hdr = inner_ipv6_hdr(skb)->nexthdr;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
switch (inner_l4_hdr) {
|
|
case IPPROTO_TCP:
|
|
inner_l4_hlen = inner_tcp_hdrlen(skb);
|
|
break;
|
|
case IPPROTO_UDP:
|
|
inner_l4_hlen = 8;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
/* The hardware allows tunnel offloads only if the combined inner and
|
|
* outer header is 184 bytes or less
|
|
*/
|
|
if (skb_inner_transport_header(skb) + inner_l4_hlen -
|
|
skb_mac_header(skb) > FM10K_TUNNEL_HEADER_LENGTH)
|
|
return 0;
|
|
|
|
return eth_hdr->h_proto;
|
|
}
|
|
|
|
static int fm10k_tso(struct fm10k_ring *tx_ring,
|
|
struct fm10k_tx_buffer *first)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
struct fm10k_tx_desc *tx_desc;
|
|
unsigned char *th;
|
|
u8 hdrlen;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
return 0;
|
|
|
|
if (!skb_is_gso(skb))
|
|
return 0;
|
|
|
|
/* compute header lengths */
|
|
if (skb->encapsulation) {
|
|
if (!fm10k_tx_encap_offload(skb))
|
|
goto err_vxlan;
|
|
th = skb_inner_transport_header(skb);
|
|
} else {
|
|
th = skb_transport_header(skb);
|
|
}
|
|
|
|
/* compute offset from SOF to transport header and add header len */
|
|
hdrlen = (th - skb->data) + (((struct tcphdr *)th)->doff << 2);
|
|
|
|
first->tx_flags |= FM10K_TX_FLAGS_CSUM;
|
|
|
|
/* update gso size and bytecount with header size */
|
|
first->gso_segs = skb_shinfo(skb)->gso_segs;
|
|
first->bytecount += (first->gso_segs - 1) * hdrlen;
|
|
|
|
/* populate Tx descriptor header size and mss */
|
|
tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
|
|
tx_desc->hdrlen = hdrlen;
|
|
tx_desc->mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
|
|
|
|
return 1;
|
|
|
|
err_vxlan:
|
|
tx_ring->netdev->features &= ~NETIF_F_GSO_UDP_TUNNEL;
|
|
if (net_ratelimit())
|
|
netdev_err(tx_ring->netdev,
|
|
"TSO requested for unsupported tunnel, disabling offload\n");
|
|
return -1;
|
|
}
|
|
|
|
static void fm10k_tx_csum(struct fm10k_ring *tx_ring,
|
|
struct fm10k_tx_buffer *first)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
struct fm10k_tx_desc *tx_desc;
|
|
union {
|
|
struct iphdr *ipv4;
|
|
struct ipv6hdr *ipv6;
|
|
u8 *raw;
|
|
} network_hdr;
|
|
u8 *transport_hdr;
|
|
__be16 frag_off;
|
|
__be16 protocol;
|
|
u8 l4_hdr = 0;
|
|
|
|
if (skb->ip_summed != CHECKSUM_PARTIAL)
|
|
goto no_csum;
|
|
|
|
if (skb->encapsulation) {
|
|
protocol = fm10k_tx_encap_offload(skb);
|
|
if (!protocol) {
|
|
if (skb_checksum_help(skb)) {
|
|
dev_warn(tx_ring->dev,
|
|
"failed to offload encap csum!\n");
|
|
tx_ring->tx_stats.csum_err++;
|
|
}
|
|
goto no_csum;
|
|
}
|
|
network_hdr.raw = skb_inner_network_header(skb);
|
|
transport_hdr = skb_inner_transport_header(skb);
|
|
} else {
|
|
protocol = vlan_get_protocol(skb);
|
|
network_hdr.raw = skb_network_header(skb);
|
|
transport_hdr = skb_transport_header(skb);
|
|
}
|
|
|
|
switch (protocol) {
|
|
case htons(ETH_P_IP):
|
|
l4_hdr = network_hdr.ipv4->protocol;
|
|
break;
|
|
case htons(ETH_P_IPV6):
|
|
l4_hdr = network_hdr.ipv6->nexthdr;
|
|
if (likely((transport_hdr - network_hdr.raw) ==
|
|
sizeof(struct ipv6hdr)))
|
|
break;
|
|
ipv6_skip_exthdr(skb, network_hdr.raw - skb->data +
|
|
sizeof(struct ipv6hdr),
|
|
&l4_hdr, &frag_off);
|
|
if (unlikely(frag_off))
|
|
l4_hdr = NEXTHDR_FRAGMENT;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (l4_hdr) {
|
|
case IPPROTO_TCP:
|
|
case IPPROTO_UDP:
|
|
break;
|
|
case IPPROTO_GRE:
|
|
if (skb->encapsulation)
|
|
break;
|
|
fallthrough;
|
|
default:
|
|
if (unlikely(net_ratelimit())) {
|
|
dev_warn(tx_ring->dev,
|
|
"partial checksum, version=%d l4 proto=%x\n",
|
|
protocol, l4_hdr);
|
|
}
|
|
skb_checksum_help(skb);
|
|
tx_ring->tx_stats.csum_err++;
|
|
goto no_csum;
|
|
}
|
|
|
|
/* update TX checksum flag */
|
|
first->tx_flags |= FM10K_TX_FLAGS_CSUM;
|
|
tx_ring->tx_stats.csum_good++;
|
|
|
|
no_csum:
|
|
/* populate Tx descriptor header size and mss */
|
|
tx_desc = FM10K_TX_DESC(tx_ring, tx_ring->next_to_use);
|
|
tx_desc->hdrlen = 0;
|
|
tx_desc->mss = 0;
|
|
}
|
|
|
|
#define FM10K_SET_FLAG(_input, _flag, _result) \
|
|
((_flag <= _result) ? \
|
|
((u32)(_input & _flag) * (_result / _flag)) : \
|
|
((u32)(_input & _flag) / (_flag / _result)))
|
|
|
|
static u8 fm10k_tx_desc_flags(struct sk_buff *skb, u32 tx_flags)
|
|
{
|
|
/* set type for advanced descriptor with frame checksum insertion */
|
|
u32 desc_flags = 0;
|
|
|
|
/* set checksum offload bits */
|
|
desc_flags |= FM10K_SET_FLAG(tx_flags, FM10K_TX_FLAGS_CSUM,
|
|
FM10K_TXD_FLAG_CSUM);
|
|
|
|
return desc_flags;
|
|
}
|
|
|
|
static bool fm10k_tx_desc_push(struct fm10k_ring *tx_ring,
|
|
struct fm10k_tx_desc *tx_desc, u16 i,
|
|
dma_addr_t dma, unsigned int size, u8 desc_flags)
|
|
{
|
|
/* set RS and INT for last frame in a cache line */
|
|
if ((++i & (FM10K_TXD_WB_FIFO_SIZE - 1)) == 0)
|
|
desc_flags |= FM10K_TXD_FLAG_RS | FM10K_TXD_FLAG_INT;
|
|
|
|
/* record values to descriptor */
|
|
tx_desc->buffer_addr = cpu_to_le64(dma);
|
|
tx_desc->flags = desc_flags;
|
|
tx_desc->buflen = cpu_to_le16(size);
|
|
|
|
/* return true if we just wrapped the ring */
|
|
return i == tx_ring->count;
|
|
}
|
|
|
|
static int __fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
|
|
{
|
|
netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
|
|
/* Memory barrier before checking head and tail */
|
|
smp_mb();
|
|
|
|
/* Check again in a case another CPU has just made room available */
|
|
if (likely(fm10k_desc_unused(tx_ring) < size))
|
|
return -EBUSY;
|
|
|
|
/* A reprieve! - use start_queue because it doesn't call schedule */
|
|
netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
|
|
++tx_ring->tx_stats.restart_queue;
|
|
return 0;
|
|
}
|
|
|
|
static inline int fm10k_maybe_stop_tx(struct fm10k_ring *tx_ring, u16 size)
|
|
{
|
|
if (likely(fm10k_desc_unused(tx_ring) >= size))
|
|
return 0;
|
|
return __fm10k_maybe_stop_tx(tx_ring, size);
|
|
}
|
|
|
|
static void fm10k_tx_map(struct fm10k_ring *tx_ring,
|
|
struct fm10k_tx_buffer *first)
|
|
{
|
|
struct sk_buff *skb = first->skb;
|
|
struct fm10k_tx_buffer *tx_buffer;
|
|
struct fm10k_tx_desc *tx_desc;
|
|
skb_frag_t *frag;
|
|
unsigned char *data;
|
|
dma_addr_t dma;
|
|
unsigned int data_len, size;
|
|
u32 tx_flags = first->tx_flags;
|
|
u16 i = tx_ring->next_to_use;
|
|
u8 flags = fm10k_tx_desc_flags(skb, tx_flags);
|
|
|
|
tx_desc = FM10K_TX_DESC(tx_ring, i);
|
|
|
|
/* add HW VLAN tag */
|
|
if (skb_vlan_tag_present(skb))
|
|
tx_desc->vlan = cpu_to_le16(skb_vlan_tag_get(skb));
|
|
else
|
|
tx_desc->vlan = 0;
|
|
|
|
size = skb_headlen(skb);
|
|
data = skb->data;
|
|
|
|
dma = dma_map_single(tx_ring->dev, data, size, DMA_TO_DEVICE);
|
|
|
|
data_len = skb->data_len;
|
|
tx_buffer = first;
|
|
|
|
for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
|
|
if (dma_mapping_error(tx_ring->dev, dma))
|
|
goto dma_error;
|
|
|
|
/* record length, and DMA address */
|
|
dma_unmap_len_set(tx_buffer, len, size);
|
|
dma_unmap_addr_set(tx_buffer, dma, dma);
|
|
|
|
while (unlikely(size > FM10K_MAX_DATA_PER_TXD)) {
|
|
if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++, dma,
|
|
FM10K_MAX_DATA_PER_TXD, flags)) {
|
|
tx_desc = FM10K_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
dma += FM10K_MAX_DATA_PER_TXD;
|
|
size -= FM10K_MAX_DATA_PER_TXD;
|
|
}
|
|
|
|
if (likely(!data_len))
|
|
break;
|
|
|
|
if (fm10k_tx_desc_push(tx_ring, tx_desc++, i++,
|
|
dma, size, flags)) {
|
|
tx_desc = FM10K_TX_DESC(tx_ring, 0);
|
|
i = 0;
|
|
}
|
|
|
|
size = skb_frag_size(frag);
|
|
data_len -= size;
|
|
|
|
dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
|
|
DMA_TO_DEVICE);
|
|
|
|
tx_buffer = &tx_ring->tx_buffer[i];
|
|
}
|
|
|
|
/* write last descriptor with LAST bit set */
|
|
flags |= FM10K_TXD_FLAG_LAST;
|
|
|
|
if (fm10k_tx_desc_push(tx_ring, tx_desc, i++, dma, size, flags))
|
|
i = 0;
|
|
|
|
/* record bytecount for BQL */
|
|
netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
|
|
|
|
/* record SW timestamp if HW timestamp is not available */
|
|
skb_tx_timestamp(first->skb);
|
|
|
|
/* Force memory writes to complete before letting h/w know there
|
|
* are new descriptors to fetch. (Only applicable for weak-ordered
|
|
* memory model archs, such as IA-64).
|
|
*
|
|
* We also need this memory barrier to make certain all of the
|
|
* status bits have been updated before next_to_watch is written.
|
|
*/
|
|
wmb();
|
|
|
|
/* set next_to_watch value indicating a packet is present */
|
|
first->next_to_watch = tx_desc;
|
|
|
|
tx_ring->next_to_use = i;
|
|
|
|
/* Make sure there is space in the ring for the next send. */
|
|
fm10k_maybe_stop_tx(tx_ring, DESC_NEEDED);
|
|
|
|
/* notify HW of packet */
|
|
if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
|
|
writel(i, tx_ring->tail);
|
|
}
|
|
|
|
return;
|
|
dma_error:
|
|
dev_err(tx_ring->dev, "TX DMA map failed\n");
|
|
|
|
/* clear dma mappings for failed tx_buffer map */
|
|
for (;;) {
|
|
tx_buffer = &tx_ring->tx_buffer[i];
|
|
fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer);
|
|
if (tx_buffer == first)
|
|
break;
|
|
if (i == 0)
|
|
i = tx_ring->count;
|
|
i--;
|
|
}
|
|
|
|
tx_ring->next_to_use = i;
|
|
}
|
|
|
|
netdev_tx_t fm10k_xmit_frame_ring(struct sk_buff *skb,
|
|
struct fm10k_ring *tx_ring)
|
|
{
|
|
u16 count = TXD_USE_COUNT(skb_headlen(skb));
|
|
struct fm10k_tx_buffer *first;
|
|
unsigned short f;
|
|
u32 tx_flags = 0;
|
|
int tso;
|
|
|
|
/* need: 1 descriptor per page * PAGE_SIZE/FM10K_MAX_DATA_PER_TXD,
|
|
* + 1 desc for skb_headlen/FM10K_MAX_DATA_PER_TXD,
|
|
* + 2 desc gap to keep tail from touching head
|
|
* otherwise try next time
|
|
*/
|
|
for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
|
|
skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
|
|
|
|
count += TXD_USE_COUNT(skb_frag_size(frag));
|
|
}
|
|
|
|
if (fm10k_maybe_stop_tx(tx_ring, count + 3)) {
|
|
tx_ring->tx_stats.tx_busy++;
|
|
return NETDEV_TX_BUSY;
|
|
}
|
|
|
|
/* record the location of the first descriptor for this packet */
|
|
first = &tx_ring->tx_buffer[tx_ring->next_to_use];
|
|
first->skb = skb;
|
|
first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
|
|
first->gso_segs = 1;
|
|
|
|
/* record initial flags and protocol */
|
|
first->tx_flags = tx_flags;
|
|
|
|
tso = fm10k_tso(tx_ring, first);
|
|
if (tso < 0)
|
|
goto out_drop;
|
|
else if (!tso)
|
|
fm10k_tx_csum(tx_ring, first);
|
|
|
|
fm10k_tx_map(tx_ring, first);
|
|
|
|
return NETDEV_TX_OK;
|
|
|
|
out_drop:
|
|
dev_kfree_skb_any(first->skb);
|
|
first->skb = NULL;
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static u64 fm10k_get_tx_completed(struct fm10k_ring *ring)
|
|
{
|
|
return ring->stats.packets;
|
|
}
|
|
|
|
/**
|
|
* fm10k_get_tx_pending - how many Tx descriptors not processed
|
|
* @ring: the ring structure
|
|
* @in_sw: is tx_pending being checked in SW or in HW?
|
|
*/
|
|
u64 fm10k_get_tx_pending(struct fm10k_ring *ring, bool in_sw)
|
|
{
|
|
struct fm10k_intfc *interface = ring->q_vector->interface;
|
|
struct fm10k_hw *hw = &interface->hw;
|
|
u32 head, tail;
|
|
|
|
if (likely(in_sw)) {
|
|
head = ring->next_to_clean;
|
|
tail = ring->next_to_use;
|
|
} else {
|
|
head = fm10k_read_reg(hw, FM10K_TDH(ring->reg_idx));
|
|
tail = fm10k_read_reg(hw, FM10K_TDT(ring->reg_idx));
|
|
}
|
|
|
|
return ((head <= tail) ? tail : tail + ring->count) - head;
|
|
}
|
|
|
|
bool fm10k_check_tx_hang(struct fm10k_ring *tx_ring)
|
|
{
|
|
u32 tx_done = fm10k_get_tx_completed(tx_ring);
|
|
u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
|
|
u32 tx_pending = fm10k_get_tx_pending(tx_ring, true);
|
|
|
|
clear_check_for_tx_hang(tx_ring);
|
|
|
|
/* Check for a hung queue, but be thorough. This verifies
|
|
* that a transmit has been completed since the previous
|
|
* check AND there is at least one packet pending. By
|
|
* requiring this to fail twice we avoid races with
|
|
* clearing the ARMED bit and conditions where we
|
|
* run the check_tx_hang logic with a transmit completion
|
|
* pending but without time to complete it yet.
|
|
*/
|
|
if (!tx_pending || (tx_done_old != tx_done)) {
|
|
/* update completed stats and continue */
|
|
tx_ring->tx_stats.tx_done_old = tx_done;
|
|
/* reset the countdown */
|
|
clear_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
|
|
|
|
return false;
|
|
}
|
|
|
|
/* make sure it is true for two checks in a row */
|
|
return test_and_set_bit(__FM10K_HANG_CHECK_ARMED, tx_ring->state);
|
|
}
|
|
|
|
/**
|
|
* fm10k_tx_timeout_reset - initiate reset due to Tx timeout
|
|
* @interface: driver private struct
|
|
**/
|
|
void fm10k_tx_timeout_reset(struct fm10k_intfc *interface)
|
|
{
|
|
/* Do the reset outside of interrupt context */
|
|
if (!test_bit(__FM10K_DOWN, interface->state)) {
|
|
interface->tx_timeout_count++;
|
|
set_bit(FM10K_FLAG_RESET_REQUESTED, interface->flags);
|
|
fm10k_service_event_schedule(interface);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* fm10k_clean_tx_irq - Reclaim resources after transmit completes
|
|
* @q_vector: structure containing interrupt and ring information
|
|
* @tx_ring: tx ring to clean
|
|
* @napi_budget: Used to determine if we are in netpoll
|
|
**/
|
|
static bool fm10k_clean_tx_irq(struct fm10k_q_vector *q_vector,
|
|
struct fm10k_ring *tx_ring, int napi_budget)
|
|
{
|
|
struct fm10k_intfc *interface = q_vector->interface;
|
|
struct fm10k_tx_buffer *tx_buffer;
|
|
struct fm10k_tx_desc *tx_desc;
|
|
unsigned int total_bytes = 0, total_packets = 0;
|
|
unsigned int budget = q_vector->tx.work_limit;
|
|
unsigned int i = tx_ring->next_to_clean;
|
|
|
|
if (test_bit(__FM10K_DOWN, interface->state))
|
|
return true;
|
|
|
|
tx_buffer = &tx_ring->tx_buffer[i];
|
|
tx_desc = FM10K_TX_DESC(tx_ring, i);
|
|
i -= tx_ring->count;
|
|
|
|
do {
|
|
struct fm10k_tx_desc *eop_desc = tx_buffer->next_to_watch;
|
|
|
|
/* if next_to_watch is not set then there is no work pending */
|
|
if (!eop_desc)
|
|
break;
|
|
|
|
/* prevent any other reads prior to eop_desc */
|
|
smp_rmb();
|
|
|
|
/* if DD is not set pending work has not been completed */
|
|
if (!(eop_desc->flags & FM10K_TXD_FLAG_DONE))
|
|
break;
|
|
|
|
/* clear next_to_watch to prevent false hangs */
|
|
tx_buffer->next_to_watch = NULL;
|
|
|
|
/* update the statistics for this packet */
|
|
total_bytes += tx_buffer->bytecount;
|
|
total_packets += tx_buffer->gso_segs;
|
|
|
|
/* free the skb */
|
|
napi_consume_skb(tx_buffer->skb, napi_budget);
|
|
|
|
/* unmap skb header data */
|
|
dma_unmap_single(tx_ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
|
|
/* clear tx_buffer data */
|
|
tx_buffer->skb = NULL;
|
|
dma_unmap_len_set(tx_buffer, len, 0);
|
|
|
|
/* unmap remaining buffers */
|
|
while (tx_desc != eop_desc) {
|
|
tx_buffer++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buffer = tx_ring->tx_buffer;
|
|
tx_desc = FM10K_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* unmap any remaining paged data */
|
|
if (dma_unmap_len(tx_buffer, len)) {
|
|
dma_unmap_page(tx_ring->dev,
|
|
dma_unmap_addr(tx_buffer, dma),
|
|
dma_unmap_len(tx_buffer, len),
|
|
DMA_TO_DEVICE);
|
|
dma_unmap_len_set(tx_buffer, len, 0);
|
|
}
|
|
}
|
|
|
|
/* move us one more past the eop_desc for start of next pkt */
|
|
tx_buffer++;
|
|
tx_desc++;
|
|
i++;
|
|
if (unlikely(!i)) {
|
|
i -= tx_ring->count;
|
|
tx_buffer = tx_ring->tx_buffer;
|
|
tx_desc = FM10K_TX_DESC(tx_ring, 0);
|
|
}
|
|
|
|
/* issue prefetch for next Tx descriptor */
|
|
prefetch(tx_desc);
|
|
|
|
/* update budget accounting */
|
|
budget--;
|
|
} while (likely(budget));
|
|
|
|
i += tx_ring->count;
|
|
tx_ring->next_to_clean = i;
|
|
u64_stats_update_begin(&tx_ring->syncp);
|
|
tx_ring->stats.bytes += total_bytes;
|
|
tx_ring->stats.packets += total_packets;
|
|
u64_stats_update_end(&tx_ring->syncp);
|
|
q_vector->tx.total_bytes += total_bytes;
|
|
q_vector->tx.total_packets += total_packets;
|
|
|
|
if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) {
|
|
/* schedule immediate reset if we believe we hung */
|
|
struct fm10k_hw *hw = &interface->hw;
|
|
|
|
netif_err(interface, drv, tx_ring->netdev,
|
|
"Detected Tx Unit Hang\n"
|
|
" Tx Queue <%d>\n"
|
|
" TDH, TDT <%x>, <%x>\n"
|
|
" next_to_use <%x>\n"
|
|
" next_to_clean <%x>\n",
|
|
tx_ring->queue_index,
|
|
fm10k_read_reg(hw, FM10K_TDH(tx_ring->reg_idx)),
|
|
fm10k_read_reg(hw, FM10K_TDT(tx_ring->reg_idx)),
|
|
tx_ring->next_to_use, i);
|
|
|
|
netif_stop_subqueue(tx_ring->netdev,
|
|
tx_ring->queue_index);
|
|
|
|
netif_info(interface, probe, tx_ring->netdev,
|
|
"tx hang %d detected on queue %d, resetting interface\n",
|
|
interface->tx_timeout_count + 1,
|
|
tx_ring->queue_index);
|
|
|
|
fm10k_tx_timeout_reset(interface);
|
|
|
|
/* the netdev is about to reset, no point in enabling stuff */
|
|
return true;
|
|
}
|
|
|
|
/* notify netdev of completed buffers */
|
|
netdev_tx_completed_queue(txring_txq(tx_ring),
|
|
total_packets, total_bytes);
|
|
|
|
#define TX_WAKE_THRESHOLD min_t(u16, FM10K_MIN_TXD - 1, DESC_NEEDED * 2)
|
|
if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
|
|
(fm10k_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
|
|
/* Make sure that anybody stopping the queue after this
|
|
* sees the new next_to_clean.
|
|
*/
|
|
smp_mb();
|
|
if (__netif_subqueue_stopped(tx_ring->netdev,
|
|
tx_ring->queue_index) &&
|
|
!test_bit(__FM10K_DOWN, interface->state)) {
|
|
netif_wake_subqueue(tx_ring->netdev,
|
|
tx_ring->queue_index);
|
|
++tx_ring->tx_stats.restart_queue;
|
|
}
|
|
}
|
|
|
|
return !!budget;
|
|
}
|
|
|
|
/**
|
|
* fm10k_update_itr - update the dynamic ITR value based on packet size
|
|
*
|
|
* Stores a new ITR value based on strictly on packet size. The
|
|
* divisors and thresholds used by this function were determined based
|
|
* on theoretical maximum wire speed and testing data, in order to
|
|
* minimize response time while increasing bulk throughput.
|
|
*
|
|
* @ring_container: Container for rings to have ITR updated
|
|
**/
|
|
static void fm10k_update_itr(struct fm10k_ring_container *ring_container)
|
|
{
|
|
unsigned int avg_wire_size, packets, itr_round;
|
|
|
|
/* Only update ITR if we are using adaptive setting */
|
|
if (!ITR_IS_ADAPTIVE(ring_container->itr))
|
|
goto clear_counts;
|
|
|
|
packets = ring_container->total_packets;
|
|
if (!packets)
|
|
goto clear_counts;
|
|
|
|
avg_wire_size = ring_container->total_bytes / packets;
|
|
|
|
/* The following is a crude approximation of:
|
|
* wmem_default / (size + overhead) = desired_pkts_per_int
|
|
* rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
|
|
* (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
|
|
*
|
|
* Assuming wmem_default is 212992 and overhead is 640 bytes per
|
|
* packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
|
|
* formula down to
|
|
*
|
|
* (34 * (size + 24)) / (size + 640) = ITR
|
|
*
|
|
* We first do some math on the packet size and then finally bitshift
|
|
* by 8 after rounding up. We also have to account for PCIe link speed
|
|
* difference as ITR scales based on this.
|
|
*/
|
|
if (avg_wire_size <= 360) {
|
|
/* Start at 250K ints/sec and gradually drop to 77K ints/sec */
|
|
avg_wire_size *= 8;
|
|
avg_wire_size += 376;
|
|
} else if (avg_wire_size <= 1152) {
|
|
/* 77K ints/sec to 45K ints/sec */
|
|
avg_wire_size *= 3;
|
|
avg_wire_size += 2176;
|
|
} else if (avg_wire_size <= 1920) {
|
|
/* 45K ints/sec to 38K ints/sec */
|
|
avg_wire_size += 4480;
|
|
} else {
|
|
/* plateau at a limit of 38K ints/sec */
|
|
avg_wire_size = 6656;
|
|
}
|
|
|
|
/* Perform final bitshift for division after rounding up to ensure
|
|
* that the calculation will never get below a 1. The bit shift
|
|
* accounts for changes in the ITR due to PCIe link speed.
|
|
*/
|
|
itr_round = READ_ONCE(ring_container->itr_scale) + 8;
|
|
avg_wire_size += BIT(itr_round) - 1;
|
|
avg_wire_size >>= itr_round;
|
|
|
|
/* write back value and retain adaptive flag */
|
|
ring_container->itr = avg_wire_size | FM10K_ITR_ADAPTIVE;
|
|
|
|
clear_counts:
|
|
ring_container->total_bytes = 0;
|
|
ring_container->total_packets = 0;
|
|
}
|
|
|
|
static void fm10k_qv_enable(struct fm10k_q_vector *q_vector)
|
|
{
|
|
/* Enable auto-mask and clear the current mask */
|
|
u32 itr = FM10K_ITR_ENABLE;
|
|
|
|
/* Update Tx ITR */
|
|
fm10k_update_itr(&q_vector->tx);
|
|
|
|
/* Update Rx ITR */
|
|
fm10k_update_itr(&q_vector->rx);
|
|
|
|
/* Store Tx itr in timer slot 0 */
|
|
itr |= (q_vector->tx.itr & FM10K_ITR_MAX);
|
|
|
|
/* Shift Rx itr to timer slot 1 */
|
|
itr |= (q_vector->rx.itr & FM10K_ITR_MAX) << FM10K_ITR_INTERVAL1_SHIFT;
|
|
|
|
/* Write the final value to the ITR register */
|
|
writel(itr, q_vector->itr);
|
|
}
|
|
|
|
static int fm10k_poll(struct napi_struct *napi, int budget)
|
|
{
|
|
struct fm10k_q_vector *q_vector =
|
|
container_of(napi, struct fm10k_q_vector, napi);
|
|
struct fm10k_ring *ring;
|
|
int per_ring_budget, work_done = 0;
|
|
bool clean_complete = true;
|
|
|
|
fm10k_for_each_ring(ring, q_vector->tx) {
|
|
if (!fm10k_clean_tx_irq(q_vector, ring, budget))
|
|
clean_complete = false;
|
|
}
|
|
|
|
/* Handle case where we are called by netpoll with a budget of 0 */
|
|
if (budget <= 0)
|
|
return budget;
|
|
|
|
/* attempt to distribute budget to each queue fairly, but don't
|
|
* allow the budget to go below 1 because we'll exit polling
|
|
*/
|
|
if (q_vector->rx.count > 1)
|
|
per_ring_budget = max(budget / q_vector->rx.count, 1);
|
|
else
|
|
per_ring_budget = budget;
|
|
|
|
fm10k_for_each_ring(ring, q_vector->rx) {
|
|
int work = fm10k_clean_rx_irq(q_vector, ring, per_ring_budget);
|
|
|
|
work_done += work;
|
|
if (work >= per_ring_budget)
|
|
clean_complete = false;
|
|
}
|
|
|
|
/* If all work not completed, return budget and keep polling */
|
|
if (!clean_complete)
|
|
return budget;
|
|
|
|
/* Exit the polling mode, but don't re-enable interrupts if stack might
|
|
* poll us due to busy-polling
|
|
*/
|
|
if (likely(napi_complete_done(napi, work_done)))
|
|
fm10k_qv_enable(q_vector);
|
|
|
|
return min(work_done, budget - 1);
|
|
}
|
|
|
|
/**
|
|
* fm10k_set_qos_queues: Allocate queues for a QOS-enabled device
|
|
* @interface: board private structure to initialize
|
|
*
|
|
* When QoS (Quality of Service) is enabled, allocate queues for
|
|
* each traffic class. If multiqueue isn't available,then abort QoS
|
|
* initialization.
|
|
*
|
|
* This function handles all combinations of Qos and RSS.
|
|
*
|
|
**/
|
|
static bool fm10k_set_qos_queues(struct fm10k_intfc *interface)
|
|
{
|
|
struct net_device *dev = interface->netdev;
|
|
struct fm10k_ring_feature *f;
|
|
int rss_i, i;
|
|
int pcs;
|
|
|
|
/* Map queue offset and counts onto allocated tx queues */
|
|
pcs = netdev_get_num_tc(dev);
|
|
|
|
if (pcs <= 1)
|
|
return false;
|
|
|
|
/* set QoS mask and indices */
|
|
f = &interface->ring_feature[RING_F_QOS];
|
|
f->indices = pcs;
|
|
f->mask = BIT(fls(pcs - 1)) - 1;
|
|
|
|
/* determine the upper limit for our current DCB mode */
|
|
rss_i = interface->hw.mac.max_queues / pcs;
|
|
rss_i = BIT(fls(rss_i) - 1);
|
|
|
|
/* set RSS mask and indices */
|
|
f = &interface->ring_feature[RING_F_RSS];
|
|
rss_i = min_t(u16, rss_i, f->limit);
|
|
f->indices = rss_i;
|
|
f->mask = BIT(fls(rss_i - 1)) - 1;
|
|
|
|
/* configure pause class to queue mapping */
|
|
for (i = 0; i < pcs; i++)
|
|
netdev_set_tc_queue(dev, i, rss_i, rss_i * i);
|
|
|
|
interface->num_rx_queues = rss_i * pcs;
|
|
interface->num_tx_queues = rss_i * pcs;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fm10k_set_rss_queues: Allocate queues for RSS
|
|
* @interface: board private structure to initialize
|
|
*
|
|
* This is our "base" multiqueue mode. RSS (Receive Side Scaling) will try
|
|
* to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
|
|
*
|
|
**/
|
|
static bool fm10k_set_rss_queues(struct fm10k_intfc *interface)
|
|
{
|
|
struct fm10k_ring_feature *f;
|
|
u16 rss_i;
|
|
|
|
f = &interface->ring_feature[RING_F_RSS];
|
|
rss_i = min_t(u16, interface->hw.mac.max_queues, f->limit);
|
|
|
|
/* record indices and power of 2 mask for RSS */
|
|
f->indices = rss_i;
|
|
f->mask = BIT(fls(rss_i - 1)) - 1;
|
|
|
|
interface->num_rx_queues = rss_i;
|
|
interface->num_tx_queues = rss_i;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fm10k_set_num_queues: Allocate queues for device, feature dependent
|
|
* @interface: board private structure to initialize
|
|
*
|
|
* This is the top level queue allocation routine. The order here is very
|
|
* important, starting with the "most" number of features turned on at once,
|
|
* and ending with the smallest set of features. This way large combinations
|
|
* can be allocated if they're turned on, and smaller combinations are the
|
|
* fall through conditions.
|
|
*
|
|
**/
|
|
static void fm10k_set_num_queues(struct fm10k_intfc *interface)
|
|
{
|
|
/* Attempt to setup QoS and RSS first */
|
|
if (fm10k_set_qos_queues(interface))
|
|
return;
|
|
|
|
/* If we don't have QoS, just fallback to only RSS. */
|
|
fm10k_set_rss_queues(interface);
|
|
}
|
|
|
|
/**
|
|
* fm10k_reset_num_queues - Reset the number of queues to zero
|
|
* @interface: board private structure
|
|
*
|
|
* This function should be called whenever we need to reset the number of
|
|
* queues after an error condition.
|
|
*/
|
|
static void fm10k_reset_num_queues(struct fm10k_intfc *interface)
|
|
{
|
|
interface->num_tx_queues = 0;
|
|
interface->num_rx_queues = 0;
|
|
interface->num_q_vectors = 0;
|
|
}
|
|
|
|
/**
|
|
* fm10k_alloc_q_vector - Allocate memory for a single interrupt vector
|
|
* @interface: board private structure to initialize
|
|
* @v_count: q_vectors allocated on interface, used for ring interleaving
|
|
* @v_idx: index of vector in interface struct
|
|
* @txr_count: total number of Tx rings to allocate
|
|
* @txr_idx: index of first Tx ring to allocate
|
|
* @rxr_count: total number of Rx rings to allocate
|
|
* @rxr_idx: index of first Rx ring to allocate
|
|
*
|
|
* We allocate one q_vector. If allocation fails we return -ENOMEM.
|
|
**/
|
|
static int fm10k_alloc_q_vector(struct fm10k_intfc *interface,
|
|
unsigned int v_count, unsigned int v_idx,
|
|
unsigned int txr_count, unsigned int txr_idx,
|
|
unsigned int rxr_count, unsigned int rxr_idx)
|
|
{
|
|
struct fm10k_q_vector *q_vector;
|
|
struct fm10k_ring *ring;
|
|
int ring_count;
|
|
|
|
ring_count = txr_count + rxr_count;
|
|
|
|
/* allocate q_vector and rings */
|
|
q_vector = kzalloc(struct_size(q_vector, ring, ring_count), GFP_KERNEL);
|
|
if (!q_vector)
|
|
return -ENOMEM;
|
|
|
|
/* initialize NAPI */
|
|
netif_napi_add(interface->netdev, &q_vector->napi,
|
|
fm10k_poll, NAPI_POLL_WEIGHT);
|
|
|
|
/* tie q_vector and interface together */
|
|
interface->q_vector[v_idx] = q_vector;
|
|
q_vector->interface = interface;
|
|
q_vector->v_idx = v_idx;
|
|
|
|
/* initialize pointer to rings */
|
|
ring = q_vector->ring;
|
|
|
|
/* save Tx ring container info */
|
|
q_vector->tx.ring = ring;
|
|
q_vector->tx.work_limit = FM10K_DEFAULT_TX_WORK;
|
|
q_vector->tx.itr = interface->tx_itr;
|
|
q_vector->tx.itr_scale = interface->hw.mac.itr_scale;
|
|
q_vector->tx.count = txr_count;
|
|
|
|
while (txr_count) {
|
|
/* assign generic ring traits */
|
|
ring->dev = &interface->pdev->dev;
|
|
ring->netdev = interface->netdev;
|
|
|
|
/* configure backlink on ring */
|
|
ring->q_vector = q_vector;
|
|
|
|
/* apply Tx specific ring traits */
|
|
ring->count = interface->tx_ring_count;
|
|
ring->queue_index = txr_idx;
|
|
|
|
/* assign ring to interface */
|
|
interface->tx_ring[txr_idx] = ring;
|
|
|
|
/* update count and index */
|
|
txr_count--;
|
|
txr_idx += v_count;
|
|
|
|
/* push pointer to next ring */
|
|
ring++;
|
|
}
|
|
|
|
/* save Rx ring container info */
|
|
q_vector->rx.ring = ring;
|
|
q_vector->rx.itr = interface->rx_itr;
|
|
q_vector->rx.itr_scale = interface->hw.mac.itr_scale;
|
|
q_vector->rx.count = rxr_count;
|
|
|
|
while (rxr_count) {
|
|
/* assign generic ring traits */
|
|
ring->dev = &interface->pdev->dev;
|
|
ring->netdev = interface->netdev;
|
|
rcu_assign_pointer(ring->l2_accel, interface->l2_accel);
|
|
|
|
/* configure backlink on ring */
|
|
ring->q_vector = q_vector;
|
|
|
|
/* apply Rx specific ring traits */
|
|
ring->count = interface->rx_ring_count;
|
|
ring->queue_index = rxr_idx;
|
|
|
|
/* assign ring to interface */
|
|
interface->rx_ring[rxr_idx] = ring;
|
|
|
|
/* update count and index */
|
|
rxr_count--;
|
|
rxr_idx += v_count;
|
|
|
|
/* push pointer to next ring */
|
|
ring++;
|
|
}
|
|
|
|
fm10k_dbg_q_vector_init(q_vector);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fm10k_free_q_vector - Free memory allocated for specific interrupt vector
|
|
* @interface: board private structure to initialize
|
|
* @v_idx: Index of vector to be freed
|
|
*
|
|
* This function frees the memory allocated to the q_vector. In addition if
|
|
* NAPI is enabled it will delete any references to the NAPI struct prior
|
|
* to freeing the q_vector.
|
|
**/
|
|
static void fm10k_free_q_vector(struct fm10k_intfc *interface, int v_idx)
|
|
{
|
|
struct fm10k_q_vector *q_vector = interface->q_vector[v_idx];
|
|
struct fm10k_ring *ring;
|
|
|
|
fm10k_dbg_q_vector_exit(q_vector);
|
|
|
|
fm10k_for_each_ring(ring, q_vector->tx)
|
|
interface->tx_ring[ring->queue_index] = NULL;
|
|
|
|
fm10k_for_each_ring(ring, q_vector->rx)
|
|
interface->rx_ring[ring->queue_index] = NULL;
|
|
|
|
interface->q_vector[v_idx] = NULL;
|
|
netif_napi_del(&q_vector->napi);
|
|
kfree_rcu(q_vector, rcu);
|
|
}
|
|
|
|
/**
|
|
* fm10k_alloc_q_vectors - Allocate memory for interrupt vectors
|
|
* @interface: board private structure to initialize
|
|
*
|
|
* We allocate one q_vector per queue interrupt. If allocation fails we
|
|
* return -ENOMEM.
|
|
**/
|
|
static int fm10k_alloc_q_vectors(struct fm10k_intfc *interface)
|
|
{
|
|
unsigned int q_vectors = interface->num_q_vectors;
|
|
unsigned int rxr_remaining = interface->num_rx_queues;
|
|
unsigned int txr_remaining = interface->num_tx_queues;
|
|
unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
|
|
int err;
|
|
|
|
if (q_vectors >= (rxr_remaining + txr_remaining)) {
|
|
for (; rxr_remaining; v_idx++) {
|
|
err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
|
|
0, 0, 1, rxr_idx);
|
|
if (err)
|
|
goto err_out;
|
|
|
|
/* update counts and index */
|
|
rxr_remaining--;
|
|
rxr_idx++;
|
|
}
|
|
}
|
|
|
|
for (; v_idx < q_vectors; v_idx++) {
|
|
int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
|
|
int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
|
|
|
|
err = fm10k_alloc_q_vector(interface, q_vectors, v_idx,
|
|
tqpv, txr_idx,
|
|
rqpv, rxr_idx);
|
|
|
|
if (err)
|
|
goto err_out;
|
|
|
|
/* update counts and index */
|
|
rxr_remaining -= rqpv;
|
|
txr_remaining -= tqpv;
|
|
rxr_idx++;
|
|
txr_idx++;
|
|
}
|
|
|
|
return 0;
|
|
|
|
err_out:
|
|
fm10k_reset_num_queues(interface);
|
|
|
|
while (v_idx--)
|
|
fm10k_free_q_vector(interface, v_idx);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/**
|
|
* fm10k_free_q_vectors - Free memory allocated for interrupt vectors
|
|
* @interface: board private structure to initialize
|
|
*
|
|
* This function frees the memory allocated to the q_vectors. In addition if
|
|
* NAPI is enabled it will delete any references to the NAPI struct prior
|
|
* to freeing the q_vector.
|
|
**/
|
|
static void fm10k_free_q_vectors(struct fm10k_intfc *interface)
|
|
{
|
|
int v_idx = interface->num_q_vectors;
|
|
|
|
fm10k_reset_num_queues(interface);
|
|
|
|
while (v_idx--)
|
|
fm10k_free_q_vector(interface, v_idx);
|
|
}
|
|
|
|
/**
|
|
* f10k_reset_msix_capability - reset MSI-X capability
|
|
* @interface: board private structure to initialize
|
|
*
|
|
* Reset the MSI-X capability back to its starting state
|
|
**/
|
|
static void fm10k_reset_msix_capability(struct fm10k_intfc *interface)
|
|
{
|
|
pci_disable_msix(interface->pdev);
|
|
kfree(interface->msix_entries);
|
|
interface->msix_entries = NULL;
|
|
}
|
|
|
|
/**
|
|
* f10k_init_msix_capability - configure MSI-X capability
|
|
* @interface: board private structure to initialize
|
|
*
|
|
* Attempt to configure the interrupts using the best available
|
|
* capabilities of the hardware and the kernel.
|
|
**/
|
|
static int fm10k_init_msix_capability(struct fm10k_intfc *interface)
|
|
{
|
|
struct fm10k_hw *hw = &interface->hw;
|
|
int v_budget, vector;
|
|
|
|
/* It's easy to be greedy for MSI-X vectors, but it really
|
|
* doesn't do us much good if we have a lot more vectors
|
|
* than CPU's. So let's be conservative and only ask for
|
|
* (roughly) the same number of vectors as there are CPU's.
|
|
* the default is to use pairs of vectors
|
|
*/
|
|
v_budget = max(interface->num_rx_queues, interface->num_tx_queues);
|
|
v_budget = min_t(u16, v_budget, num_online_cpus());
|
|
|
|
/* account for vectors not related to queues */
|
|
v_budget += NON_Q_VECTORS;
|
|
|
|
/* At the same time, hardware can only support a maximum of
|
|
* hw.mac->max_msix_vectors vectors. With features
|
|
* such as RSS and VMDq, we can easily surpass the number of Rx and Tx
|
|
* descriptor queues supported by our device. Thus, we cap it off in
|
|
* those rare cases where the cpu count also exceeds our vector limit.
|
|
*/
|
|
v_budget = min_t(int, v_budget, hw->mac.max_msix_vectors);
|
|
|
|
/* A failure in MSI-X entry allocation is fatal. */
|
|
interface->msix_entries = kcalloc(v_budget, sizeof(struct msix_entry),
|
|
GFP_KERNEL);
|
|
if (!interface->msix_entries)
|
|
return -ENOMEM;
|
|
|
|
/* populate entry values */
|
|
for (vector = 0; vector < v_budget; vector++)
|
|
interface->msix_entries[vector].entry = vector;
|
|
|
|
/* Attempt to enable MSI-X with requested value */
|
|
v_budget = pci_enable_msix_range(interface->pdev,
|
|
interface->msix_entries,
|
|
MIN_MSIX_COUNT(hw),
|
|
v_budget);
|
|
if (v_budget < 0) {
|
|
kfree(interface->msix_entries);
|
|
interface->msix_entries = NULL;
|
|
return v_budget;
|
|
}
|
|
|
|
/* record the number of queues available for q_vectors */
|
|
interface->num_q_vectors = v_budget - NON_Q_VECTORS;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fm10k_cache_ring_qos - Descriptor ring to register mapping for QoS
|
|
* @interface: Interface structure continaining rings and devices
|
|
*
|
|
* Cache the descriptor ring offsets for Qos
|
|
**/
|
|
static bool fm10k_cache_ring_qos(struct fm10k_intfc *interface)
|
|
{
|
|
struct net_device *dev = interface->netdev;
|
|
int pc, offset, rss_i, i;
|
|
u16 pc_stride = interface->ring_feature[RING_F_QOS].mask + 1;
|
|
u8 num_pcs = netdev_get_num_tc(dev);
|
|
|
|
if (num_pcs <= 1)
|
|
return false;
|
|
|
|
rss_i = interface->ring_feature[RING_F_RSS].indices;
|
|
|
|
for (pc = 0, offset = 0; pc < num_pcs; pc++, offset += rss_i) {
|
|
int q_idx = pc;
|
|
|
|
for (i = 0; i < rss_i; i++) {
|
|
interface->tx_ring[offset + i]->reg_idx = q_idx;
|
|
interface->tx_ring[offset + i]->qos_pc = pc;
|
|
interface->rx_ring[offset + i]->reg_idx = q_idx;
|
|
interface->rx_ring[offset + i]->qos_pc = pc;
|
|
q_idx += pc_stride;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* fm10k_cache_ring_rss - Descriptor ring to register mapping for RSS
|
|
* @interface: Interface structure continaining rings and devices
|
|
*
|
|
* Cache the descriptor ring offsets for RSS
|
|
**/
|
|
static void fm10k_cache_ring_rss(struct fm10k_intfc *interface)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < interface->num_rx_queues; i++)
|
|
interface->rx_ring[i]->reg_idx = i;
|
|
|
|
for (i = 0; i < interface->num_tx_queues; i++)
|
|
interface->tx_ring[i]->reg_idx = i;
|
|
}
|
|
|
|
/**
|
|
* fm10k_assign_rings - Map rings to network devices
|
|
* @interface: Interface structure containing rings and devices
|
|
*
|
|
* This function is meant to go though and configure both the network
|
|
* devices so that they contain rings, and configure the rings so that
|
|
* they function with their network devices.
|
|
**/
|
|
static void fm10k_assign_rings(struct fm10k_intfc *interface)
|
|
{
|
|
if (fm10k_cache_ring_qos(interface))
|
|
return;
|
|
|
|
fm10k_cache_ring_rss(interface);
|
|
}
|
|
|
|
static void fm10k_init_reta(struct fm10k_intfc *interface)
|
|
{
|
|
u16 i, rss_i = interface->ring_feature[RING_F_RSS].indices;
|
|
u32 reta;
|
|
|
|
/* If the Rx flow indirection table has been configured manually, we
|
|
* need to maintain it when possible.
|
|
*/
|
|
if (netif_is_rxfh_configured(interface->netdev)) {
|
|
for (i = FM10K_RETA_SIZE; i--;) {
|
|
reta = interface->reta[i];
|
|
if ((((reta << 24) >> 24) < rss_i) &&
|
|
(((reta << 16) >> 24) < rss_i) &&
|
|
(((reta << 8) >> 24) < rss_i) &&
|
|
(((reta) >> 24) < rss_i))
|
|
continue;
|
|
|
|
/* this should never happen */
|
|
dev_err(&interface->pdev->dev,
|
|
"RSS indirection table assigned flows out of queue bounds. Reconfiguring.\n");
|
|
goto repopulate_reta;
|
|
}
|
|
|
|
/* do nothing if all of the elements are in bounds */
|
|
return;
|
|
}
|
|
|
|
repopulate_reta:
|
|
fm10k_write_reta(interface, NULL);
|
|
}
|
|
|
|
/**
|
|
* fm10k_init_queueing_scheme - Determine proper queueing scheme
|
|
* @interface: board private structure to initialize
|
|
*
|
|
* We determine which queueing scheme to use based on...
|
|
* - Hardware queue count (num_*_queues)
|
|
* - defined by miscellaneous hardware support/features (RSS, etc.)
|
|
**/
|
|
int fm10k_init_queueing_scheme(struct fm10k_intfc *interface)
|
|
{
|
|
int err;
|
|
|
|
/* Number of supported queues */
|
|
fm10k_set_num_queues(interface);
|
|
|
|
/* Configure MSI-X capability */
|
|
err = fm10k_init_msix_capability(interface);
|
|
if (err) {
|
|
dev_err(&interface->pdev->dev,
|
|
"Unable to initialize MSI-X capability\n");
|
|
goto err_init_msix;
|
|
}
|
|
|
|
/* Allocate memory for queues */
|
|
err = fm10k_alloc_q_vectors(interface);
|
|
if (err) {
|
|
dev_err(&interface->pdev->dev,
|
|
"Unable to allocate queue vectors\n");
|
|
goto err_alloc_q_vectors;
|
|
}
|
|
|
|
/* Map rings to devices, and map devices to physical queues */
|
|
fm10k_assign_rings(interface);
|
|
|
|
/* Initialize RSS redirection table */
|
|
fm10k_init_reta(interface);
|
|
|
|
return 0;
|
|
|
|
err_alloc_q_vectors:
|
|
fm10k_reset_msix_capability(interface);
|
|
err_init_msix:
|
|
fm10k_reset_num_queues(interface);
|
|
return err;
|
|
}
|
|
|
|
/**
|
|
* fm10k_clear_queueing_scheme - Clear the current queueing scheme settings
|
|
* @interface: board private structure to clear queueing scheme on
|
|
*
|
|
* We go through and clear queueing specific resources and reset the structure
|
|
* to pre-load conditions
|
|
**/
|
|
void fm10k_clear_queueing_scheme(struct fm10k_intfc *interface)
|
|
{
|
|
fm10k_free_q_vectors(interface);
|
|
fm10k_reset_msix_capability(interface);
|
|
}
|