mirror of
				https://github.com/physwizz/a155-U-u1.git
				synced 2025-10-28 16:15:46 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			738 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			738 lines
		
	
	
		
			19 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
// SPDX-License-Identifier: GPL-2.0
 | 
						|
/*
 | 
						|
 * Primary bucket allocation code
 | 
						|
 *
 | 
						|
 * Copyright 2012 Google, Inc.
 | 
						|
 *
 | 
						|
 * Allocation in bcache is done in terms of buckets:
 | 
						|
 *
 | 
						|
 * Each bucket has associated an 8 bit gen; this gen corresponds to the gen in
 | 
						|
 * btree pointers - they must match for the pointer to be considered valid.
 | 
						|
 *
 | 
						|
 * Thus (assuming a bucket has no dirty data or metadata in it) we can reuse a
 | 
						|
 * bucket simply by incrementing its gen.
 | 
						|
 *
 | 
						|
 * The gens (along with the priorities; it's really the gens are important but
 | 
						|
 * the code is named as if it's the priorities) are written in an arbitrary list
 | 
						|
 * of buckets on disk, with a pointer to them in the journal header.
 | 
						|
 *
 | 
						|
 * When we invalidate a bucket, we have to write its new gen to disk and wait
 | 
						|
 * for that write to complete before we use it - otherwise after a crash we
 | 
						|
 * could have pointers that appeared to be good but pointed to data that had
 | 
						|
 * been overwritten.
 | 
						|
 *
 | 
						|
 * Since the gens and priorities are all stored contiguously on disk, we can
 | 
						|
 * batch this up: We fill up the free_inc list with freshly invalidated buckets,
 | 
						|
 * call prio_write(), and when prio_write() finishes we pull buckets off the
 | 
						|
 * free_inc list and optionally discard them.
 | 
						|
 *
 | 
						|
 * free_inc isn't the only freelist - if it was, we'd often to sleep while
 | 
						|
 * priorities and gens were being written before we could allocate. c->free is a
 | 
						|
 * smaller freelist, and buckets on that list are always ready to be used.
 | 
						|
 *
 | 
						|
 * If we've got discards enabled, that happens when a bucket moves from the
 | 
						|
 * free_inc list to the free list.
 | 
						|
 *
 | 
						|
 * There is another freelist, because sometimes we have buckets that we know
 | 
						|
 * have nothing pointing into them - these we can reuse without waiting for
 | 
						|
 * priorities to be rewritten. These come from freed btree nodes and buckets
 | 
						|
 * that garbage collection discovered no longer had valid keys pointing into
 | 
						|
 * them (because they were overwritten). That's the unused list - buckets on the
 | 
						|
 * unused list move to the free list, optionally being discarded in the process.
 | 
						|
 *
 | 
						|
 * It's also important to ensure that gens don't wrap around - with respect to
 | 
						|
 * either the oldest gen in the btree or the gen on disk. This is quite
 | 
						|
 * difficult to do in practice, but we explicitly guard against it anyways - if
 | 
						|
 * a bucket is in danger of wrapping around we simply skip invalidating it that
 | 
						|
 * time around, and we garbage collect or rewrite the priorities sooner than we
 | 
						|
 * would have otherwise.
 | 
						|
 *
 | 
						|
 * bch_bucket_alloc() allocates a single bucket from a specific cache.
 | 
						|
 *
 | 
						|
 * bch_bucket_alloc_set() allocates one  bucket from different caches
 | 
						|
 * out of a cache set.
 | 
						|
 *
 | 
						|
 * free_some_buckets() drives all the processes described above. It's called
 | 
						|
 * from bch_bucket_alloc() and a few other places that need to make sure free
 | 
						|
 * buckets are ready.
 | 
						|
 *
 | 
						|
 * invalidate_buckets_(lru|fifo)() find buckets that are available to be
 | 
						|
 * invalidated, and then invalidate them and stick them on the free_inc list -
 | 
						|
 * in either lru or fifo order.
 | 
						|
 */
 | 
						|
 | 
						|
#include "bcache.h"
 | 
						|
#include "btree.h"
 | 
						|
 | 
						|
#include <linux/blkdev.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/random.h>
 | 
						|
#include <trace/events/bcache.h>
 | 
						|
 | 
						|
#define MAX_OPEN_BUCKETS 128
 | 
						|
 | 
						|
/* Bucket heap / gen */
 | 
						|
 | 
						|
uint8_t bch_inc_gen(struct cache *ca, struct bucket *b)
 | 
						|
{
 | 
						|
	uint8_t ret = ++b->gen;
 | 
						|
 | 
						|
	ca->set->need_gc = max(ca->set->need_gc, bucket_gc_gen(b));
 | 
						|
	WARN_ON_ONCE(ca->set->need_gc > BUCKET_GC_GEN_MAX);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
void bch_rescale_priorities(struct cache_set *c, int sectors)
 | 
						|
{
 | 
						|
	struct cache *ca;
 | 
						|
	struct bucket *b;
 | 
						|
	unsigned long next = c->nbuckets * c->cache->sb.bucket_size / 1024;
 | 
						|
	int r;
 | 
						|
 | 
						|
	atomic_sub(sectors, &c->rescale);
 | 
						|
 | 
						|
	do {
 | 
						|
		r = atomic_read(&c->rescale);
 | 
						|
 | 
						|
		if (r >= 0)
 | 
						|
			return;
 | 
						|
	} while (atomic_cmpxchg(&c->rescale, r, r + next) != r);
 | 
						|
 | 
						|
	mutex_lock(&c->bucket_lock);
 | 
						|
 | 
						|
	c->min_prio = USHRT_MAX;
 | 
						|
 | 
						|
	ca = c->cache;
 | 
						|
	for_each_bucket(b, ca)
 | 
						|
		if (b->prio &&
 | 
						|
		    b->prio != BTREE_PRIO &&
 | 
						|
		    !atomic_read(&b->pin)) {
 | 
						|
			b->prio--;
 | 
						|
			c->min_prio = min(c->min_prio, b->prio);
 | 
						|
		}
 | 
						|
 | 
						|
	mutex_unlock(&c->bucket_lock);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Background allocation thread: scans for buckets to be invalidated,
 | 
						|
 * invalidates them, rewrites prios/gens (marking them as invalidated on disk),
 | 
						|
 * then optionally issues discard commands to the newly free buckets, then puts
 | 
						|
 * them on the various freelists.
 | 
						|
 */
 | 
						|
 | 
						|
static inline bool can_inc_bucket_gen(struct bucket *b)
 | 
						|
{
 | 
						|
	return bucket_gc_gen(b) < BUCKET_GC_GEN_MAX;
 | 
						|
}
 | 
						|
 | 
						|
bool bch_can_invalidate_bucket(struct cache *ca, struct bucket *b)
 | 
						|
{
 | 
						|
	BUG_ON(!ca->set->gc_mark_valid);
 | 
						|
 | 
						|
	return (!GC_MARK(b) ||
 | 
						|
		GC_MARK(b) == GC_MARK_RECLAIMABLE) &&
 | 
						|
		!atomic_read(&b->pin) &&
 | 
						|
		can_inc_bucket_gen(b);
 | 
						|
}
 | 
						|
 | 
						|
void __bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
 | 
						|
{
 | 
						|
	lockdep_assert_held(&ca->set->bucket_lock);
 | 
						|
	BUG_ON(GC_MARK(b) && GC_MARK(b) != GC_MARK_RECLAIMABLE);
 | 
						|
 | 
						|
	if (GC_SECTORS_USED(b))
 | 
						|
		trace_bcache_invalidate(ca, b - ca->buckets);
 | 
						|
 | 
						|
	bch_inc_gen(ca, b);
 | 
						|
	b->prio = INITIAL_PRIO;
 | 
						|
	atomic_inc(&b->pin);
 | 
						|
}
 | 
						|
 | 
						|
static void bch_invalidate_one_bucket(struct cache *ca, struct bucket *b)
 | 
						|
{
 | 
						|
	__bch_invalidate_one_bucket(ca, b);
 | 
						|
 | 
						|
	fifo_push(&ca->free_inc, b - ca->buckets);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Determines what order we're going to reuse buckets, smallest bucket_prio()
 | 
						|
 * first: we also take into account the number of sectors of live data in that
 | 
						|
 * bucket, and in order for that multiply to make sense we have to scale bucket
 | 
						|
 *
 | 
						|
 * Thus, we scale the bucket priorities so that the bucket with the smallest
 | 
						|
 * prio is worth 1/8th of what INITIAL_PRIO is worth.
 | 
						|
 */
 | 
						|
 | 
						|
#define bucket_prio(b)							\
 | 
						|
({									\
 | 
						|
	unsigned int min_prio = (INITIAL_PRIO - ca->set->min_prio) / 8;	\
 | 
						|
									\
 | 
						|
	(b->prio - ca->set->min_prio + min_prio) * GC_SECTORS_USED(b);	\
 | 
						|
})
 | 
						|
 | 
						|
#define bucket_max_cmp(l, r)	(bucket_prio(l) < bucket_prio(r))
 | 
						|
#define bucket_min_cmp(l, r)	(bucket_prio(l) > bucket_prio(r))
 | 
						|
 | 
						|
static void invalidate_buckets_lru(struct cache *ca)
 | 
						|
{
 | 
						|
	struct bucket *b;
 | 
						|
	ssize_t i;
 | 
						|
 | 
						|
	ca->heap.used = 0;
 | 
						|
 | 
						|
	for_each_bucket(b, ca) {
 | 
						|
		if (!bch_can_invalidate_bucket(ca, b))
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!heap_full(&ca->heap))
 | 
						|
			heap_add(&ca->heap, b, bucket_max_cmp);
 | 
						|
		else if (bucket_max_cmp(b, heap_peek(&ca->heap))) {
 | 
						|
			ca->heap.data[0] = b;
 | 
						|
			heap_sift(&ca->heap, 0, bucket_max_cmp);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = ca->heap.used / 2 - 1; i >= 0; --i)
 | 
						|
		heap_sift(&ca->heap, i, bucket_min_cmp);
 | 
						|
 | 
						|
	while (!fifo_full(&ca->free_inc)) {
 | 
						|
		if (!heap_pop(&ca->heap, b, bucket_min_cmp)) {
 | 
						|
			/*
 | 
						|
			 * We don't want to be calling invalidate_buckets()
 | 
						|
			 * multiple times when it can't do anything
 | 
						|
			 */
 | 
						|
			ca->invalidate_needs_gc = 1;
 | 
						|
			wake_up_gc(ca->set);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
 | 
						|
		bch_invalidate_one_bucket(ca, b);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void invalidate_buckets_fifo(struct cache *ca)
 | 
						|
{
 | 
						|
	struct bucket *b;
 | 
						|
	size_t checked = 0;
 | 
						|
 | 
						|
	while (!fifo_full(&ca->free_inc)) {
 | 
						|
		if (ca->fifo_last_bucket <  ca->sb.first_bucket ||
 | 
						|
		    ca->fifo_last_bucket >= ca->sb.nbuckets)
 | 
						|
			ca->fifo_last_bucket = ca->sb.first_bucket;
 | 
						|
 | 
						|
		b = ca->buckets + ca->fifo_last_bucket++;
 | 
						|
 | 
						|
		if (bch_can_invalidate_bucket(ca, b))
 | 
						|
			bch_invalidate_one_bucket(ca, b);
 | 
						|
 | 
						|
		if (++checked >= ca->sb.nbuckets) {
 | 
						|
			ca->invalidate_needs_gc = 1;
 | 
						|
			wake_up_gc(ca->set);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void invalidate_buckets_random(struct cache *ca)
 | 
						|
{
 | 
						|
	struct bucket *b;
 | 
						|
	size_t checked = 0;
 | 
						|
 | 
						|
	while (!fifo_full(&ca->free_inc)) {
 | 
						|
		size_t n;
 | 
						|
 | 
						|
		get_random_bytes(&n, sizeof(n));
 | 
						|
 | 
						|
		n %= (size_t) (ca->sb.nbuckets - ca->sb.first_bucket);
 | 
						|
		n += ca->sb.first_bucket;
 | 
						|
 | 
						|
		b = ca->buckets + n;
 | 
						|
 | 
						|
		if (bch_can_invalidate_bucket(ca, b))
 | 
						|
			bch_invalidate_one_bucket(ca, b);
 | 
						|
 | 
						|
		if (++checked >= ca->sb.nbuckets / 2) {
 | 
						|
			ca->invalidate_needs_gc = 1;
 | 
						|
			wake_up_gc(ca->set);
 | 
						|
			return;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void invalidate_buckets(struct cache *ca)
 | 
						|
{
 | 
						|
	BUG_ON(ca->invalidate_needs_gc);
 | 
						|
 | 
						|
	switch (CACHE_REPLACEMENT(&ca->sb)) {
 | 
						|
	case CACHE_REPLACEMENT_LRU:
 | 
						|
		invalidate_buckets_lru(ca);
 | 
						|
		break;
 | 
						|
	case CACHE_REPLACEMENT_FIFO:
 | 
						|
		invalidate_buckets_fifo(ca);
 | 
						|
		break;
 | 
						|
	case CACHE_REPLACEMENT_RANDOM:
 | 
						|
		invalidate_buckets_random(ca);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#define allocator_wait(ca, cond)					\
 | 
						|
do {									\
 | 
						|
	while (1) {							\
 | 
						|
		set_current_state(TASK_INTERRUPTIBLE);			\
 | 
						|
		if (cond)						\
 | 
						|
			break;						\
 | 
						|
									\
 | 
						|
		mutex_unlock(&(ca)->set->bucket_lock);			\
 | 
						|
		if (kthread_should_stop() ||				\
 | 
						|
		    test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)) {	\
 | 
						|
			set_current_state(TASK_RUNNING);		\
 | 
						|
			goto out;					\
 | 
						|
		}							\
 | 
						|
									\
 | 
						|
		schedule();						\
 | 
						|
		mutex_lock(&(ca)->set->bucket_lock);			\
 | 
						|
	}								\
 | 
						|
	__set_current_state(TASK_RUNNING);				\
 | 
						|
} while (0)
 | 
						|
 | 
						|
static int bch_allocator_push(struct cache *ca, long bucket)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	/* Prios/gens are actually the most important reserve */
 | 
						|
	if (fifo_push(&ca->free[RESERVE_PRIO], bucket))
 | 
						|
		return true;
 | 
						|
 | 
						|
	for (i = 0; i < RESERVE_NR; i++)
 | 
						|
		if (fifo_push(&ca->free[i], bucket))
 | 
						|
			return true;
 | 
						|
 | 
						|
	return false;
 | 
						|
}
 | 
						|
 | 
						|
static int bch_allocator_thread(void *arg)
 | 
						|
{
 | 
						|
	struct cache *ca = arg;
 | 
						|
 | 
						|
	mutex_lock(&ca->set->bucket_lock);
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		/*
 | 
						|
		 * First, we pull buckets off of the unused and free_inc lists,
 | 
						|
		 * possibly issue discards to them, then we add the bucket to
 | 
						|
		 * the free list:
 | 
						|
		 */
 | 
						|
		while (1) {
 | 
						|
			long bucket;
 | 
						|
 | 
						|
			if (!fifo_pop(&ca->free_inc, bucket))
 | 
						|
				break;
 | 
						|
 | 
						|
			if (ca->discard) {
 | 
						|
				mutex_unlock(&ca->set->bucket_lock);
 | 
						|
				blkdev_issue_discard(ca->bdev,
 | 
						|
					bucket_to_sector(ca->set, bucket),
 | 
						|
					ca->sb.bucket_size, GFP_KERNEL, 0);
 | 
						|
				mutex_lock(&ca->set->bucket_lock);
 | 
						|
			}
 | 
						|
 | 
						|
			allocator_wait(ca, bch_allocator_push(ca, bucket));
 | 
						|
			wake_up(&ca->set->btree_cache_wait);
 | 
						|
			wake_up(&ca->set->bucket_wait);
 | 
						|
		}
 | 
						|
 | 
						|
		/*
 | 
						|
		 * We've run out of free buckets, we need to find some buckets
 | 
						|
		 * we can invalidate. First, invalidate them in memory and add
 | 
						|
		 * them to the free_inc list:
 | 
						|
		 */
 | 
						|
 | 
						|
retry_invalidate:
 | 
						|
		allocator_wait(ca, ca->set->gc_mark_valid &&
 | 
						|
			       !ca->invalidate_needs_gc);
 | 
						|
		invalidate_buckets(ca);
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Now, we write their new gens to disk so we can start writing
 | 
						|
		 * new stuff to them:
 | 
						|
		 */
 | 
						|
		allocator_wait(ca, !atomic_read(&ca->set->prio_blocked));
 | 
						|
		if (CACHE_SYNC(&ca->sb)) {
 | 
						|
			/*
 | 
						|
			 * This could deadlock if an allocation with a btree
 | 
						|
			 * node locked ever blocked - having the btree node
 | 
						|
			 * locked would block garbage collection, but here we're
 | 
						|
			 * waiting on garbage collection before we invalidate
 | 
						|
			 * and free anything.
 | 
						|
			 *
 | 
						|
			 * But this should be safe since the btree code always
 | 
						|
			 * uses btree_check_reserve() before allocating now, and
 | 
						|
			 * if it fails it blocks without btree nodes locked.
 | 
						|
			 */
 | 
						|
			if (!fifo_full(&ca->free_inc))
 | 
						|
				goto retry_invalidate;
 | 
						|
 | 
						|
			if (bch_prio_write(ca, false) < 0) {
 | 
						|
				ca->invalidate_needs_gc = 1;
 | 
						|
				wake_up_gc(ca->set);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
out:
 | 
						|
	wait_for_kthread_stop();
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* Allocation */
 | 
						|
 | 
						|
long bch_bucket_alloc(struct cache *ca, unsigned int reserve, bool wait)
 | 
						|
{
 | 
						|
	DEFINE_WAIT(w);
 | 
						|
	struct bucket *b;
 | 
						|
	long r;
 | 
						|
 | 
						|
 | 
						|
	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
 | 
						|
	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &ca->set->flags)))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	/* fastpath */
 | 
						|
	if (fifo_pop(&ca->free[RESERVE_NONE], r) ||
 | 
						|
	    fifo_pop(&ca->free[reserve], r))
 | 
						|
		goto out;
 | 
						|
 | 
						|
	if (!wait) {
 | 
						|
		trace_bcache_alloc_fail(ca, reserve);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	do {
 | 
						|
		prepare_to_wait(&ca->set->bucket_wait, &w,
 | 
						|
				TASK_UNINTERRUPTIBLE);
 | 
						|
 | 
						|
		mutex_unlock(&ca->set->bucket_lock);
 | 
						|
		schedule();
 | 
						|
		mutex_lock(&ca->set->bucket_lock);
 | 
						|
	} while (!fifo_pop(&ca->free[RESERVE_NONE], r) &&
 | 
						|
		 !fifo_pop(&ca->free[reserve], r));
 | 
						|
 | 
						|
	finish_wait(&ca->set->bucket_wait, &w);
 | 
						|
out:
 | 
						|
	if (ca->alloc_thread)
 | 
						|
		wake_up_process(ca->alloc_thread);
 | 
						|
 | 
						|
	trace_bcache_alloc(ca, reserve);
 | 
						|
 | 
						|
	if (expensive_debug_checks(ca->set)) {
 | 
						|
		size_t iter;
 | 
						|
		long i;
 | 
						|
		unsigned int j;
 | 
						|
 | 
						|
		for (iter = 0; iter < prio_buckets(ca) * 2; iter++)
 | 
						|
			BUG_ON(ca->prio_buckets[iter] == (uint64_t) r);
 | 
						|
 | 
						|
		for (j = 0; j < RESERVE_NR; j++)
 | 
						|
			fifo_for_each(i, &ca->free[j], iter)
 | 
						|
				BUG_ON(i == r);
 | 
						|
		fifo_for_each(i, &ca->free_inc, iter)
 | 
						|
			BUG_ON(i == r);
 | 
						|
	}
 | 
						|
 | 
						|
	b = ca->buckets + r;
 | 
						|
 | 
						|
	BUG_ON(atomic_read(&b->pin) != 1);
 | 
						|
 | 
						|
	SET_GC_SECTORS_USED(b, ca->sb.bucket_size);
 | 
						|
 | 
						|
	if (reserve <= RESERVE_PRIO) {
 | 
						|
		SET_GC_MARK(b, GC_MARK_METADATA);
 | 
						|
		SET_GC_MOVE(b, 0);
 | 
						|
		b->prio = BTREE_PRIO;
 | 
						|
	} else {
 | 
						|
		SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
 | 
						|
		SET_GC_MOVE(b, 0);
 | 
						|
		b->prio = INITIAL_PRIO;
 | 
						|
	}
 | 
						|
 | 
						|
	if (ca->set->avail_nbuckets > 0) {
 | 
						|
		ca->set->avail_nbuckets--;
 | 
						|
		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
 | 
						|
	}
 | 
						|
 | 
						|
	return r;
 | 
						|
}
 | 
						|
 | 
						|
void __bch_bucket_free(struct cache *ca, struct bucket *b)
 | 
						|
{
 | 
						|
	SET_GC_MARK(b, 0);
 | 
						|
	SET_GC_SECTORS_USED(b, 0);
 | 
						|
 | 
						|
	if (ca->set->avail_nbuckets < ca->set->nbuckets) {
 | 
						|
		ca->set->avail_nbuckets++;
 | 
						|
		bch_update_bucket_in_use(ca->set, &ca->set->gc_stats);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void bch_bucket_free(struct cache_set *c, struct bkey *k)
 | 
						|
{
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	for (i = 0; i < KEY_PTRS(k); i++)
 | 
						|
		__bch_bucket_free(PTR_CACHE(c, k, i),
 | 
						|
				  PTR_BUCKET(c, k, i));
 | 
						|
}
 | 
						|
 | 
						|
int __bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
 | 
						|
			   struct bkey *k, bool wait)
 | 
						|
{
 | 
						|
	struct cache *ca;
 | 
						|
	long b;
 | 
						|
 | 
						|
	/* No allocation if CACHE_SET_IO_DISABLE bit is set */
 | 
						|
	if (unlikely(test_bit(CACHE_SET_IO_DISABLE, &c->flags)))
 | 
						|
		return -1;
 | 
						|
 | 
						|
	lockdep_assert_held(&c->bucket_lock);
 | 
						|
 | 
						|
	bkey_init(k);
 | 
						|
 | 
						|
	ca = c->cache;
 | 
						|
	b = bch_bucket_alloc(ca, reserve, wait);
 | 
						|
	if (b == -1)
 | 
						|
		goto err;
 | 
						|
 | 
						|
	k->ptr[0] = MAKE_PTR(ca->buckets[b].gen,
 | 
						|
			     bucket_to_sector(c, b),
 | 
						|
			     ca->sb.nr_this_dev);
 | 
						|
 | 
						|
	SET_KEY_PTRS(k, 1);
 | 
						|
 | 
						|
	return 0;
 | 
						|
err:
 | 
						|
	bch_bucket_free(c, k);
 | 
						|
	bkey_put(c, k);
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
int bch_bucket_alloc_set(struct cache_set *c, unsigned int reserve,
 | 
						|
			 struct bkey *k, bool wait)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
 | 
						|
	mutex_lock(&c->bucket_lock);
 | 
						|
	ret = __bch_bucket_alloc_set(c, reserve, k, wait);
 | 
						|
	mutex_unlock(&c->bucket_lock);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* Sector allocator */
 | 
						|
 | 
						|
struct open_bucket {
 | 
						|
	struct list_head	list;
 | 
						|
	unsigned int		last_write_point;
 | 
						|
	unsigned int		sectors_free;
 | 
						|
	BKEY_PADDED(key);
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * We keep multiple buckets open for writes, and try to segregate different
 | 
						|
 * write streams for better cache utilization: first we try to segregate flash
 | 
						|
 * only volume write streams from cached devices, secondly we look for a bucket
 | 
						|
 * where the last write to it was sequential with the current write, and
 | 
						|
 * failing that we look for a bucket that was last used by the same task.
 | 
						|
 *
 | 
						|
 * The ideas is if you've got multiple tasks pulling data into the cache at the
 | 
						|
 * same time, you'll get better cache utilization if you try to segregate their
 | 
						|
 * data and preserve locality.
 | 
						|
 *
 | 
						|
 * For example, dirty sectors of flash only volume is not reclaimable, if their
 | 
						|
 * dirty sectors mixed with dirty sectors of cached device, such buckets will
 | 
						|
 * be marked as dirty and won't be reclaimed, though the dirty data of cached
 | 
						|
 * device have been written back to backend device.
 | 
						|
 *
 | 
						|
 * And say you've starting Firefox at the same time you're copying a
 | 
						|
 * bunch of files. Firefox will likely end up being fairly hot and stay in the
 | 
						|
 * cache awhile, but the data you copied might not be; if you wrote all that
 | 
						|
 * data to the same buckets it'd get invalidated at the same time.
 | 
						|
 *
 | 
						|
 * Both of those tasks will be doing fairly random IO so we can't rely on
 | 
						|
 * detecting sequential IO to segregate their data, but going off of the task
 | 
						|
 * should be a sane heuristic.
 | 
						|
 */
 | 
						|
static struct open_bucket *pick_data_bucket(struct cache_set *c,
 | 
						|
					    const struct bkey *search,
 | 
						|
					    unsigned int write_point,
 | 
						|
					    struct bkey *alloc)
 | 
						|
{
 | 
						|
	struct open_bucket *ret, *ret_task = NULL;
 | 
						|
 | 
						|
	list_for_each_entry_reverse(ret, &c->data_buckets, list)
 | 
						|
		if (UUID_FLASH_ONLY(&c->uuids[KEY_INODE(&ret->key)]) !=
 | 
						|
		    UUID_FLASH_ONLY(&c->uuids[KEY_INODE(search)]))
 | 
						|
			continue;
 | 
						|
		else if (!bkey_cmp(&ret->key, search))
 | 
						|
			goto found;
 | 
						|
		else if (ret->last_write_point == write_point)
 | 
						|
			ret_task = ret;
 | 
						|
 | 
						|
	ret = ret_task ?: list_first_entry(&c->data_buckets,
 | 
						|
					   struct open_bucket, list);
 | 
						|
found:
 | 
						|
	if (!ret->sectors_free && KEY_PTRS(alloc)) {
 | 
						|
		ret->sectors_free = c->cache->sb.bucket_size;
 | 
						|
		bkey_copy(&ret->key, alloc);
 | 
						|
		bkey_init(alloc);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!ret->sectors_free)
 | 
						|
		ret = NULL;
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Allocates some space in the cache to write to, and k to point to the newly
 | 
						|
 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
 | 
						|
 * end of the newly allocated space).
 | 
						|
 *
 | 
						|
 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
 | 
						|
 * sectors were actually allocated.
 | 
						|
 *
 | 
						|
 * If s->writeback is true, will not fail.
 | 
						|
 */
 | 
						|
bool bch_alloc_sectors(struct cache_set *c,
 | 
						|
		       struct bkey *k,
 | 
						|
		       unsigned int sectors,
 | 
						|
		       unsigned int write_point,
 | 
						|
		       unsigned int write_prio,
 | 
						|
		       bool wait)
 | 
						|
{
 | 
						|
	struct open_bucket *b;
 | 
						|
	BKEY_PADDED(key) alloc;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * We might have to allocate a new bucket, which we can't do with a
 | 
						|
	 * spinlock held. So if we have to allocate, we drop the lock, allocate
 | 
						|
	 * and then retry. KEY_PTRS() indicates whether alloc points to
 | 
						|
	 * allocated bucket(s).
 | 
						|
	 */
 | 
						|
 | 
						|
	bkey_init(&alloc.key);
 | 
						|
	spin_lock(&c->data_bucket_lock);
 | 
						|
 | 
						|
	while (!(b = pick_data_bucket(c, k, write_point, &alloc.key))) {
 | 
						|
		unsigned int watermark = write_prio
 | 
						|
			? RESERVE_MOVINGGC
 | 
						|
			: RESERVE_NONE;
 | 
						|
 | 
						|
		spin_unlock(&c->data_bucket_lock);
 | 
						|
 | 
						|
		if (bch_bucket_alloc_set(c, watermark, &alloc.key, wait))
 | 
						|
			return false;
 | 
						|
 | 
						|
		spin_lock(&c->data_bucket_lock);
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * If we had to allocate, we might race and not need to allocate the
 | 
						|
	 * second time we call pick_data_bucket(). If we allocated a bucket but
 | 
						|
	 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
 | 
						|
	 */
 | 
						|
	if (KEY_PTRS(&alloc.key))
 | 
						|
		bkey_put(c, &alloc.key);
 | 
						|
 | 
						|
	for (i = 0; i < KEY_PTRS(&b->key); i++)
 | 
						|
		EBUG_ON(ptr_stale(c, &b->key, i));
 | 
						|
 | 
						|
	/* Set up the pointer to the space we're allocating: */
 | 
						|
 | 
						|
	for (i = 0; i < KEY_PTRS(&b->key); i++)
 | 
						|
		k->ptr[i] = b->key.ptr[i];
 | 
						|
 | 
						|
	sectors = min(sectors, b->sectors_free);
 | 
						|
 | 
						|
	SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
 | 
						|
	SET_KEY_SIZE(k, sectors);
 | 
						|
	SET_KEY_PTRS(k, KEY_PTRS(&b->key));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Move b to the end of the lru, and keep track of what this bucket was
 | 
						|
	 * last used for:
 | 
						|
	 */
 | 
						|
	list_move_tail(&b->list, &c->data_buckets);
 | 
						|
	bkey_copy_key(&b->key, k);
 | 
						|
	b->last_write_point = write_point;
 | 
						|
 | 
						|
	b->sectors_free	-= sectors;
 | 
						|
 | 
						|
	for (i = 0; i < KEY_PTRS(&b->key); i++) {
 | 
						|
		SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
 | 
						|
 | 
						|
		atomic_long_add(sectors,
 | 
						|
				&PTR_CACHE(c, &b->key, i)->sectors_written);
 | 
						|
	}
 | 
						|
 | 
						|
	if (b->sectors_free < c->cache->sb.block_size)
 | 
						|
		b->sectors_free = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * k takes refcounts on the buckets it points to until it's inserted
 | 
						|
	 * into the btree, but if we're done with this bucket we just transfer
 | 
						|
	 * get_data_bucket()'s refcount.
 | 
						|
	 */
 | 
						|
	if (b->sectors_free)
 | 
						|
		for (i = 0; i < KEY_PTRS(&b->key); i++)
 | 
						|
			atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
 | 
						|
 | 
						|
	spin_unlock(&c->data_bucket_lock);
 | 
						|
	return true;
 | 
						|
}
 | 
						|
 | 
						|
/* Init */
 | 
						|
 | 
						|
void bch_open_buckets_free(struct cache_set *c)
 | 
						|
{
 | 
						|
	struct open_bucket *b;
 | 
						|
 | 
						|
	while (!list_empty(&c->data_buckets)) {
 | 
						|
		b = list_first_entry(&c->data_buckets,
 | 
						|
				     struct open_bucket, list);
 | 
						|
		list_del(&b->list);
 | 
						|
		kfree(b);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
int bch_open_buckets_alloc(struct cache_set *c)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	spin_lock_init(&c->data_bucket_lock);
 | 
						|
 | 
						|
	for (i = 0; i < MAX_OPEN_BUCKETS; i++) {
 | 
						|
		struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
 | 
						|
 | 
						|
		if (!b)
 | 
						|
			return -ENOMEM;
 | 
						|
 | 
						|
		list_add(&b->list, &c->data_buckets);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int bch_cache_allocator_start(struct cache *ca)
 | 
						|
{
 | 
						|
	struct task_struct *k = kthread_run(bch_allocator_thread,
 | 
						|
					    ca, "bcache_allocator");
 | 
						|
	if (IS_ERR(k))
 | 
						|
		return PTR_ERR(k);
 | 
						|
 | 
						|
	ca->alloc_thread = k;
 | 
						|
	return 0;
 | 
						|
}
 |