1
0
mirror of https://github.com/physwizz/a155-U-u1.git synced 2024-11-19 13:27:49 +00:00
a155-U-u1/kernel-5.10/drivers/net/can/rcar/rcar_canfd.c
2024-03-11 06:53:12 +11:00

1854 lines
53 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/* Renesas R-Car CAN FD device driver
*
* Copyright (C) 2015 Renesas Electronics Corp.
*/
/* The R-Car CAN FD controller can operate in either one of the below two modes
* - CAN FD only mode
* - Classical CAN (CAN 2.0) only mode
*
* This driver puts the controller in CAN FD only mode by default. In this
* mode, the controller acts as a CAN FD node that can also interoperate with
* CAN 2.0 nodes.
*
* To switch the controller to Classical CAN (CAN 2.0) only mode, add
* "renesas,no-can-fd" optional property to the device tree node. A h/w reset is
* also required to switch modes.
*
* Note: The h/w manual register naming convention is clumsy and not acceptable
* to use as it is in the driver. However, those names are added as comments
* wherever it is modified to a readable name.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/errno.h>
#include <linux/netdevice.h>
#include <linux/platform_device.h>
#include <linux/can/led.h>
#include <linux/can/dev.h>
#include <linux/clk.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/bitmap.h>
#include <linux/bitops.h>
#include <linux/iopoll.h>
#define RCANFD_DRV_NAME "rcar_canfd"
/* Global register bits */
/* RSCFDnCFDGRMCFG */
#define RCANFD_GRMCFG_RCMC BIT(0)
/* RSCFDnCFDGCFG / RSCFDnGCFG */
#define RCANFD_GCFG_EEFE BIT(6)
#define RCANFD_GCFG_CMPOC BIT(5) /* CAN FD only */
#define RCANFD_GCFG_DCS BIT(4)
#define RCANFD_GCFG_DCE BIT(1)
#define RCANFD_GCFG_TPRI BIT(0)
/* RSCFDnCFDGCTR / RSCFDnGCTR */
#define RCANFD_GCTR_TSRST BIT(16)
#define RCANFD_GCTR_CFMPOFIE BIT(11) /* CAN FD only */
#define RCANFD_GCTR_THLEIE BIT(10)
#define RCANFD_GCTR_MEIE BIT(9)
#define RCANFD_GCTR_DEIE BIT(8)
#define RCANFD_GCTR_GSLPR BIT(2)
#define RCANFD_GCTR_GMDC_MASK (0x3)
#define RCANFD_GCTR_GMDC_GOPM (0x0)
#define RCANFD_GCTR_GMDC_GRESET (0x1)
#define RCANFD_GCTR_GMDC_GTEST (0x2)
/* RSCFDnCFDGSTS / RSCFDnGSTS */
#define RCANFD_GSTS_GRAMINIT BIT(3)
#define RCANFD_GSTS_GSLPSTS BIT(2)
#define RCANFD_GSTS_GHLTSTS BIT(1)
#define RCANFD_GSTS_GRSTSTS BIT(0)
/* Non-operational status */
#define RCANFD_GSTS_GNOPM (BIT(0) | BIT(1) | BIT(2) | BIT(3))
/* RSCFDnCFDGERFL / RSCFDnGERFL */
#define RCANFD_GERFL_EEF1 BIT(17)
#define RCANFD_GERFL_EEF0 BIT(16)
#define RCANFD_GERFL_CMPOF BIT(3) /* CAN FD only */
#define RCANFD_GERFL_THLES BIT(2)
#define RCANFD_GERFL_MES BIT(1)
#define RCANFD_GERFL_DEF BIT(0)
#define RCANFD_GERFL_ERR(gpriv, x) ((x) & (RCANFD_GERFL_EEF1 |\
RCANFD_GERFL_EEF0 | RCANFD_GERFL_MES |\
(gpriv->fdmode ?\
RCANFD_GERFL_CMPOF : 0)))
/* AFL Rx rules registers */
/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
#define RCANFD_GAFLCFG_SETRNC(n, x) (((x) & 0xff) << (24 - n * 8))
#define RCANFD_GAFLCFG_GETRNC(n, x) (((x) >> (24 - n * 8)) & 0xff)
/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
#define RCANFD_GAFLECTR_AFLDAE BIT(8)
#define RCANFD_GAFLECTR_AFLPN(x) ((x) & 0x1f)
/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
#define RCANFD_GAFLID_GAFLLB BIT(29)
/* RSCFDnCFDGAFLP1_j / RSCFDnGAFLP1_j */
#define RCANFD_GAFLP1_GAFLFDP(x) (1 << (x))
/* Channel register bits */
/* RSCFDnCmCFG - Classical CAN only */
#define RCANFD_CFG_SJW(x) (((x) & 0x3) << 24)
#define RCANFD_CFG_TSEG2(x) (((x) & 0x7) << 20)
#define RCANFD_CFG_TSEG1(x) (((x) & 0xf) << 16)
#define RCANFD_CFG_BRP(x) (((x) & 0x3ff) << 0)
/* RSCFDnCFDCmNCFG - CAN FD only */
#define RCANFD_NCFG_NTSEG2(x) (((x) & 0x1f) << 24)
#define RCANFD_NCFG_NTSEG1(x) (((x) & 0x7f) << 16)
#define RCANFD_NCFG_NSJW(x) (((x) & 0x1f) << 11)
#define RCANFD_NCFG_NBRP(x) (((x) & 0x3ff) << 0)
/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
#define RCANFD_CCTR_CTME BIT(24)
#define RCANFD_CCTR_ERRD BIT(23)
#define RCANFD_CCTR_BOM_MASK (0x3 << 21)
#define RCANFD_CCTR_BOM_ISO (0x0 << 21)
#define RCANFD_CCTR_BOM_BENTRY (0x1 << 21)
#define RCANFD_CCTR_BOM_BEND (0x2 << 21)
#define RCANFD_CCTR_TDCVFIE BIT(19)
#define RCANFD_CCTR_SOCOIE BIT(18)
#define RCANFD_CCTR_EOCOIE BIT(17)
#define RCANFD_CCTR_TAIE BIT(16)
#define RCANFD_CCTR_ALIE BIT(15)
#define RCANFD_CCTR_BLIE BIT(14)
#define RCANFD_CCTR_OLIE BIT(13)
#define RCANFD_CCTR_BORIE BIT(12)
#define RCANFD_CCTR_BOEIE BIT(11)
#define RCANFD_CCTR_EPIE BIT(10)
#define RCANFD_CCTR_EWIE BIT(9)
#define RCANFD_CCTR_BEIE BIT(8)
#define RCANFD_CCTR_CSLPR BIT(2)
#define RCANFD_CCTR_CHMDC_MASK (0x3)
#define RCANFD_CCTR_CHDMC_COPM (0x0)
#define RCANFD_CCTR_CHDMC_CRESET (0x1)
#define RCANFD_CCTR_CHDMC_CHLT (0x2)
/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
#define RCANFD_CSTS_COMSTS BIT(7)
#define RCANFD_CSTS_RECSTS BIT(6)
#define RCANFD_CSTS_TRMSTS BIT(5)
#define RCANFD_CSTS_BOSTS BIT(4)
#define RCANFD_CSTS_EPSTS BIT(3)
#define RCANFD_CSTS_SLPSTS BIT(2)
#define RCANFD_CSTS_HLTSTS BIT(1)
#define RCANFD_CSTS_CRSTSTS BIT(0)
#define RCANFD_CSTS_TECCNT(x) (((x) >> 24) & 0xff)
#define RCANFD_CSTS_RECCNT(x) (((x) >> 16) & 0xff)
/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
#define RCANFD_CERFL_ADERR BIT(14)
#define RCANFD_CERFL_B0ERR BIT(13)
#define RCANFD_CERFL_B1ERR BIT(12)
#define RCANFD_CERFL_CERR BIT(11)
#define RCANFD_CERFL_AERR BIT(10)
#define RCANFD_CERFL_FERR BIT(9)
#define RCANFD_CERFL_SERR BIT(8)
#define RCANFD_CERFL_ALF BIT(7)
#define RCANFD_CERFL_BLF BIT(6)
#define RCANFD_CERFL_OVLF BIT(5)
#define RCANFD_CERFL_BORF BIT(4)
#define RCANFD_CERFL_BOEF BIT(3)
#define RCANFD_CERFL_EPF BIT(2)
#define RCANFD_CERFL_EWF BIT(1)
#define RCANFD_CERFL_BEF BIT(0)
#define RCANFD_CERFL_ERR(x) ((x) & (0x7fff)) /* above bits 14:0 */
/* RSCFDnCFDCmDCFG */
#define RCANFD_DCFG_DSJW(x) (((x) & 0x7) << 24)
#define RCANFD_DCFG_DTSEG2(x) (((x) & 0x7) << 20)
#define RCANFD_DCFG_DTSEG1(x) (((x) & 0xf) << 16)
#define RCANFD_DCFG_DBRP(x) (((x) & 0xff) << 0)
/* RSCFDnCFDCmFDCFG */
#define RCANFD_FDCFG_TDCE BIT(9)
#define RCANFD_FDCFG_TDCOC BIT(8)
#define RCANFD_FDCFG_TDCO(x) (((x) & 0x7f) >> 16)
/* RSCFDnCFDRFCCx */
#define RCANFD_RFCC_RFIM BIT(12)
#define RCANFD_RFCC_RFDC(x) (((x) & 0x7) << 8)
#define RCANFD_RFCC_RFPLS(x) (((x) & 0x7) << 4)
#define RCANFD_RFCC_RFIE BIT(1)
#define RCANFD_RFCC_RFE BIT(0)
/* RSCFDnCFDRFSTSx */
#define RCANFD_RFSTS_RFIF BIT(3)
#define RCANFD_RFSTS_RFMLT BIT(2)
#define RCANFD_RFSTS_RFFLL BIT(1)
#define RCANFD_RFSTS_RFEMP BIT(0)
/* RSCFDnCFDRFIDx */
#define RCANFD_RFID_RFIDE BIT(31)
#define RCANFD_RFID_RFRTR BIT(30)
/* RSCFDnCFDRFPTRx */
#define RCANFD_RFPTR_RFDLC(x) (((x) >> 28) & 0xf)
#define RCANFD_RFPTR_RFPTR(x) (((x) >> 16) & 0xfff)
#define RCANFD_RFPTR_RFTS(x) (((x) >> 0) & 0xffff)
/* RSCFDnCFDRFFDSTSx */
#define RCANFD_RFFDSTS_RFFDF BIT(2)
#define RCANFD_RFFDSTS_RFBRS BIT(1)
#define RCANFD_RFFDSTS_RFESI BIT(0)
/* Common FIFO bits */
/* RSCFDnCFDCFCCk */
#define RCANFD_CFCC_CFTML(x) (((x) & 0xf) << 20)
#define RCANFD_CFCC_CFM(x) (((x) & 0x3) << 16)
#define RCANFD_CFCC_CFIM BIT(12)
#define RCANFD_CFCC_CFDC(x) (((x) & 0x7) << 8)
#define RCANFD_CFCC_CFPLS(x) (((x) & 0x7) << 4)
#define RCANFD_CFCC_CFTXIE BIT(2)
#define RCANFD_CFCC_CFE BIT(0)
/* RSCFDnCFDCFSTSk */
#define RCANFD_CFSTS_CFMC(x) (((x) >> 8) & 0xff)
#define RCANFD_CFSTS_CFTXIF BIT(4)
#define RCANFD_CFSTS_CFMLT BIT(2)
#define RCANFD_CFSTS_CFFLL BIT(1)
#define RCANFD_CFSTS_CFEMP BIT(0)
/* RSCFDnCFDCFIDk */
#define RCANFD_CFID_CFIDE BIT(31)
#define RCANFD_CFID_CFRTR BIT(30)
#define RCANFD_CFID_CFID_MASK(x) ((x) & 0x1fffffff)
/* RSCFDnCFDCFPTRk */
#define RCANFD_CFPTR_CFDLC(x) (((x) & 0xf) << 28)
#define RCANFD_CFPTR_CFPTR(x) (((x) & 0xfff) << 16)
#define RCANFD_CFPTR_CFTS(x) (((x) & 0xff) << 0)
/* RSCFDnCFDCFFDCSTSk */
#define RCANFD_CFFDCSTS_CFFDF BIT(2)
#define RCANFD_CFFDCSTS_CFBRS BIT(1)
#define RCANFD_CFFDCSTS_CFESI BIT(0)
/* This controller supports either Classical CAN only mode or CAN FD only mode.
* These modes are supported in two separate set of register maps & names.
* However, some of the register offsets are common for both modes. Those
* offsets are listed below as Common registers.
*
* The CAN FD only mode specific registers & Classical CAN only mode specific
* registers are listed separately. Their register names starts with
* RCANFD_F_xxx & RCANFD_C_xxx respectively.
*/
/* Common registers */
/* RSCFDnCFDCmNCFG / RSCFDnCmCFG */
#define RCANFD_CCFG(m) (0x0000 + (0x10 * (m)))
/* RSCFDnCFDCmCTR / RSCFDnCmCTR */
#define RCANFD_CCTR(m) (0x0004 + (0x10 * (m)))
/* RSCFDnCFDCmSTS / RSCFDnCmSTS */
#define RCANFD_CSTS(m) (0x0008 + (0x10 * (m)))
/* RSCFDnCFDCmERFL / RSCFDnCmERFL */
#define RCANFD_CERFL(m) (0x000C + (0x10 * (m)))
/* RSCFDnCFDGCFG / RSCFDnGCFG */
#define RCANFD_GCFG (0x0084)
/* RSCFDnCFDGCTR / RSCFDnGCTR */
#define RCANFD_GCTR (0x0088)
/* RSCFDnCFDGCTS / RSCFDnGCTS */
#define RCANFD_GSTS (0x008c)
/* RSCFDnCFDGERFL / RSCFDnGERFL */
#define RCANFD_GERFL (0x0090)
/* RSCFDnCFDGTSC / RSCFDnGTSC */
#define RCANFD_GTSC (0x0094)
/* RSCFDnCFDGAFLECTR / RSCFDnGAFLECTR */
#define RCANFD_GAFLECTR (0x0098)
/* RSCFDnCFDGAFLCFG0 / RSCFDnGAFLCFG0 */
#define RCANFD_GAFLCFG0 (0x009c)
/* RSCFDnCFDGAFLCFG1 / RSCFDnGAFLCFG1 */
#define RCANFD_GAFLCFG1 (0x00a0)
/* RSCFDnCFDRMNB / RSCFDnRMNB */
#define RCANFD_RMNB (0x00a4)
/* RSCFDnCFDRMND / RSCFDnRMND */
#define RCANFD_RMND(y) (0x00a8 + (0x04 * (y)))
/* RSCFDnCFDRFCCx / RSCFDnRFCCx */
#define RCANFD_RFCC(x) (0x00b8 + (0x04 * (x)))
/* RSCFDnCFDRFSTSx / RSCFDnRFSTSx */
#define RCANFD_RFSTS(x) (0x00d8 + (0x04 * (x)))
/* RSCFDnCFDRFPCTRx / RSCFDnRFPCTRx */
#define RCANFD_RFPCTR(x) (0x00f8 + (0x04 * (x)))
/* Common FIFO Control registers */
/* RSCFDnCFDCFCCx / RSCFDnCFCCx */
#define RCANFD_CFCC(ch, idx) (0x0118 + (0x0c * (ch)) + \
(0x04 * (idx)))
/* RSCFDnCFDCFSTSx / RSCFDnCFSTSx */
#define RCANFD_CFSTS(ch, idx) (0x0178 + (0x0c * (ch)) + \
(0x04 * (idx)))
/* RSCFDnCFDCFPCTRx / RSCFDnCFPCTRx */
#define RCANFD_CFPCTR(ch, idx) (0x01d8 + (0x0c * (ch)) + \
(0x04 * (idx)))
/* RSCFDnCFDFESTS / RSCFDnFESTS */
#define RCANFD_FESTS (0x0238)
/* RSCFDnCFDFFSTS / RSCFDnFFSTS */
#define RCANFD_FFSTS (0x023c)
/* RSCFDnCFDFMSTS / RSCFDnFMSTS */
#define RCANFD_FMSTS (0x0240)
/* RSCFDnCFDRFISTS / RSCFDnRFISTS */
#define RCANFD_RFISTS (0x0244)
/* RSCFDnCFDCFRISTS / RSCFDnCFRISTS */
#define RCANFD_CFRISTS (0x0248)
/* RSCFDnCFDCFTISTS / RSCFDnCFTISTS */
#define RCANFD_CFTISTS (0x024c)
/* RSCFDnCFDTMCp / RSCFDnTMCp */
#define RCANFD_TMC(p) (0x0250 + (0x01 * (p)))
/* RSCFDnCFDTMSTSp / RSCFDnTMSTSp */
#define RCANFD_TMSTS(p) (0x02d0 + (0x01 * (p)))
/* RSCFDnCFDTMTRSTSp / RSCFDnTMTRSTSp */
#define RCANFD_TMTRSTS(y) (0x0350 + (0x04 * (y)))
/* RSCFDnCFDTMTARSTSp / RSCFDnTMTARSTSp */
#define RCANFD_TMTARSTS(y) (0x0360 + (0x04 * (y)))
/* RSCFDnCFDTMTCSTSp / RSCFDnTMTCSTSp */
#define RCANFD_TMTCSTS(y) (0x0370 + (0x04 * (y)))
/* RSCFDnCFDTMTASTSp / RSCFDnTMTASTSp */
#define RCANFD_TMTASTS(y) (0x0380 + (0x04 * (y)))
/* RSCFDnCFDTMIECy / RSCFDnTMIECy */
#define RCANFD_TMIEC(y) (0x0390 + (0x04 * (y)))
/* RSCFDnCFDTXQCCm / RSCFDnTXQCCm */
#define RCANFD_TXQCC(m) (0x03a0 + (0x04 * (m)))
/* RSCFDnCFDTXQSTSm / RSCFDnTXQSTSm */
#define RCANFD_TXQSTS(m) (0x03c0 + (0x04 * (m)))
/* RSCFDnCFDTXQPCTRm / RSCFDnTXQPCTRm */
#define RCANFD_TXQPCTR(m) (0x03e0 + (0x04 * (m)))
/* RSCFDnCFDTHLCCm / RSCFDnTHLCCm */
#define RCANFD_THLCC(m) (0x0400 + (0x04 * (m)))
/* RSCFDnCFDTHLSTSm / RSCFDnTHLSTSm */
#define RCANFD_THLSTS(m) (0x0420 + (0x04 * (m)))
/* RSCFDnCFDTHLPCTRm / RSCFDnTHLPCTRm */
#define RCANFD_THLPCTR(m) (0x0440 + (0x04 * (m)))
/* RSCFDnCFDGTINTSTS0 / RSCFDnGTINTSTS0 */
#define RCANFD_GTINTSTS0 (0x0460)
/* RSCFDnCFDGTINTSTS1 / RSCFDnGTINTSTS1 */
#define RCANFD_GTINTSTS1 (0x0464)
/* RSCFDnCFDGTSTCFG / RSCFDnGTSTCFG */
#define RCANFD_GTSTCFG (0x0468)
/* RSCFDnCFDGTSTCTR / RSCFDnGTSTCTR */
#define RCANFD_GTSTCTR (0x046c)
/* RSCFDnCFDGLOCKK / RSCFDnGLOCKK */
#define RCANFD_GLOCKK (0x047c)
/* RSCFDnCFDGRMCFG */
#define RCANFD_GRMCFG (0x04fc)
/* RSCFDnCFDGAFLIDj / RSCFDnGAFLIDj */
#define RCANFD_GAFLID(offset, j) ((offset) + (0x10 * (j)))
/* RSCFDnCFDGAFLMj / RSCFDnGAFLMj */
#define RCANFD_GAFLM(offset, j) ((offset) + 0x04 + (0x10 * (j)))
/* RSCFDnCFDGAFLP0j / RSCFDnGAFLP0j */
#define RCANFD_GAFLP0(offset, j) ((offset) + 0x08 + (0x10 * (j)))
/* RSCFDnCFDGAFLP1j / RSCFDnGAFLP1j */
#define RCANFD_GAFLP1(offset, j) ((offset) + 0x0c + (0x10 * (j)))
/* Classical CAN only mode register map */
/* RSCFDnGAFLXXXj offset */
#define RCANFD_C_GAFL_OFFSET (0x0500)
/* RSCFDnRMXXXq -> RCANFD_C_RMXXX(q) */
#define RCANFD_C_RMID(q) (0x0600 + (0x10 * (q)))
#define RCANFD_C_RMPTR(q) (0x0604 + (0x10 * (q)))
#define RCANFD_C_RMDF0(q) (0x0608 + (0x10 * (q)))
#define RCANFD_C_RMDF1(q) (0x060c + (0x10 * (q)))
/* RSCFDnRFXXx -> RCANFD_C_RFXX(x) */
#define RCANFD_C_RFOFFSET (0x0e00)
#define RCANFD_C_RFID(x) (RCANFD_C_RFOFFSET + (0x10 * (x)))
#define RCANFD_C_RFPTR(x) (RCANFD_C_RFOFFSET + 0x04 + \
(0x10 * (x)))
#define RCANFD_C_RFDF(x, df) (RCANFD_C_RFOFFSET + 0x08 + \
(0x10 * (x)) + (0x04 * (df)))
/* RSCFDnCFXXk -> RCANFD_C_CFXX(ch, k) */
#define RCANFD_C_CFOFFSET (0x0e80)
#define RCANFD_C_CFID(ch, idx) (RCANFD_C_CFOFFSET + (0x30 * (ch)) + \
(0x10 * (idx)))
#define RCANFD_C_CFPTR(ch, idx) (RCANFD_C_CFOFFSET + 0x04 + \
(0x30 * (ch)) + (0x10 * (idx)))
#define RCANFD_C_CFDF(ch, idx, df) (RCANFD_C_CFOFFSET + 0x08 + \
(0x30 * (ch)) + (0x10 * (idx)) + \
(0x04 * (df)))
/* RSCFDnTMXXp -> RCANFD_C_TMXX(p) */
#define RCANFD_C_TMID(p) (0x1000 + (0x10 * (p)))
#define RCANFD_C_TMPTR(p) (0x1004 + (0x10 * (p)))
#define RCANFD_C_TMDF0(p) (0x1008 + (0x10 * (p)))
#define RCANFD_C_TMDF1(p) (0x100c + (0x10 * (p)))
/* RSCFDnTHLACCm */
#define RCANFD_C_THLACC(m) (0x1800 + (0x04 * (m)))
/* RSCFDnRPGACCr */
#define RCANFD_C_RPGACC(r) (0x1900 + (0x04 * (r)))
/* CAN FD mode specific register map */
/* RSCFDnCFDCmXXX -> RCANFD_F_XXX(m) */
#define RCANFD_F_DCFG(m) (0x0500 + (0x20 * (m)))
#define RCANFD_F_CFDCFG(m) (0x0504 + (0x20 * (m)))
#define RCANFD_F_CFDCTR(m) (0x0508 + (0x20 * (m)))
#define RCANFD_F_CFDSTS(m) (0x050c + (0x20 * (m)))
#define RCANFD_F_CFDCRC(m) (0x0510 + (0x20 * (m)))
/* RSCFDnCFDGAFLXXXj offset */
#define RCANFD_F_GAFL_OFFSET (0x1000)
/* RSCFDnCFDRMXXXq -> RCANFD_F_RMXXX(q) */
#define RCANFD_F_RMID(q) (0x2000 + (0x20 * (q)))
#define RCANFD_F_RMPTR(q) (0x2004 + (0x20 * (q)))
#define RCANFD_F_RMFDSTS(q) (0x2008 + (0x20 * (q)))
#define RCANFD_F_RMDF(q, b) (0x200c + (0x04 * (b)) + (0x20 * (q)))
/* RSCFDnCFDRFXXx -> RCANFD_F_RFXX(x) */
#define RCANFD_F_RFOFFSET (0x3000)
#define RCANFD_F_RFID(x) (RCANFD_F_RFOFFSET + (0x80 * (x)))
#define RCANFD_F_RFPTR(x) (RCANFD_F_RFOFFSET + 0x04 + \
(0x80 * (x)))
#define RCANFD_F_RFFDSTS(x) (RCANFD_F_RFOFFSET + 0x08 + \
(0x80 * (x)))
#define RCANFD_F_RFDF(x, df) (RCANFD_F_RFOFFSET + 0x0c + \
(0x80 * (x)) + (0x04 * (df)))
/* RSCFDnCFDCFXXk -> RCANFD_F_CFXX(ch, k) */
#define RCANFD_F_CFOFFSET (0x3400)
#define RCANFD_F_CFID(ch, idx) (RCANFD_F_CFOFFSET + (0x180 * (ch)) + \
(0x80 * (idx)))
#define RCANFD_F_CFPTR(ch, idx) (RCANFD_F_CFOFFSET + 0x04 + \
(0x180 * (ch)) + (0x80 * (idx)))
#define RCANFD_F_CFFDCSTS(ch, idx) (RCANFD_F_CFOFFSET + 0x08 + \
(0x180 * (ch)) + (0x80 * (idx)))
#define RCANFD_F_CFDF(ch, idx, df) (RCANFD_F_CFOFFSET + 0x0c + \
(0x180 * (ch)) + (0x80 * (idx)) + \
(0x04 * (df)))
/* RSCFDnCFDTMXXp -> RCANFD_F_TMXX(p) */
#define RCANFD_F_TMID(p) (0x4000 + (0x20 * (p)))
#define RCANFD_F_TMPTR(p) (0x4004 + (0x20 * (p)))
#define RCANFD_F_TMFDCTR(p) (0x4008 + (0x20 * (p)))
#define RCANFD_F_TMDF(p, b) (0x400c + (0x20 * (p)) + (0x04 * (b)))
/* RSCFDnCFDTHLACCm */
#define RCANFD_F_THLACC(m) (0x6000 + (0x04 * (m)))
/* RSCFDnCFDRPGACCr */
#define RCANFD_F_RPGACC(r) (0x6400 + (0x04 * (r)))
/* Constants */
#define RCANFD_FIFO_DEPTH 8 /* Tx FIFO depth */
#define RCANFD_NAPI_WEIGHT 8 /* Rx poll quota */
#define RCANFD_NUM_CHANNELS 2 /* Two channels max */
#define RCANFD_CHANNELS_MASK BIT((RCANFD_NUM_CHANNELS) - 1)
#define RCANFD_GAFL_PAGENUM(entry) ((entry) / 16)
#define RCANFD_CHANNEL_NUMRULES 1 /* only one rule per channel */
/* Rx FIFO is a global resource of the controller. There are 8 such FIFOs
* available. Each channel gets a dedicated Rx FIFO (i.e.) the channel
* number is added to RFFIFO index.
*/
#define RCANFD_RFFIFO_IDX 0
/* Tx/Rx or Common FIFO is a per channel resource. Each channel has 3 Common
* FIFOs dedicated to them. Use the first (index 0) FIFO out of the 3 for Tx.
*/
#define RCANFD_CFFIFO_IDX 0
/* fCAN clock select register settings */
enum rcar_canfd_fcanclk {
RCANFD_CANFDCLK = 0, /* CANFD clock */
RCANFD_EXTCLK, /* Externally input clock */
};
struct rcar_canfd_global;
/* Channel priv data */
struct rcar_canfd_channel {
struct can_priv can; /* Must be the first member */
struct net_device *ndev;
struct rcar_canfd_global *gpriv; /* Controller reference */
void __iomem *base; /* Register base address */
struct napi_struct napi;
u8 tx_len[RCANFD_FIFO_DEPTH]; /* For net stats */
u32 tx_head; /* Incremented on xmit */
u32 tx_tail; /* Incremented on xmit done */
u32 channel; /* Channel number */
spinlock_t tx_lock; /* To protect tx path */
};
/* Global priv data */
struct rcar_canfd_global {
struct rcar_canfd_channel *ch[RCANFD_NUM_CHANNELS];
void __iomem *base; /* Register base address */
struct platform_device *pdev; /* Respective platform device */
struct clk *clkp; /* Peripheral clock */
struct clk *can_clk; /* fCAN clock */
enum rcar_canfd_fcanclk fcan; /* CANFD or Ext clock */
unsigned long channels_mask; /* Enabled channels mask */
bool fdmode; /* CAN FD or Classical CAN only mode */
};
/* CAN FD mode nominal rate constants */
static const struct can_bittiming_const rcar_canfd_nom_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 2,
.tseg1_max = 128,
.tseg2_min = 2,
.tseg2_max = 32,
.sjw_max = 32,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
/* CAN FD mode data rate constants */
static const struct can_bittiming_const rcar_canfd_data_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 2,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 8,
.brp_min = 1,
.brp_max = 256,
.brp_inc = 1,
};
/* Classical CAN mode bitrate constants */
static const struct can_bittiming_const rcar_canfd_bittiming_const = {
.name = RCANFD_DRV_NAME,
.tseg1_min = 4,
.tseg1_max = 16,
.tseg2_min = 2,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
};
/* Helper functions */
static inline void rcar_canfd_update(u32 mask, u32 val, u32 __iomem *reg)
{
u32 data = readl(reg);
data &= ~mask;
data |= (val & mask);
writel(data, reg);
}
static inline u32 rcar_canfd_read(void __iomem *base, u32 offset)
{
return readl(base + (offset));
}
static inline void rcar_canfd_write(void __iomem *base, u32 offset, u32 val)
{
writel(val, base + (offset));
}
static void rcar_canfd_set_bit(void __iomem *base, u32 reg, u32 val)
{
rcar_canfd_update(val, val, base + (reg));
}
static void rcar_canfd_clear_bit(void __iomem *base, u32 reg, u32 val)
{
rcar_canfd_update(val, 0, base + (reg));
}
static void rcar_canfd_update_bit(void __iomem *base, u32 reg,
u32 mask, u32 val)
{
rcar_canfd_update(mask, val, base + (reg));
}
static void rcar_canfd_get_data(struct rcar_canfd_channel *priv,
struct canfd_frame *cf, u32 off)
{
u32 i, lwords;
lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
for (i = 0; i < lwords; i++)
*((u32 *)cf->data + i) =
rcar_canfd_read(priv->base, off + (i * sizeof(u32)));
}
static void rcar_canfd_put_data(struct rcar_canfd_channel *priv,
struct canfd_frame *cf, u32 off)
{
u32 i, lwords;
lwords = DIV_ROUND_UP(cf->len, sizeof(u32));
for (i = 0; i < lwords; i++)
rcar_canfd_write(priv->base, off + (i * sizeof(u32)),
*((u32 *)cf->data + i));
}
static void rcar_canfd_tx_failure_cleanup(struct net_device *ndev)
{
u32 i;
for (i = 0; i < RCANFD_FIFO_DEPTH; i++)
can_free_echo_skb(ndev, i);
}
static int rcar_canfd_reset_controller(struct rcar_canfd_global *gpriv)
{
u32 sts, ch;
int err;
/* Check RAMINIT flag as CAN RAM initialization takes place
* after the MCU reset
*/
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
!(sts & RCANFD_GSTS_GRAMINIT), 2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev, "global raminit failed\n");
return err;
}
/* Transition to Global Reset mode */
rcar_canfd_clear_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR,
RCANFD_GCTR_GMDC_MASK, RCANFD_GCTR_GMDC_GRESET);
/* Ensure Global reset mode */
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
(sts & RCANFD_GSTS_GRSTSTS), 2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev, "global reset failed\n");
return err;
}
/* Reset Global error flags */
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0x0);
/* Set the controller into appropriate mode */
if (gpriv->fdmode)
rcar_canfd_set_bit(gpriv->base, RCANFD_GRMCFG,
RCANFD_GRMCFG_RCMC);
else
rcar_canfd_clear_bit(gpriv->base, RCANFD_GRMCFG,
RCANFD_GRMCFG_RCMC);
/* Transition all Channels to reset mode */
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
rcar_canfd_clear_bit(gpriv->base,
RCANFD_CCTR(ch), RCANFD_CCTR_CSLPR);
rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK,
RCANFD_CCTR_CHDMC_CRESET);
/* Ensure Channel reset mode */
err = readl_poll_timeout((gpriv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_CRSTSTS),
2, 500000);
if (err) {
dev_dbg(&gpriv->pdev->dev,
"channel %u reset failed\n", ch);
return err;
}
}
return 0;
}
static void rcar_canfd_configure_controller(struct rcar_canfd_global *gpriv)
{
u32 cfg, ch;
/* Global configuration settings */
/* ECC Error flag Enable */
cfg = RCANFD_GCFG_EEFE;
if (gpriv->fdmode)
/* Truncate payload to configured message size RFPLS */
cfg |= RCANFD_GCFG_CMPOC;
/* Set External Clock if selected */
if (gpriv->fcan != RCANFD_CANFDCLK)
cfg |= RCANFD_GCFG_DCS;
rcar_canfd_set_bit(gpriv->base, RCANFD_GCFG, cfg);
/* Channel configuration settings */
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
rcar_canfd_set_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_ERRD);
rcar_canfd_update_bit(gpriv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_BOM_MASK,
RCANFD_CCTR_BOM_BENTRY);
}
}
static void rcar_canfd_configure_afl_rules(struct rcar_canfd_global *gpriv,
u32 ch)
{
u32 cfg;
int offset, start, page, num_rules = RCANFD_CHANNEL_NUMRULES;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
if (ch == 0) {
start = 0; /* Channel 0 always starts from 0th rule */
} else {
/* Get number of Channel 0 rules and adjust */
cfg = rcar_canfd_read(gpriv->base, RCANFD_GAFLCFG0);
start = RCANFD_GAFLCFG_GETRNC(0, cfg);
}
/* Enable write access to entry */
page = RCANFD_GAFL_PAGENUM(start);
rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLECTR,
(RCANFD_GAFLECTR_AFLPN(page) |
RCANFD_GAFLECTR_AFLDAE));
/* Write number of rules for channel */
rcar_canfd_set_bit(gpriv->base, RCANFD_GAFLCFG0,
RCANFD_GAFLCFG_SETRNC(ch, num_rules));
if (gpriv->fdmode)
offset = RCANFD_F_GAFL_OFFSET;
else
offset = RCANFD_C_GAFL_OFFSET;
/* Accept all IDs */
rcar_canfd_write(gpriv->base, RCANFD_GAFLID(offset, start), 0);
/* IDE or RTR is not considered for matching */
rcar_canfd_write(gpriv->base, RCANFD_GAFLM(offset, start), 0);
/* Any data length accepted */
rcar_canfd_write(gpriv->base, RCANFD_GAFLP0(offset, start), 0);
/* Place the msg in corresponding Rx FIFO entry */
rcar_canfd_write(gpriv->base, RCANFD_GAFLP1(offset, start),
RCANFD_GAFLP1_GAFLFDP(ridx));
/* Disable write access to page */
rcar_canfd_clear_bit(gpriv->base,
RCANFD_GAFLECTR, RCANFD_GAFLECTR_AFLDAE);
}
static void rcar_canfd_configure_rx(struct rcar_canfd_global *gpriv, u32 ch)
{
/* Rx FIFO is used for reception */
u32 cfg;
u16 rfdc, rfpls;
/* Select Rx FIFO based on channel */
u32 ridx = ch + RCANFD_RFFIFO_IDX;
rfdc = 2; /* b010 - 8 messages Rx FIFO depth */
if (gpriv->fdmode)
rfpls = 7; /* b111 - Max 64 bytes payload */
else
rfpls = 0; /* b000 - Max 8 bytes payload */
cfg = (RCANFD_RFCC_RFIM | RCANFD_RFCC_RFDC(rfdc) |
RCANFD_RFCC_RFPLS(rfpls) | RCANFD_RFCC_RFIE);
rcar_canfd_write(gpriv->base, RCANFD_RFCC(ridx), cfg);
}
static void rcar_canfd_configure_tx(struct rcar_canfd_global *gpriv, u32 ch)
{
/* Tx/Rx(Common) FIFO configured in Tx mode is
* used for transmission
*
* Each channel has 3 Common FIFO dedicated to them.
* Use the 1st (index 0) out of 3
*/
u32 cfg;
u16 cftml, cfm, cfdc, cfpls;
cftml = 0; /* 0th buffer */
cfm = 1; /* b01 - Transmit mode */
cfdc = 2; /* b010 - 8 messages Tx FIFO depth */
if (gpriv->fdmode)
cfpls = 7; /* b111 - Max 64 bytes payload */
else
cfpls = 0; /* b000 - Max 8 bytes payload */
cfg = (RCANFD_CFCC_CFTML(cftml) | RCANFD_CFCC_CFM(cfm) |
RCANFD_CFCC_CFIM | RCANFD_CFCC_CFDC(cfdc) |
RCANFD_CFCC_CFPLS(cfpls) | RCANFD_CFCC_CFTXIE);
rcar_canfd_write(gpriv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX), cfg);
if (gpriv->fdmode)
/* Clear FD mode specific control/status register */
rcar_canfd_write(gpriv->base,
RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), 0);
}
static void rcar_canfd_enable_global_interrupts(struct rcar_canfd_global *gpriv)
{
u32 ctr;
/* Clear any stray error interrupt flags */
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
/* Global interrupts setup */
ctr = RCANFD_GCTR_MEIE;
if (gpriv->fdmode)
ctr |= RCANFD_GCTR_CFMPOFIE;
rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, ctr);
}
static void rcar_canfd_disable_global_interrupts(struct rcar_canfd_global
*gpriv)
{
/* Disable all interrupts */
rcar_canfd_write(gpriv->base, RCANFD_GCTR, 0);
/* Clear any stray error interrupt flags */
rcar_canfd_write(gpriv->base, RCANFD_GERFL, 0);
}
static void rcar_canfd_enable_channel_interrupts(struct rcar_canfd_channel
*priv)
{
u32 ctr, ch = priv->channel;
/* Clear any stray error flags */
rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
/* Channel interrupts setup */
ctr = (RCANFD_CCTR_TAIE |
RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
rcar_canfd_set_bit(priv->base, RCANFD_CCTR(ch), ctr);
}
static void rcar_canfd_disable_channel_interrupts(struct rcar_canfd_channel
*priv)
{
u32 ctr, ch = priv->channel;
ctr = (RCANFD_CCTR_TAIE |
RCANFD_CCTR_ALIE | RCANFD_CCTR_BLIE |
RCANFD_CCTR_OLIE | RCANFD_CCTR_BORIE |
RCANFD_CCTR_BOEIE | RCANFD_CCTR_EPIE |
RCANFD_CCTR_EWIE | RCANFD_CCTR_BEIE);
rcar_canfd_clear_bit(priv->base, RCANFD_CCTR(ch), ctr);
/* Clear any stray error flags */
rcar_canfd_write(priv->base, RCANFD_CERFL(ch), 0);
}
static void rcar_canfd_global_error(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
struct net_device_stats *stats = &ndev->stats;
u32 ch = priv->channel;
u32 gerfl, sts;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
if ((gerfl & RCANFD_GERFL_EEF0) && (ch == 0)) {
netdev_dbg(ndev, "Ch0: ECC Error flag\n");
stats->tx_dropped++;
}
if ((gerfl & RCANFD_GERFL_EEF1) && (ch == 1)) {
netdev_dbg(ndev, "Ch1: ECC Error flag\n");
stats->tx_dropped++;
}
if (gerfl & RCANFD_GERFL_MES) {
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
if (sts & RCANFD_CFSTS_CFMLT) {
netdev_dbg(ndev, "Tx Message Lost flag\n");
stats->tx_dropped++;
rcar_canfd_write(priv->base,
RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
sts & ~RCANFD_CFSTS_CFMLT);
}
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
if (sts & RCANFD_RFSTS_RFMLT) {
netdev_dbg(ndev, "Rx Message Lost flag\n");
stats->rx_dropped++;
rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
sts & ~RCANFD_RFSTS_RFMLT);
}
}
if (gpriv->fdmode && gerfl & RCANFD_GERFL_CMPOF) {
/* Message Lost flag will be set for respective channel
* when this condition happens with counters and flags
* already updated.
*/
netdev_dbg(ndev, "global payload overflow interrupt\n");
}
/* Clear all global error interrupts. Only affected channels bits
* get cleared
*/
rcar_canfd_write(priv->base, RCANFD_GERFL, 0);
}
static void rcar_canfd_error(struct net_device *ndev, u32 cerfl,
u16 txerr, u16 rxerr)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
u32 ch = priv->channel;
netdev_dbg(ndev, "ch erfl %x txerr %u rxerr %u\n", cerfl, txerr, rxerr);
/* Propagate the error condition to the CAN stack */
skb = alloc_can_err_skb(ndev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
/* Channel error interrupts */
if (cerfl & RCANFD_CERFL_BEF) {
netdev_dbg(ndev, "Bus error\n");
cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_UNSPEC;
priv->can.can_stats.bus_error++;
}
if (cerfl & RCANFD_CERFL_ADERR) {
netdev_dbg(ndev, "ACK Delimiter Error\n");
stats->tx_errors++;
cf->data[3] |= CAN_ERR_PROT_LOC_ACK_DEL;
}
if (cerfl & RCANFD_CERFL_B0ERR) {
netdev_dbg(ndev, "Bit Error (dominant)\n");
stats->tx_errors++;
cf->data[2] |= CAN_ERR_PROT_BIT0;
}
if (cerfl & RCANFD_CERFL_B1ERR) {
netdev_dbg(ndev, "Bit Error (recessive)\n");
stats->tx_errors++;
cf->data[2] |= CAN_ERR_PROT_BIT1;
}
if (cerfl & RCANFD_CERFL_CERR) {
netdev_dbg(ndev, "CRC Error\n");
stats->rx_errors++;
cf->data[3] |= CAN_ERR_PROT_LOC_CRC_SEQ;
}
if (cerfl & RCANFD_CERFL_AERR) {
netdev_dbg(ndev, "ACK Error\n");
stats->tx_errors++;
cf->can_id |= CAN_ERR_ACK;
cf->data[3] |= CAN_ERR_PROT_LOC_ACK;
}
if (cerfl & RCANFD_CERFL_FERR) {
netdev_dbg(ndev, "Form Error\n");
stats->rx_errors++;
cf->data[2] |= CAN_ERR_PROT_FORM;
}
if (cerfl & RCANFD_CERFL_SERR) {
netdev_dbg(ndev, "Stuff Error\n");
stats->rx_errors++;
cf->data[2] |= CAN_ERR_PROT_STUFF;
}
if (cerfl & RCANFD_CERFL_ALF) {
netdev_dbg(ndev, "Arbitration lost Error\n");
priv->can.can_stats.arbitration_lost++;
cf->can_id |= CAN_ERR_LOSTARB;
cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC;
}
if (cerfl & RCANFD_CERFL_BLF) {
netdev_dbg(ndev, "Bus Lock Error\n");
stats->rx_errors++;
cf->can_id |= CAN_ERR_BUSERROR;
}
if (cerfl & RCANFD_CERFL_EWF) {
netdev_dbg(ndev, "Error warning interrupt\n");
priv->can.state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_WARNING :
CAN_ERR_CRTL_RX_WARNING;
cf->data[6] = txerr;
cf->data[7] = rxerr;
}
if (cerfl & RCANFD_CERFL_EPF) {
netdev_dbg(ndev, "Error passive interrupt\n");
priv->can.state = CAN_STATE_ERROR_PASSIVE;
priv->can.can_stats.error_passive++;
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] = txerr > rxerr ? CAN_ERR_CRTL_TX_PASSIVE :
CAN_ERR_CRTL_RX_PASSIVE;
cf->data[6] = txerr;
cf->data[7] = rxerr;
}
if (cerfl & RCANFD_CERFL_BOEF) {
netdev_dbg(ndev, "Bus-off entry interrupt\n");
rcar_canfd_tx_failure_cleanup(ndev);
priv->can.state = CAN_STATE_BUS_OFF;
priv->can.can_stats.bus_off++;
can_bus_off(ndev);
cf->can_id |= CAN_ERR_BUSOFF;
}
if (cerfl & RCANFD_CERFL_OVLF) {
netdev_dbg(ndev,
"Overload Frame Transmission error interrupt\n");
stats->tx_errors++;
cf->can_id |= CAN_ERR_PROT;
cf->data[2] |= CAN_ERR_PROT_OVERLOAD;
}
/* Clear channel error interrupts that are handled */
rcar_canfd_write(priv->base, RCANFD_CERFL(ch),
RCANFD_CERFL_ERR(~cerfl));
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
static void rcar_canfd_tx_done(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
u32 sts;
unsigned long flags;
u32 ch = priv->channel;
do {
u8 unsent, sent;
sent = priv->tx_tail % RCANFD_FIFO_DEPTH;
stats->tx_packets++;
stats->tx_bytes += priv->tx_len[sent];
priv->tx_len[sent] = 0;
can_get_echo_skb(ndev, sent);
spin_lock_irqsave(&priv->tx_lock, flags);
priv->tx_tail++;
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
unsent = RCANFD_CFSTS_CFMC(sts);
/* Wake producer only when there is room */
if (unsent != RCANFD_FIFO_DEPTH)
netif_wake_queue(ndev);
if (priv->tx_head - priv->tx_tail <= unsent) {
spin_unlock_irqrestore(&priv->tx_lock, flags);
break;
}
spin_unlock_irqrestore(&priv->tx_lock, flags);
} while (1);
/* Clear interrupt */
rcar_canfd_write(priv->base, RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX),
sts & ~RCANFD_CFSTS_CFTXIF);
can_led_event(ndev, CAN_LED_EVENT_TX);
}
static irqreturn_t rcar_canfd_global_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_global *gpriv = dev_id;
struct net_device *ndev;
struct rcar_canfd_channel *priv;
u32 sts, cc, gerfl;
u32 ch, ridx;
/* Global error interrupts still indicate a condition specific
* to a channel. RxFIFO interrupt is a global interrupt.
*/
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
priv = gpriv->ch[ch];
ndev = priv->ndev;
ridx = ch + RCANFD_RFFIFO_IDX;
/* Global error interrupts */
gerfl = rcar_canfd_read(priv->base, RCANFD_GERFL);
if (unlikely(RCANFD_GERFL_ERR(gpriv, gerfl)))
rcar_canfd_global_error(ndev);
/* Handle Rx interrupts */
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
cc = rcar_canfd_read(priv->base, RCANFD_RFCC(ridx));
if (likely(sts & RCANFD_RFSTS_RFIF &&
cc & RCANFD_RFCC_RFIE)) {
if (napi_schedule_prep(&priv->napi)) {
/* Disable Rx FIFO interrupts */
rcar_canfd_clear_bit(priv->base,
RCANFD_RFCC(ridx),
RCANFD_RFCC_RFIE);
__napi_schedule(&priv->napi);
}
}
}
return IRQ_HANDLED;
}
static void rcar_canfd_state_change(struct net_device *ndev,
u16 txerr, u16 rxerr)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
enum can_state rx_state, tx_state, state = priv->can.state;
struct can_frame *cf;
struct sk_buff *skb;
/* Handle transition from error to normal states */
if (txerr < 96 && rxerr < 96)
state = CAN_STATE_ERROR_ACTIVE;
else if (txerr < 128 && rxerr < 128)
state = CAN_STATE_ERROR_WARNING;
if (state != priv->can.state) {
netdev_dbg(ndev, "state: new %d, old %d: txerr %u, rxerr %u\n",
state, priv->can.state, txerr, rxerr);
skb = alloc_can_err_skb(ndev, &cf);
if (!skb) {
stats->rx_dropped++;
return;
}
tx_state = txerr >= rxerr ? state : 0;
rx_state = txerr <= rxerr ? state : 0;
can_change_state(ndev, cf, tx_state, rx_state);
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
}
static irqreturn_t rcar_canfd_channel_interrupt(int irq, void *dev_id)
{
struct rcar_canfd_global *gpriv = dev_id;
struct net_device *ndev;
struct rcar_canfd_channel *priv;
u32 sts, ch, cerfl;
u16 txerr, rxerr;
/* Common FIFO is a per channel resource */
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
priv = gpriv->ch[ch];
ndev = priv->ndev;
/* Channel error interrupts */
cerfl = rcar_canfd_read(priv->base, RCANFD_CERFL(ch));
sts = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
txerr = RCANFD_CSTS_TECCNT(sts);
rxerr = RCANFD_CSTS_RECCNT(sts);
if (unlikely(RCANFD_CERFL_ERR(cerfl)))
rcar_canfd_error(ndev, cerfl, txerr, rxerr);
/* Handle state change to lower states */
if (unlikely((priv->can.state != CAN_STATE_ERROR_ACTIVE) &&
(priv->can.state != CAN_STATE_BUS_OFF)))
rcar_canfd_state_change(ndev, txerr, rxerr);
/* Handle Tx interrupts */
sts = rcar_canfd_read(priv->base,
RCANFD_CFSTS(ch, RCANFD_CFFIFO_IDX));
if (likely(sts & RCANFD_CFSTS_CFTXIF))
rcar_canfd_tx_done(ndev);
}
return IRQ_HANDLED;
}
static void rcar_canfd_set_bittiming(struct net_device *dev)
{
struct rcar_canfd_channel *priv = netdev_priv(dev);
const struct can_bittiming *bt = &priv->can.bittiming;
const struct can_bittiming *dbt = &priv->can.data_bittiming;
u16 brp, sjw, tseg1, tseg2;
u32 cfg;
u32 ch = priv->channel;
/* Nominal bit timing settings */
brp = bt->brp - 1;
sjw = bt->sjw - 1;
tseg1 = bt->prop_seg + bt->phase_seg1 - 1;
tseg2 = bt->phase_seg2 - 1;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
/* CAN FD only mode */
cfg = (RCANFD_NCFG_NTSEG1(tseg1) | RCANFD_NCFG_NBRP(brp) |
RCANFD_NCFG_NSJW(sjw) | RCANFD_NCFG_NTSEG2(tseg2));
rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
netdev_dbg(priv->ndev, "nrate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
/* Data bit timing settings */
brp = dbt->brp - 1;
sjw = dbt->sjw - 1;
tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1;
tseg2 = dbt->phase_seg2 - 1;
cfg = (RCANFD_DCFG_DTSEG1(tseg1) | RCANFD_DCFG_DBRP(brp) |
RCANFD_DCFG_DSJW(sjw) | RCANFD_DCFG_DTSEG2(tseg2));
rcar_canfd_write(priv->base, RCANFD_F_DCFG(ch), cfg);
netdev_dbg(priv->ndev, "drate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
} else {
/* Classical CAN only mode */
cfg = (RCANFD_CFG_TSEG1(tseg1) | RCANFD_CFG_BRP(brp) |
RCANFD_CFG_SJW(sjw) | RCANFD_CFG_TSEG2(tseg2));
rcar_canfd_write(priv->base, RCANFD_CCFG(ch), cfg);
netdev_dbg(priv->ndev,
"rate: brp %u, sjw %u, tseg1 %u, tseg2 %u\n",
brp, sjw, tseg1, tseg2);
}
}
static int rcar_canfd_start(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
int err = -EOPNOTSUPP;
u32 sts, ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
rcar_canfd_set_bittiming(ndev);
rcar_canfd_enable_channel_interrupts(priv);
/* Set channel to Operational mode */
rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_COPM);
/* Verify channel mode change */
err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_COMSTS), 2, 500000);
if (err) {
netdev_err(ndev, "channel %u communication state failed\n", ch);
goto fail_mode_change;
}
/* Enable Common & Rx FIFO */
rcar_canfd_set_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
RCANFD_CFCC_CFE);
rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
fail_mode_change:
rcar_canfd_disable_channel_interrupts(priv);
return err;
}
static int rcar_canfd_open(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
int err;
/* Peripheral clock is already enabled in probe */
err = clk_prepare_enable(gpriv->can_clk);
if (err) {
netdev_err(ndev, "failed to enable CAN clock, error %d\n", err);
goto out_clock;
}
err = open_candev(ndev);
if (err) {
netdev_err(ndev, "open_candev() failed, error %d\n", err);
goto out_can_clock;
}
napi_enable(&priv->napi);
err = rcar_canfd_start(ndev);
if (err)
goto out_close;
netif_start_queue(ndev);
can_led_event(ndev, CAN_LED_EVENT_OPEN);
return 0;
out_close:
napi_disable(&priv->napi);
close_candev(ndev);
out_can_clock:
clk_disable_unprepare(gpriv->can_clk);
out_clock:
return err;
}
static void rcar_canfd_stop(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
int err;
u32 sts, ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
/* Transition to channel reset mode */
rcar_canfd_update_bit(priv->base, RCANFD_CCTR(ch),
RCANFD_CCTR_CHMDC_MASK, RCANFD_CCTR_CHDMC_CRESET);
/* Check Channel reset mode */
err = readl_poll_timeout((priv->base + RCANFD_CSTS(ch)), sts,
(sts & RCANFD_CSTS_CRSTSTS), 2, 500000);
if (err)
netdev_err(ndev, "channel %u reset failed\n", ch);
rcar_canfd_disable_channel_interrupts(priv);
/* Disable Common & Rx FIFO */
rcar_canfd_clear_bit(priv->base, RCANFD_CFCC(ch, RCANFD_CFFIFO_IDX),
RCANFD_CFCC_CFE);
rcar_canfd_clear_bit(priv->base, RCANFD_RFCC(ridx), RCANFD_RFCC_RFE);
/* Set the state as STOPPED */
priv->can.state = CAN_STATE_STOPPED;
}
static int rcar_canfd_close(struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct rcar_canfd_global *gpriv = priv->gpriv;
netif_stop_queue(ndev);
rcar_canfd_stop(ndev);
napi_disable(&priv->napi);
clk_disable_unprepare(gpriv->can_clk);
close_candev(ndev);
can_led_event(ndev, CAN_LED_EVENT_STOP);
return 0;
}
static netdev_tx_t rcar_canfd_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct rcar_canfd_channel *priv = netdev_priv(ndev);
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
u32 sts = 0, id, dlc;
unsigned long flags;
u32 ch = priv->channel;
if (can_dropped_invalid_skb(ndev, skb))
return NETDEV_TX_OK;
if (cf->can_id & CAN_EFF_FLAG) {
id = cf->can_id & CAN_EFF_MASK;
id |= RCANFD_CFID_CFIDE;
} else {
id = cf->can_id & CAN_SFF_MASK;
}
if (cf->can_id & CAN_RTR_FLAG)
id |= RCANFD_CFID_CFRTR;
dlc = RCANFD_CFPTR_CFDLC(can_len2dlc(cf->len));
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
rcar_canfd_write(priv->base,
RCANFD_F_CFID(ch, RCANFD_CFFIFO_IDX), id);
rcar_canfd_write(priv->base,
RCANFD_F_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
if (can_is_canfd_skb(skb)) {
/* CAN FD frame format */
sts |= RCANFD_CFFDCSTS_CFFDF;
if (cf->flags & CANFD_BRS)
sts |= RCANFD_CFFDCSTS_CFBRS;
if (priv->can.state == CAN_STATE_ERROR_PASSIVE)
sts |= RCANFD_CFFDCSTS_CFESI;
}
rcar_canfd_write(priv->base,
RCANFD_F_CFFDCSTS(ch, RCANFD_CFFIFO_IDX), sts);
rcar_canfd_put_data(priv, cf,
RCANFD_F_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
} else {
rcar_canfd_write(priv->base,
RCANFD_C_CFID(ch, RCANFD_CFFIFO_IDX), id);
rcar_canfd_write(priv->base,
RCANFD_C_CFPTR(ch, RCANFD_CFFIFO_IDX), dlc);
rcar_canfd_put_data(priv, cf,
RCANFD_C_CFDF(ch, RCANFD_CFFIFO_IDX, 0));
}
priv->tx_len[priv->tx_head % RCANFD_FIFO_DEPTH] = cf->len;
can_put_echo_skb(skb, ndev, priv->tx_head % RCANFD_FIFO_DEPTH);
spin_lock_irqsave(&priv->tx_lock, flags);
priv->tx_head++;
/* Stop the queue if we've filled all FIFO entries */
if (priv->tx_head - priv->tx_tail >= RCANFD_FIFO_DEPTH)
netif_stop_queue(ndev);
/* Start Tx: Write 0xff to CFPC to increment the CPU-side
* pointer for the Common FIFO
*/
rcar_canfd_write(priv->base,
RCANFD_CFPCTR(ch, RCANFD_CFFIFO_IDX), 0xff);
spin_unlock_irqrestore(&priv->tx_lock, flags);
return NETDEV_TX_OK;
}
static void rcar_canfd_rx_pkt(struct rcar_canfd_channel *priv)
{
struct net_device_stats *stats = &priv->ndev->stats;
struct canfd_frame *cf;
struct sk_buff *skb;
u32 sts = 0, id, dlc;
u32 ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
id = rcar_canfd_read(priv->base, RCANFD_F_RFID(ridx));
dlc = rcar_canfd_read(priv->base, RCANFD_F_RFPTR(ridx));
sts = rcar_canfd_read(priv->base, RCANFD_F_RFFDSTS(ridx));
if (sts & RCANFD_RFFDSTS_RFFDF)
skb = alloc_canfd_skb(priv->ndev, &cf);
else
skb = alloc_can_skb(priv->ndev,
(struct can_frame **)&cf);
} else {
id = rcar_canfd_read(priv->base, RCANFD_C_RFID(ridx));
dlc = rcar_canfd_read(priv->base, RCANFD_C_RFPTR(ridx));
skb = alloc_can_skb(priv->ndev, (struct can_frame **)&cf);
}
if (!skb) {
stats->rx_dropped++;
return;
}
if (id & RCANFD_RFID_RFIDE)
cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG;
else
cf->can_id = id & CAN_SFF_MASK;
if (priv->can.ctrlmode & CAN_CTRLMODE_FD) {
if (sts & RCANFD_RFFDSTS_RFFDF)
cf->len = can_dlc2len(RCANFD_RFPTR_RFDLC(dlc));
else
cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
if (sts & RCANFD_RFFDSTS_RFESI) {
cf->flags |= CANFD_ESI;
netdev_dbg(priv->ndev, "ESI Error\n");
}
if (!(sts & RCANFD_RFFDSTS_RFFDF) && (id & RCANFD_RFID_RFRTR)) {
cf->can_id |= CAN_RTR_FLAG;
} else {
if (sts & RCANFD_RFFDSTS_RFBRS)
cf->flags |= CANFD_BRS;
rcar_canfd_get_data(priv, cf, RCANFD_F_RFDF(ridx, 0));
}
} else {
cf->len = get_can_dlc(RCANFD_RFPTR_RFDLC(dlc));
if (id & RCANFD_RFID_RFRTR)
cf->can_id |= CAN_RTR_FLAG;
else
rcar_canfd_get_data(priv, cf, RCANFD_C_RFDF(ridx, 0));
}
/* Write 0xff to RFPC to increment the CPU-side
* pointer of the Rx FIFO
*/
rcar_canfd_write(priv->base, RCANFD_RFPCTR(ridx), 0xff);
can_led_event(priv->ndev, CAN_LED_EVENT_RX);
stats->rx_bytes += cf->len;
stats->rx_packets++;
netif_receive_skb(skb);
}
static int rcar_canfd_rx_poll(struct napi_struct *napi, int quota)
{
struct rcar_canfd_channel *priv =
container_of(napi, struct rcar_canfd_channel, napi);
int num_pkts;
u32 sts;
u32 ch = priv->channel;
u32 ridx = ch + RCANFD_RFFIFO_IDX;
for (num_pkts = 0; num_pkts < quota; num_pkts++) {
sts = rcar_canfd_read(priv->base, RCANFD_RFSTS(ridx));
/* Check FIFO empty condition */
if (sts & RCANFD_RFSTS_RFEMP)
break;
rcar_canfd_rx_pkt(priv);
/* Clear interrupt bit */
if (sts & RCANFD_RFSTS_RFIF)
rcar_canfd_write(priv->base, RCANFD_RFSTS(ridx),
sts & ~RCANFD_RFSTS_RFIF);
}
/* All packets processed */
if (num_pkts < quota) {
if (napi_complete_done(napi, num_pkts)) {
/* Enable Rx FIFO interrupts */
rcar_canfd_set_bit(priv->base, RCANFD_RFCC(ridx),
RCANFD_RFCC_RFIE);
}
}
return num_pkts;
}
static int rcar_canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int err;
switch (mode) {
case CAN_MODE_START:
err = rcar_canfd_start(ndev);
if (err)
return err;
netif_wake_queue(ndev);
return 0;
default:
return -EOPNOTSUPP;
}
}
static int rcar_canfd_get_berr_counter(const struct net_device *dev,
struct can_berr_counter *bec)
{
struct rcar_canfd_channel *priv = netdev_priv(dev);
u32 val, ch = priv->channel;
/* Peripheral clock is already enabled in probe */
val = rcar_canfd_read(priv->base, RCANFD_CSTS(ch));
bec->txerr = RCANFD_CSTS_TECCNT(val);
bec->rxerr = RCANFD_CSTS_RECCNT(val);
return 0;
}
static const struct net_device_ops rcar_canfd_netdev_ops = {
.ndo_open = rcar_canfd_open,
.ndo_stop = rcar_canfd_close,
.ndo_start_xmit = rcar_canfd_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static int rcar_canfd_channel_probe(struct rcar_canfd_global *gpriv, u32 ch,
u32 fcan_freq)
{
struct platform_device *pdev = gpriv->pdev;
struct rcar_canfd_channel *priv;
struct net_device *ndev;
int err = -ENODEV;
ndev = alloc_candev(sizeof(*priv), RCANFD_FIFO_DEPTH);
if (!ndev) {
dev_err(&pdev->dev, "alloc_candev() failed\n");
err = -ENOMEM;
goto fail;
}
priv = netdev_priv(ndev);
ndev->netdev_ops = &rcar_canfd_netdev_ops;
ndev->flags |= IFF_ECHO;
priv->ndev = ndev;
priv->base = gpriv->base;
priv->channel = ch;
priv->can.clock.freq = fcan_freq;
dev_info(&pdev->dev, "can_clk rate is %u\n", priv->can.clock.freq);
if (gpriv->fdmode) {
priv->can.bittiming_const = &rcar_canfd_nom_bittiming_const;
priv->can.data_bittiming_const =
&rcar_canfd_data_bittiming_const;
/* Controller starts in CAN FD only mode */
can_set_static_ctrlmode(ndev, CAN_CTRLMODE_FD);
priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
} else {
/* Controller starts in Classical CAN only mode */
priv->can.bittiming_const = &rcar_canfd_bittiming_const;
priv->can.ctrlmode_supported = CAN_CTRLMODE_BERR_REPORTING;
}
priv->can.do_set_mode = rcar_canfd_do_set_mode;
priv->can.do_get_berr_counter = rcar_canfd_get_berr_counter;
priv->gpriv = gpriv;
SET_NETDEV_DEV(ndev, &pdev->dev);
netif_napi_add(ndev, &priv->napi, rcar_canfd_rx_poll,
RCANFD_NAPI_WEIGHT);
spin_lock_init(&priv->tx_lock);
devm_can_led_init(ndev);
gpriv->ch[priv->channel] = priv;
err = register_candev(ndev);
if (err) {
dev_err(&pdev->dev,
"register_candev() failed, error %d\n", err);
goto fail_candev;
}
dev_info(&pdev->dev, "device registered (channel %u)\n", priv->channel);
return 0;
fail_candev:
netif_napi_del(&priv->napi);
free_candev(ndev);
fail:
return err;
}
static void rcar_canfd_channel_remove(struct rcar_canfd_global *gpriv, u32 ch)
{
struct rcar_canfd_channel *priv = gpriv->ch[ch];
if (priv) {
unregister_candev(priv->ndev);
netif_napi_del(&priv->napi);
free_candev(priv->ndev);
}
}
static int rcar_canfd_probe(struct platform_device *pdev)
{
void __iomem *addr;
u32 sts, ch, fcan_freq;
struct rcar_canfd_global *gpriv;
struct device_node *of_child;
unsigned long channels_mask = 0;
int err, ch_irq, g_irq;
bool fdmode = true; /* CAN FD only mode - default */
if (of_property_read_bool(pdev->dev.of_node, "renesas,no-can-fd"))
fdmode = false; /* Classical CAN only mode */
of_child = of_get_child_by_name(pdev->dev.of_node, "channel0");
if (of_child && of_device_is_available(of_child))
channels_mask |= BIT(0); /* Channel 0 */
of_child = of_get_child_by_name(pdev->dev.of_node, "channel1");
if (of_child && of_device_is_available(of_child))
channels_mask |= BIT(1); /* Channel 1 */
ch_irq = platform_get_irq(pdev, 0);
if (ch_irq < 0) {
err = ch_irq;
goto fail_dev;
}
g_irq = platform_get_irq(pdev, 1);
if (g_irq < 0) {
err = g_irq;
goto fail_dev;
}
/* Global controller context */
gpriv = devm_kzalloc(&pdev->dev, sizeof(*gpriv), GFP_KERNEL);
if (!gpriv) {
err = -ENOMEM;
goto fail_dev;
}
gpriv->pdev = pdev;
gpriv->channels_mask = channels_mask;
gpriv->fdmode = fdmode;
/* Peripheral clock */
gpriv->clkp = devm_clk_get(&pdev->dev, "fck");
if (IS_ERR(gpriv->clkp)) {
err = PTR_ERR(gpriv->clkp);
dev_err(&pdev->dev, "cannot get peripheral clock, error %d\n",
err);
goto fail_dev;
}
/* fCAN clock: Pick External clock. If not available fallback to
* CANFD clock
*/
gpriv->can_clk = devm_clk_get(&pdev->dev, "can_clk");
if (IS_ERR(gpriv->can_clk) || (clk_get_rate(gpriv->can_clk) == 0)) {
gpriv->can_clk = devm_clk_get(&pdev->dev, "canfd");
if (IS_ERR(gpriv->can_clk)) {
err = PTR_ERR(gpriv->can_clk);
dev_err(&pdev->dev,
"cannot get canfd clock, error %d\n", err);
goto fail_dev;
}
gpriv->fcan = RCANFD_CANFDCLK;
} else {
gpriv->fcan = RCANFD_EXTCLK;
}
fcan_freq = clk_get_rate(gpriv->can_clk);
if (gpriv->fcan == RCANFD_CANFDCLK)
/* CANFD clock is further divided by (1/2) within the IP */
fcan_freq /= 2;
addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(addr)) {
err = PTR_ERR(addr);
goto fail_dev;
}
gpriv->base = addr;
/* Request IRQ that's common for both channels */
err = devm_request_irq(&pdev->dev, ch_irq,
rcar_canfd_channel_interrupt, 0,
"canfd.chn", gpriv);
if (err) {
dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
ch_irq, err);
goto fail_dev;
}
err = devm_request_irq(&pdev->dev, g_irq,
rcar_canfd_global_interrupt, 0,
"canfd.gbl", gpriv);
if (err) {
dev_err(&pdev->dev, "devm_request_irq(%d) failed, error %d\n",
g_irq, err);
goto fail_dev;
}
/* Enable peripheral clock for register access */
err = clk_prepare_enable(gpriv->clkp);
if (err) {
dev_err(&pdev->dev,
"failed to enable peripheral clock, error %d\n", err);
goto fail_dev;
}
err = rcar_canfd_reset_controller(gpriv);
if (err) {
dev_err(&pdev->dev, "reset controller failed\n");
goto fail_clk;
}
/* Controller in Global reset & Channel reset mode */
rcar_canfd_configure_controller(gpriv);
/* Configure per channel attributes */
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
/* Configure Channel's Rx fifo */
rcar_canfd_configure_rx(gpriv, ch);
/* Configure Channel's Tx (Common) fifo */
rcar_canfd_configure_tx(gpriv, ch);
/* Configure receive rules */
rcar_canfd_configure_afl_rules(gpriv, ch);
}
/* Configure common interrupts */
rcar_canfd_enable_global_interrupts(gpriv);
/* Start Global operation mode */
rcar_canfd_update_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GMDC_MASK,
RCANFD_GCTR_GMDC_GOPM);
/* Verify mode change */
err = readl_poll_timeout((gpriv->base + RCANFD_GSTS), sts,
!(sts & RCANFD_GSTS_GNOPM), 2, 500000);
if (err) {
dev_err(&pdev->dev, "global operational mode failed\n");
goto fail_mode;
}
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
err = rcar_canfd_channel_probe(gpriv, ch, fcan_freq);
if (err)
goto fail_channel;
}
platform_set_drvdata(pdev, gpriv);
dev_info(&pdev->dev, "global operational state (clk %d, fdmode %d)\n",
gpriv->fcan, gpriv->fdmode);
return 0;
fail_channel:
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS)
rcar_canfd_channel_remove(gpriv, ch);
fail_mode:
rcar_canfd_disable_global_interrupts(gpriv);
fail_clk:
clk_disable_unprepare(gpriv->clkp);
fail_dev:
return err;
}
static int rcar_canfd_remove(struct platform_device *pdev)
{
struct rcar_canfd_global *gpriv = platform_get_drvdata(pdev);
u32 ch;
rcar_canfd_reset_controller(gpriv);
rcar_canfd_disable_global_interrupts(gpriv);
for_each_set_bit(ch, &gpriv->channels_mask, RCANFD_NUM_CHANNELS) {
rcar_canfd_disable_channel_interrupts(gpriv->ch[ch]);
rcar_canfd_channel_remove(gpriv, ch);
}
/* Enter global sleep mode */
rcar_canfd_set_bit(gpriv->base, RCANFD_GCTR, RCANFD_GCTR_GSLPR);
clk_disable_unprepare(gpriv->clkp);
return 0;
}
static int __maybe_unused rcar_canfd_suspend(struct device *dev)
{
return 0;
}
static int __maybe_unused rcar_canfd_resume(struct device *dev)
{
return 0;
}
static SIMPLE_DEV_PM_OPS(rcar_canfd_pm_ops, rcar_canfd_suspend,
rcar_canfd_resume);
static const struct of_device_id rcar_canfd_of_table[] = {
{ .compatible = "renesas,rcar-gen3-canfd" },
{ }
};
MODULE_DEVICE_TABLE(of, rcar_canfd_of_table);
static struct platform_driver rcar_canfd_driver = {
.driver = {
.name = RCANFD_DRV_NAME,
.of_match_table = of_match_ptr(rcar_canfd_of_table),
.pm = &rcar_canfd_pm_ops,
},
.probe = rcar_canfd_probe,
.remove = rcar_canfd_remove,
};
module_platform_driver(rcar_canfd_driver);
MODULE_AUTHOR("Ramesh Shanmugasundaram <ramesh.shanmugasundaram@bp.renesas.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("CAN FD driver for Renesas R-Car SoC");
MODULE_ALIAS("platform:" RCANFD_DRV_NAME);