mirror of
https://github.com/physwizz/a155-U-u1.git
synced 2024-11-19 13:27:49 +00:00
1048 lines
27 KiB
C
1048 lines
27 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* SamSung Generic I/O scheduler
|
|
* for the blk-mq scheduling framework
|
|
*
|
|
* Copyright (C) 2021 Jisoo Oh <jisoo2146.oh@samsung.com>
|
|
* Copyright (C) 2021 Manjong Lee <mj0123.lee@samsung.com>
|
|
* Copyright (C) 2021 Changheun Lee <nanich.lee@samsung.com>
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/blk-mq.h>
|
|
#include <linux/elevator.h>
|
|
#include <linux/bio.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/init.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/rbtree.h>
|
|
#include <linux/sbitmap.h>
|
|
|
|
#include "blk.h"
|
|
#include "blk-mq.h"
|
|
#include "blk-mq-debugfs.h"
|
|
#include "blk-mq-tag.h"
|
|
#include "blk-mq-sched.h"
|
|
#include "ssg-cgroup.h"
|
|
|
|
#if IS_ENABLED(CONFIG_BLK_SEC_STATS)
|
|
extern void blk_sec_stats_account_init(struct request_queue *q);
|
|
extern void blk_sec_stats_account_exit(struct elevator_queue *eq);
|
|
extern void blk_sec_stats_account_io_done(
|
|
struct request *rq, unsigned int data_size,
|
|
pid_t tgid, const char *tg_name, u64 tg_start_time);
|
|
#else
|
|
#define blk_sec_stats_account_init(q) do {} while(0)
|
|
#define blk_sec_stats_account_exit(eq) do {} while(0)
|
|
#define blk_sec_stats_account_io_done(rq, size, tgid, name, time) do {} while(0)
|
|
#endif
|
|
|
|
#define MAX_ASYNC_WRITE_RQS 8
|
|
|
|
static const int read_expire = HZ / 2; /* max time before a read is submitted. */
|
|
static const int write_expire = 5 * HZ; /* ditto for writes, these limits are SOFT! */
|
|
static const int max_write_starvation = 2; /* max times reads can starve a write */
|
|
static const int congestion_threshold = 90; /* percentage of congestion threshold */
|
|
static const int max_tgroup_io_ratio = 50; /* maximum service ratio for each thread group */
|
|
static const int max_async_write_ratio = 25; /* maximum service ratio for async write */
|
|
|
|
struct ssg_request_info {
|
|
pid_t tgid;
|
|
char tg_name[TASK_COMM_LEN];
|
|
u64 tg_start_time;
|
|
|
|
struct blkcg_gq *blkg;
|
|
|
|
unsigned int data_size;
|
|
};
|
|
|
|
struct ssg_data {
|
|
struct request_queue *queue;
|
|
|
|
/*
|
|
* requests are present on both sort_list and fifo_list
|
|
*/
|
|
struct rb_root sort_list[2];
|
|
struct list_head fifo_list[2];
|
|
|
|
/*
|
|
* next in sort order. read, write or both are NULL
|
|
*/
|
|
struct request *next_rq[2];
|
|
unsigned int starved_writes; /* times reads have starved writes */
|
|
|
|
/*
|
|
* settings that change how the i/o scheduler behaves
|
|
*/
|
|
int fifo_expire[2];
|
|
int max_write_starvation;
|
|
int front_merges;
|
|
|
|
/*
|
|
* to control request allocation
|
|
*/
|
|
atomic_t allocated_rqs;
|
|
atomic_t async_write_rqs;
|
|
int congestion_threshold_rqs;
|
|
int max_tgroup_rqs;
|
|
int max_async_write_rqs;
|
|
unsigned int tgroup_shallow_depth; /* thread group shallow depth for each tag map */
|
|
unsigned int async_write_shallow_depth; /* async write shallow depth for each tag map */
|
|
|
|
/*
|
|
* I/O context information for each request
|
|
*/
|
|
struct ssg_request_info *rq_info;
|
|
|
|
spinlock_t lock;
|
|
spinlock_t zone_lock;
|
|
struct list_head dispatch;
|
|
};
|
|
|
|
static inline struct rb_root *ssg_rb_root(struct ssg_data *ssg, struct request *rq)
|
|
{
|
|
return &ssg->sort_list[rq_data_dir(rq)];
|
|
}
|
|
|
|
/*
|
|
* get the request after `rq' in sector-sorted order
|
|
*/
|
|
static inline struct request *ssg_latter_request(struct request *rq)
|
|
{
|
|
struct rb_node *node = rb_next(&rq->rb_node);
|
|
|
|
if (node)
|
|
return rb_entry_rq(node);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void ssg_add_rq_rb(struct ssg_data *ssg, struct request *rq)
|
|
{
|
|
struct rb_root *root = ssg_rb_root(ssg, rq);
|
|
|
|
elv_rb_add(root, rq);
|
|
}
|
|
|
|
static inline void ssg_del_rq_rb(struct ssg_data *ssg, struct request *rq)
|
|
{
|
|
const int data_dir = rq_data_dir(rq);
|
|
|
|
if (ssg->next_rq[data_dir] == rq)
|
|
ssg->next_rq[data_dir] = ssg_latter_request(rq);
|
|
|
|
elv_rb_del(ssg_rb_root(ssg, rq), rq);
|
|
}
|
|
|
|
static inline struct ssg_request_info *ssg_rq_info(struct ssg_data *ssg,
|
|
struct request *rq)
|
|
{
|
|
if (unlikely(!ssg->rq_info))
|
|
return NULL;
|
|
|
|
if (unlikely(!rq))
|
|
return NULL;
|
|
|
|
if (unlikely(rq->internal_tag < 0))
|
|
return NULL;
|
|
|
|
if (unlikely(rq->internal_tag >= rq->q->nr_requests))
|
|
return NULL;
|
|
|
|
return &ssg->rq_info[rq->internal_tag];
|
|
}
|
|
|
|
static inline void set_thread_group_info(struct ssg_request_info *rqi)
|
|
{
|
|
struct task_struct *gleader = current->group_leader;
|
|
|
|
rqi->tgid = task_tgid_nr(gleader);
|
|
strncpy(rqi->tg_name, gleader->comm, TASK_COMM_LEN - 1);
|
|
rqi->tg_name[TASK_COMM_LEN - 1] = '\0';
|
|
rqi->tg_start_time = gleader->start_time;
|
|
}
|
|
|
|
static inline void clear_thread_group_info(struct ssg_request_info *rqi)
|
|
{
|
|
rqi->tgid = 0;
|
|
rqi->tg_name[0] = '\0';
|
|
rqi->tg_start_time = 0;
|
|
}
|
|
|
|
/*
|
|
* remove rq from rbtree and fifo.
|
|
*/
|
|
static void ssg_remove_request(struct request_queue *q, struct request *rq)
|
|
{
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
|
|
list_del_init(&rq->queuelist);
|
|
|
|
/*
|
|
* We might not be on the rbtree, if we are doing an insert merge
|
|
*/
|
|
if (!RB_EMPTY_NODE(&rq->rb_node))
|
|
ssg_del_rq_rb(ssg, rq);
|
|
|
|
elv_rqhash_del(q, rq);
|
|
if (q->last_merge == rq)
|
|
q->last_merge = NULL;
|
|
}
|
|
|
|
static void ssg_request_merged(struct request_queue *q, struct request *req,
|
|
enum elv_merge type)
|
|
{
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
|
|
/*
|
|
* if the merge was a front merge, we need to reposition request
|
|
*/
|
|
if (type == ELEVATOR_FRONT_MERGE) {
|
|
elv_rb_del(ssg_rb_root(ssg, req), req);
|
|
ssg_add_rq_rb(ssg, req);
|
|
}
|
|
}
|
|
|
|
static void ssg_merged_requests(struct request_queue *q, struct request *req,
|
|
struct request *next)
|
|
{
|
|
/*
|
|
* if next expires before rq, assign its expire time to rq
|
|
* and move into next position (next will be deleted) in fifo
|
|
*/
|
|
if (!list_empty(&req->queuelist) && !list_empty(&next->queuelist)) {
|
|
if (time_before((unsigned long)next->fifo_time,
|
|
(unsigned long)req->fifo_time)) {
|
|
list_move(&req->queuelist, &next->queuelist);
|
|
req->fifo_time = next->fifo_time;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* kill knowledge of next, this one is a goner
|
|
*/
|
|
ssg_remove_request(q, next);
|
|
}
|
|
|
|
/*
|
|
* move an entry to dispatch queue
|
|
*/
|
|
static void ssg_move_request(struct ssg_data *ssg, struct request *rq)
|
|
{
|
|
const int data_dir = rq_data_dir(rq);
|
|
|
|
ssg->next_rq[READ] = NULL;
|
|
ssg->next_rq[WRITE] = NULL;
|
|
ssg->next_rq[data_dir] = ssg_latter_request(rq);
|
|
|
|
/*
|
|
* take it off the sort and fifo list
|
|
*/
|
|
ssg_remove_request(rq->q, rq);
|
|
}
|
|
|
|
/*
|
|
* ssg_check_fifo returns 0 if there are no expired requests on the fifo,
|
|
* 1 otherwise. Requires !list_empty(&ssg->fifo_list[data_dir])
|
|
*/
|
|
static inline int ssg_check_fifo(struct ssg_data *ssg, int ddir)
|
|
{
|
|
struct request *rq = rq_entry_fifo(ssg->fifo_list[ddir].next);
|
|
|
|
/*
|
|
* rq is expired!
|
|
*/
|
|
if (time_after_eq(jiffies, (unsigned long)rq->fifo_time))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For the specified data direction, return the next request to
|
|
* dispatch using arrival ordered lists.
|
|
*/
|
|
static struct request *ssg_fifo_request(struct ssg_data *ssg, int data_dir)
|
|
{
|
|
struct request *rq;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON_ONCE(data_dir != READ && data_dir != WRITE))
|
|
return NULL;
|
|
|
|
if (list_empty(&ssg->fifo_list[data_dir]))
|
|
return NULL;
|
|
|
|
rq = rq_entry_fifo(ssg->fifo_list[data_dir].next);
|
|
if (data_dir == READ || !blk_queue_is_zoned(rq->q))
|
|
return rq;
|
|
|
|
/*
|
|
* Look for a write request that can be dispatched, that is one with
|
|
* an unlocked target zone.
|
|
*/
|
|
spin_lock_irqsave(&ssg->zone_lock, flags);
|
|
list_for_each_entry(rq, &ssg->fifo_list[WRITE], queuelist) {
|
|
if (blk_req_can_dispatch_to_zone(rq))
|
|
goto out;
|
|
}
|
|
rq = NULL;
|
|
out:
|
|
spin_unlock_irqrestore(&ssg->zone_lock, flags);
|
|
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* For the specified data direction, return the next request to
|
|
* dispatch using sector position sorted lists.
|
|
*/
|
|
static struct request *ssg_next_request(struct ssg_data *ssg, int data_dir)
|
|
{
|
|
struct request *rq;
|
|
unsigned long flags;
|
|
|
|
if (WARN_ON_ONCE(data_dir != READ && data_dir != WRITE))
|
|
return NULL;
|
|
|
|
rq = ssg->next_rq[data_dir];
|
|
if (!rq)
|
|
return NULL;
|
|
|
|
if (data_dir == READ || !blk_queue_is_zoned(rq->q))
|
|
return rq;
|
|
|
|
/*
|
|
* Look for a write request that can be dispatched, that is one with
|
|
* an unlocked target zone.
|
|
*/
|
|
spin_lock_irqsave(&ssg->zone_lock, flags);
|
|
while (rq) {
|
|
if (blk_req_can_dispatch_to_zone(rq))
|
|
break;
|
|
rq = ssg_latter_request(rq);
|
|
}
|
|
spin_unlock_irqrestore(&ssg->zone_lock, flags);
|
|
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* ssg_dispatch_requests selects the best request according to
|
|
* read/write expire, etc
|
|
*/
|
|
static struct request *__ssg_dispatch_request(struct ssg_data *ssg)
|
|
{
|
|
struct request *rq, *next_rq;
|
|
bool reads, writes;
|
|
int data_dir;
|
|
|
|
if (!list_empty(&ssg->dispatch)) {
|
|
rq = list_first_entry(&ssg->dispatch, struct request, queuelist);
|
|
list_del_init(&rq->queuelist);
|
|
goto done;
|
|
}
|
|
|
|
reads = !list_empty(&ssg->fifo_list[READ]);
|
|
writes = !list_empty(&ssg->fifo_list[WRITE]);
|
|
|
|
/*
|
|
* select the appropriate data direction (read / write)
|
|
*/
|
|
|
|
if (reads) {
|
|
BUG_ON(RB_EMPTY_ROOT(&ssg->sort_list[READ]));
|
|
|
|
if (ssg_fifo_request(ssg, WRITE) &&
|
|
(ssg->starved_writes++ >= ssg->max_write_starvation))
|
|
goto dispatch_writes;
|
|
|
|
data_dir = READ;
|
|
|
|
goto dispatch_find_request;
|
|
}
|
|
|
|
/*
|
|
* there are either no reads or writes have been starved
|
|
*/
|
|
|
|
if (writes) {
|
|
dispatch_writes:
|
|
BUG_ON(RB_EMPTY_ROOT(&ssg->sort_list[WRITE]));
|
|
|
|
ssg->starved_writes = 0;
|
|
|
|
data_dir = WRITE;
|
|
|
|
goto dispatch_find_request;
|
|
}
|
|
|
|
return NULL;
|
|
|
|
dispatch_find_request:
|
|
/*
|
|
* we are not running a batch, find best request for selected data_dir
|
|
*/
|
|
next_rq = ssg_next_request(ssg, data_dir);
|
|
if (ssg_check_fifo(ssg, data_dir) || !next_rq) {
|
|
/*
|
|
* A deadline has expired, the last request was in the other
|
|
* direction, or we have run out of higher-sectored requests.
|
|
* Start again from the request with the earliest expiry time.
|
|
*/
|
|
rq = ssg_fifo_request(ssg, data_dir);
|
|
} else {
|
|
/*
|
|
* The last req was the same dir and we have a next request in
|
|
* sort order. No expired requests so continue on from here.
|
|
*/
|
|
rq = next_rq;
|
|
}
|
|
|
|
/*
|
|
* For a zoned block device, if we only have writes queued and none of
|
|
* them can be dispatched, rq will be NULL.
|
|
*/
|
|
if (!rq)
|
|
return NULL;
|
|
|
|
/*
|
|
* rq is the selected appropriate request.
|
|
*/
|
|
ssg_move_request(ssg, rq);
|
|
done:
|
|
/*
|
|
* If the request needs its target zone locked, do it.
|
|
*/
|
|
blk_req_zone_write_lock(rq);
|
|
rq->rq_flags |= RQF_STARTED;
|
|
return rq;
|
|
}
|
|
|
|
/*
|
|
* One confusing aspect here is that we get called for a specific
|
|
* hardware queue, but we may return a request that is for a
|
|
* different hardware queue. This is because ssg-iosched has shared
|
|
* state for all hardware queues, in terms of sorting, FIFOs, etc.
|
|
*/
|
|
static struct request *ssg_dispatch_request(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct ssg_data *ssg = hctx->queue->elevator->elevator_data;
|
|
struct request *rq;
|
|
struct ssg_request_info *rqi;
|
|
|
|
spin_lock(&ssg->lock);
|
|
rq = __ssg_dispatch_request(ssg);
|
|
spin_unlock(&ssg->lock);
|
|
|
|
rqi = ssg_rq_info(ssg, rq);
|
|
if (likely(rqi))
|
|
rqi->data_size = blk_rq_bytes(rq);
|
|
|
|
return rq;
|
|
}
|
|
|
|
static void ssg_completed_request(struct request *rq, u64 now)
|
|
{
|
|
struct ssg_data *ssg = rq->q->elevator->elevator_data;
|
|
struct ssg_request_info *rqi;
|
|
|
|
rqi = ssg_rq_info(ssg, rq);
|
|
if (likely(rqi))
|
|
blk_sec_stats_account_io_done(rq, rqi->data_size,
|
|
rqi->tgid, rqi->tg_name, rqi->tg_start_time);
|
|
}
|
|
|
|
static void ssg_set_shallow_depth(struct ssg_data *ssg, struct blk_mq_tags *tags)
|
|
{
|
|
unsigned int depth = tags->bitmap_tags->sb.depth;
|
|
unsigned int map_nr = tags->bitmap_tags->sb.map_nr;
|
|
|
|
ssg->max_async_write_rqs = depth * max_async_write_ratio / 100U;
|
|
ssg->max_async_write_rqs =
|
|
min_t(int, ssg->max_async_write_rqs, MAX_ASYNC_WRITE_RQS);
|
|
ssg->async_write_shallow_depth =
|
|
max_t(unsigned int, ssg->max_async_write_rqs / map_nr, 1);
|
|
|
|
ssg->max_tgroup_rqs = depth * max_tgroup_io_ratio / 100U;
|
|
ssg->tgroup_shallow_depth =
|
|
max_t(unsigned int, ssg->max_tgroup_rqs / map_nr, 1);
|
|
}
|
|
|
|
static void ssg_depth_updated(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
struct blk_mq_tags *tags = hctx->sched_tags;
|
|
unsigned int depth = tags->bitmap_tags->sb.depth;
|
|
|
|
ssg->congestion_threshold_rqs = depth * congestion_threshold / 100U;
|
|
|
|
kfree(ssg->rq_info);
|
|
ssg->rq_info = kmalloc(depth * sizeof(struct ssg_request_info),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (ZERO_OR_NULL_PTR(ssg->rq_info))
|
|
ssg->rq_info = NULL;
|
|
|
|
ssg_set_shallow_depth(ssg, tags);
|
|
sbitmap_queue_min_shallow_depth(tags->bitmap_tags,
|
|
ssg->async_write_shallow_depth);
|
|
|
|
ssg_blkcg_depth_updated(hctx);
|
|
}
|
|
|
|
static inline bool ssg_op_is_async_write(unsigned int op)
|
|
{
|
|
return (op & REQ_OP_MASK) == REQ_OP_WRITE && !op_is_sync(op);
|
|
}
|
|
|
|
static unsigned int ssg_async_write_shallow_depth(unsigned int op,
|
|
struct blk_mq_alloc_data *data)
|
|
{
|
|
struct ssg_data *ssg = data->q->elevator->elevator_data;
|
|
|
|
if (!ssg_op_is_async_write(op))
|
|
return 0;
|
|
|
|
if (atomic_read(&ssg->async_write_rqs) < ssg->max_async_write_rqs)
|
|
return 0;
|
|
|
|
return ssg->async_write_shallow_depth;
|
|
}
|
|
|
|
static unsigned int ssg_tgroup_shallow_depth(struct blk_mq_alloc_data *data)
|
|
{
|
|
struct ssg_data *ssg = data->q->elevator->elevator_data;
|
|
pid_t tgid = task_tgid_nr(current->group_leader);
|
|
int nr_requests = data->q->nr_requests;
|
|
int tgroup_rqs = 0;
|
|
int i;
|
|
|
|
if (unlikely(!ssg->rq_info))
|
|
return 0;
|
|
|
|
for (i = 0; i < nr_requests; i++)
|
|
if (tgid == ssg->rq_info[i].tgid)
|
|
tgroup_rqs++;
|
|
|
|
if (tgroup_rqs < ssg->max_tgroup_rqs)
|
|
return 0;
|
|
|
|
return ssg->tgroup_shallow_depth;
|
|
}
|
|
|
|
static void ssg_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
|
|
{
|
|
struct ssg_data *ssg = data->q->elevator->elevator_data;
|
|
unsigned int shallow_depth = ssg_blkcg_shallow_depth(data->q);
|
|
|
|
shallow_depth = min_not_zero(shallow_depth,
|
|
ssg_async_write_shallow_depth(op, data));
|
|
|
|
if (atomic_read(&ssg->allocated_rqs) > ssg->congestion_threshold_rqs)
|
|
shallow_depth = min_not_zero(shallow_depth,
|
|
ssg_tgroup_shallow_depth(data));
|
|
|
|
data->shallow_depth = shallow_depth;
|
|
}
|
|
|
|
static int ssg_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
|
|
{
|
|
struct ssg_data *ssg = hctx->queue->elevator->elevator_data;
|
|
struct blk_mq_tags *tags = hctx->sched_tags;
|
|
|
|
ssg_set_shallow_depth(ssg, tags);
|
|
sbitmap_queue_min_shallow_depth(tags->bitmap_tags,
|
|
ssg->async_write_shallow_depth);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ssg_exit_queue(struct elevator_queue *e)
|
|
{
|
|
struct ssg_data *ssg = e->elevator_data;
|
|
|
|
ssg_blkcg_deactivate(ssg->queue);
|
|
|
|
BUG_ON(!list_empty(&ssg->fifo_list[READ]));
|
|
BUG_ON(!list_empty(&ssg->fifo_list[WRITE]));
|
|
|
|
kfree(ssg->rq_info);
|
|
kfree(ssg);
|
|
|
|
blk_sec_stats_account_exit(e);
|
|
}
|
|
|
|
/*
|
|
* initialize elevator private data (ssg_data).
|
|
*/
|
|
static int ssg_init_queue(struct request_queue *q, struct elevator_type *e)
|
|
{
|
|
struct ssg_data *ssg;
|
|
struct elevator_queue *eq;
|
|
|
|
eq = elevator_alloc(q, e);
|
|
if (!eq)
|
|
return -ENOMEM;
|
|
|
|
ssg = kzalloc_node(sizeof(*ssg), GFP_KERNEL, q->node);
|
|
if (!ssg) {
|
|
kobject_put(&eq->kobj);
|
|
return -ENOMEM;
|
|
}
|
|
eq->elevator_data = ssg;
|
|
|
|
ssg->queue = q;
|
|
INIT_LIST_HEAD(&ssg->fifo_list[READ]);
|
|
INIT_LIST_HEAD(&ssg->fifo_list[WRITE]);
|
|
ssg->sort_list[READ] = RB_ROOT;
|
|
ssg->sort_list[WRITE] = RB_ROOT;
|
|
ssg->fifo_expire[READ] = read_expire;
|
|
ssg->fifo_expire[WRITE] = write_expire;
|
|
ssg->max_write_starvation = max_write_starvation;
|
|
ssg->front_merges = 1;
|
|
|
|
atomic_set(&ssg->allocated_rqs, 0);
|
|
atomic_set(&ssg->async_write_rqs, 0);
|
|
ssg->congestion_threshold_rqs =
|
|
q->nr_requests * congestion_threshold / 100U;
|
|
ssg->rq_info = kmalloc(q->nr_requests * sizeof(struct ssg_request_info),
|
|
GFP_KERNEL | __GFP_ZERO);
|
|
if (ZERO_OR_NULL_PTR(ssg->rq_info))
|
|
ssg->rq_info = NULL;
|
|
|
|
spin_lock_init(&ssg->lock);
|
|
spin_lock_init(&ssg->zone_lock);
|
|
INIT_LIST_HEAD(&ssg->dispatch);
|
|
|
|
ssg_blkcg_activate(q);
|
|
|
|
q->elevator = eq;
|
|
|
|
blk_sec_stats_account_init(q);
|
|
return 0;
|
|
}
|
|
|
|
static int ssg_request_merge(struct request_queue *q, struct request **rq,
|
|
struct bio *bio)
|
|
{
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
sector_t sector = bio_end_sector(bio);
|
|
struct request *__rq;
|
|
|
|
if (!ssg->front_merges)
|
|
return ELEVATOR_NO_MERGE;
|
|
|
|
__rq = elv_rb_find(&ssg->sort_list[bio_data_dir(bio)], sector);
|
|
if (__rq) {
|
|
BUG_ON(sector != blk_rq_pos(__rq));
|
|
|
|
if (elv_bio_merge_ok(__rq, bio)) {
|
|
*rq = __rq;
|
|
return ELEVATOR_FRONT_MERGE;
|
|
}
|
|
}
|
|
|
|
return ELEVATOR_NO_MERGE;
|
|
}
|
|
|
|
static bool ssg_bio_merge(struct request_queue *q, struct bio *bio,
|
|
unsigned int nr_segs)
|
|
{
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
struct request *free = NULL;
|
|
bool ret;
|
|
|
|
spin_lock(&ssg->lock);
|
|
ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
|
|
spin_unlock(&ssg->lock);
|
|
|
|
if (free)
|
|
blk_mq_free_request(free);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* add rq to rbtree and fifo
|
|
*/
|
|
static void ssg_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
|
|
bool at_head)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
const int data_dir = rq_data_dir(rq);
|
|
|
|
/*
|
|
* This may be a requeue of a write request that has locked its
|
|
* target zone. If it is the case, this releases the zone lock.
|
|
*/
|
|
blk_req_zone_write_unlock(rq);
|
|
|
|
if (blk_mq_sched_try_insert_merge(q, rq))
|
|
return;
|
|
|
|
blk_mq_sched_request_inserted(rq);
|
|
|
|
if (at_head || blk_rq_is_passthrough(rq)) {
|
|
if (at_head)
|
|
list_add(&rq->queuelist, &ssg->dispatch);
|
|
else
|
|
list_add_tail(&rq->queuelist, &ssg->dispatch);
|
|
} else {
|
|
ssg_add_rq_rb(ssg, rq);
|
|
|
|
if (rq_mergeable(rq)) {
|
|
elv_rqhash_add(q, rq);
|
|
if (!q->last_merge)
|
|
q->last_merge = rq;
|
|
}
|
|
|
|
/*
|
|
* set expire time and add to fifo list
|
|
*/
|
|
rq->fifo_time = jiffies + ssg->fifo_expire[data_dir];
|
|
list_add_tail(&rq->queuelist, &ssg->fifo_list[data_dir]);
|
|
}
|
|
}
|
|
|
|
static void ssg_insert_requests(struct blk_mq_hw_ctx *hctx,
|
|
struct list_head *list, bool at_head)
|
|
{
|
|
struct request_queue *q = hctx->queue;
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
|
|
spin_lock(&ssg->lock);
|
|
while (!list_empty(list)) {
|
|
struct request *rq;
|
|
|
|
rq = list_first_entry(list, struct request, queuelist);
|
|
list_del_init(&rq->queuelist);
|
|
ssg_insert_request(hctx, rq, at_head);
|
|
}
|
|
spin_unlock(&ssg->lock);
|
|
}
|
|
|
|
/*
|
|
* Nothing to do here. This is defined only to ensure that .finish_request
|
|
* method is called upon request completion.
|
|
*/
|
|
static void ssg_prepare_request(struct request *rq)
|
|
{
|
|
struct ssg_data *ssg = rq->q->elevator->elevator_data;
|
|
struct ssg_request_info *rqi;
|
|
|
|
atomic_inc(&ssg->allocated_rqs);
|
|
|
|
rqi = ssg_rq_info(ssg, rq);
|
|
if (likely(rqi)) {
|
|
set_thread_group_info(rqi);
|
|
|
|
rcu_read_lock();
|
|
rqi->blkg = blkg_lookup(css_to_blkcg(blkcg_css()), rq->q);
|
|
ssg_blkcg_inc_rq(rqi->blkg);
|
|
rcu_read_unlock();
|
|
}
|
|
|
|
if (ssg_op_is_async_write(rq->cmd_flags))
|
|
atomic_inc(&ssg->async_write_rqs);
|
|
}
|
|
|
|
/*
|
|
* For zoned block devices, write unlock the target zone of
|
|
* completed write requests. Do this while holding the zone lock
|
|
* spinlock so that the zone is never unlocked while ssg_fifo_request()
|
|
* or ssg_next_request() are executing. This function is called for
|
|
* all requests, whether or not these requests complete successfully.
|
|
*
|
|
* For a zoned block device, __ssg_dispatch_request() may have stopped
|
|
* dispatching requests if all the queued requests are write requests directed
|
|
* at zones that are already locked due to on-going write requests. To ensure
|
|
* write request dispatch progress in this case, mark the queue as needing a
|
|
* restart to ensure that the queue is run again after completion of the
|
|
* request and zones being unlocked.
|
|
*/
|
|
static void ssg_finish_request(struct request *rq)
|
|
{
|
|
struct request_queue *q = rq->q;
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
struct ssg_request_info *rqi;
|
|
|
|
if (blk_queue_is_zoned(q)) {
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&ssg->zone_lock, flags);
|
|
blk_req_zone_write_unlock(rq);
|
|
if (!list_empty(&ssg->fifo_list[WRITE]))
|
|
blk_mq_sched_mark_restart_hctx(rq->mq_hctx);
|
|
spin_unlock_irqrestore(&ssg->zone_lock, flags);
|
|
}
|
|
|
|
if (unlikely(!(rq->rq_flags & RQF_ELVPRIV)))
|
|
return;
|
|
|
|
atomic_dec(&ssg->allocated_rqs);
|
|
|
|
rqi = ssg_rq_info(ssg, rq);
|
|
if (likely(rqi)) {
|
|
clear_thread_group_info(rqi);
|
|
ssg_blkcg_dec_rq(rqi->blkg);
|
|
rqi->blkg = NULL;
|
|
}
|
|
|
|
if (ssg_op_is_async_write(rq->cmd_flags))
|
|
atomic_dec(&ssg->async_write_rqs);
|
|
}
|
|
|
|
static bool ssg_has_work(struct blk_mq_hw_ctx *hctx)
|
|
{
|
|
struct ssg_data *ssg = hctx->queue->elevator->elevator_data;
|
|
|
|
return !list_empty_careful(&ssg->dispatch) ||
|
|
!list_empty_careful(&ssg->fifo_list[0]) ||
|
|
!list_empty_careful(&ssg->fifo_list[1]);
|
|
}
|
|
|
|
/*
|
|
* sysfs parts below
|
|
*/
|
|
static ssize_t ssg_var_show(int var, char *page)
|
|
{
|
|
return sprintf(page, "%d\n", var);
|
|
}
|
|
|
|
static void ssg_var_store(int *var, const char *page)
|
|
{
|
|
char *p = (char *) page;
|
|
|
|
*var = simple_strtol(p, &p, 10);
|
|
}
|
|
|
|
#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
|
|
static ssize_t __FUNC(struct elevator_queue *e, char *page) \
|
|
{ \
|
|
struct ssg_data *ssg = e->elevator_data; \
|
|
int __data = __VAR; \
|
|
if (__CONV) \
|
|
__data = jiffies_to_msecs(__data); \
|
|
return ssg_var_show(__data, (page)); \
|
|
}
|
|
SHOW_FUNCTION(ssg_read_expire_show, ssg->fifo_expire[READ], 1);
|
|
SHOW_FUNCTION(ssg_write_expire_show, ssg->fifo_expire[WRITE], 1);
|
|
SHOW_FUNCTION(ssg_max_write_starvation_show, ssg->max_write_starvation, 0);
|
|
SHOW_FUNCTION(ssg_front_merges_show, ssg->front_merges, 0);
|
|
SHOW_FUNCTION(ssg_tgroup_shallow_depth_show, ssg->tgroup_shallow_depth, 0);
|
|
SHOW_FUNCTION(ssg_async_write_shallow_depth_show, ssg->async_write_shallow_depth, 0);
|
|
#undef SHOW_FUNCTION
|
|
|
|
#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
|
|
static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
|
|
{ \
|
|
struct ssg_data *ssg = e->elevator_data; \
|
|
int __data; \
|
|
ssg_var_store(&__data, (page)); \
|
|
if (__data < (MIN)) \
|
|
__data = (MIN); \
|
|
else if (__data > (MAX)) \
|
|
__data = (MAX); \
|
|
if (__CONV) \
|
|
*(__PTR) = msecs_to_jiffies(__data); \
|
|
else \
|
|
*(__PTR) = __data; \
|
|
return count; \
|
|
}
|
|
STORE_FUNCTION(ssg_read_expire_store, &ssg->fifo_expire[READ], 0, INT_MAX, 1);
|
|
STORE_FUNCTION(ssg_write_expire_store, &ssg->fifo_expire[WRITE], 0, INT_MAX, 1);
|
|
STORE_FUNCTION(ssg_max_write_starvation_store, &ssg->max_write_starvation, INT_MIN, INT_MAX, 0);
|
|
STORE_FUNCTION(ssg_front_merges_store, &ssg->front_merges, 0, 1, 0);
|
|
#undef STORE_FUNCTION
|
|
|
|
#define SSG_ATTR(name) \
|
|
__ATTR(name, 0644, ssg_##name##_show, ssg_##name##_store)
|
|
|
|
#define SSG_ATTR_RO(name) \
|
|
__ATTR(name, 0444, ssg_##name##_show, NULL)
|
|
|
|
static struct elv_fs_entry ssg_attrs[] = {
|
|
SSG_ATTR(read_expire),
|
|
SSG_ATTR(write_expire),
|
|
SSG_ATTR(max_write_starvation),
|
|
SSG_ATTR(front_merges),
|
|
SSG_ATTR_RO(tgroup_shallow_depth),
|
|
SSG_ATTR_RO(async_write_shallow_depth),
|
|
__ATTR_NULL
|
|
};
|
|
|
|
#ifdef CONFIG_BLK_DEBUG_FS
|
|
#define SSG_DEBUGFS_DDIR_ATTRS(ddir, name) \
|
|
static void *ssg_##name##_fifo_start(struct seq_file *m, \
|
|
loff_t *pos) \
|
|
__acquires(&ssg->lock) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct ssg_data *ssg = q->elevator->elevator_data; \
|
|
\
|
|
spin_lock(&ssg->lock); \
|
|
return seq_list_start(&ssg->fifo_list[ddir], *pos); \
|
|
} \
|
|
\
|
|
static void *ssg_##name##_fifo_next(struct seq_file *m, void *v, \
|
|
loff_t *pos) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct ssg_data *ssg = q->elevator->elevator_data; \
|
|
\
|
|
return seq_list_next(v, &ssg->fifo_list[ddir], pos); \
|
|
} \
|
|
\
|
|
static void ssg_##name##_fifo_stop(struct seq_file *m, void *v) \
|
|
__releases(&ssg->lock) \
|
|
{ \
|
|
struct request_queue *q = m->private; \
|
|
struct ssg_data *ssg = q->elevator->elevator_data; \
|
|
\
|
|
spin_unlock(&ssg->lock); \
|
|
} \
|
|
\
|
|
static const struct seq_operations ssg_##name##_fifo_seq_ops = { \
|
|
.start = ssg_##name##_fifo_start, \
|
|
.next = ssg_##name##_fifo_next, \
|
|
.stop = ssg_##name##_fifo_stop, \
|
|
.show = blk_mq_debugfs_rq_show, \
|
|
}; \
|
|
\
|
|
static int ssg_##name##_next_rq_show(void *data, \
|
|
struct seq_file *m) \
|
|
{ \
|
|
struct request_queue *q = data; \
|
|
struct ssg_data *ssg = q->elevator->elevator_data; \
|
|
struct request *rq = ssg->next_rq[ddir]; \
|
|
\
|
|
if (rq) \
|
|
__blk_mq_debugfs_rq_show(m, rq); \
|
|
return 0; \
|
|
}
|
|
SSG_DEBUGFS_DDIR_ATTRS(READ, read)
|
|
SSG_DEBUGFS_DDIR_ATTRS(WRITE, write)
|
|
#undef SSG_DEBUGFS_DDIR_ATTRS
|
|
|
|
static int ssg_starved_writes_show(void *data, struct seq_file *m)
|
|
{
|
|
struct request_queue *q = data;
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
|
|
seq_printf(m, "%u\n", ssg->starved_writes);
|
|
return 0;
|
|
}
|
|
|
|
static void *ssg_dispatch_start(struct seq_file *m, loff_t *pos)
|
|
__acquires(&ssg->lock)
|
|
{
|
|
struct request_queue *q = m->private;
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
|
|
spin_lock(&ssg->lock);
|
|
return seq_list_start(&ssg->dispatch, *pos);
|
|
}
|
|
|
|
static void *ssg_dispatch_next(struct seq_file *m, void *v, loff_t *pos)
|
|
{
|
|
struct request_queue *q = m->private;
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
|
|
return seq_list_next(v, &ssg->dispatch, pos);
|
|
}
|
|
|
|
static void ssg_dispatch_stop(struct seq_file *m, void *v)
|
|
__releases(&ssg->lock)
|
|
{
|
|
struct request_queue *q = m->private;
|
|
struct ssg_data *ssg = q->elevator->elevator_data;
|
|
|
|
spin_unlock(&ssg->lock);
|
|
}
|
|
|
|
static const struct seq_operations ssg_dispatch_seq_ops = {
|
|
.start = ssg_dispatch_start,
|
|
.next = ssg_dispatch_next,
|
|
.stop = ssg_dispatch_stop,
|
|
.show = blk_mq_debugfs_rq_show,
|
|
};
|
|
|
|
#define SSG_IOSCHED_QUEUE_DDIR_ATTRS(name) \
|
|
{#name "_fifo_list", 0400, .seq_ops = &ssg_##name##_fifo_seq_ops}, \
|
|
{#name "_next_rq", 0400, ssg_##name##_next_rq_show}
|
|
static const struct blk_mq_debugfs_attr ssg_queue_debugfs_attrs[] = {
|
|
SSG_IOSCHED_QUEUE_DDIR_ATTRS(read),
|
|
SSG_IOSCHED_QUEUE_DDIR_ATTRS(write),
|
|
{"starved_writes", 0400, ssg_starved_writes_show},
|
|
{"dispatch", 0400, .seq_ops = &ssg_dispatch_seq_ops},
|
|
{},
|
|
};
|
|
#undef SSG_IOSCHED_QUEUE_DDIR_ATTRS
|
|
#endif
|
|
|
|
static struct elevator_type ssg_iosched = {
|
|
.ops = {
|
|
.insert_requests = ssg_insert_requests,
|
|
.dispatch_request = ssg_dispatch_request,
|
|
.completed_request = ssg_completed_request,
|
|
.prepare_request = ssg_prepare_request,
|
|
.finish_request = ssg_finish_request,
|
|
.next_request = elv_rb_latter_request,
|
|
.former_request = elv_rb_former_request,
|
|
.bio_merge = ssg_bio_merge,
|
|
.request_merge = ssg_request_merge,
|
|
.requests_merged = ssg_merged_requests,
|
|
.request_merged = ssg_request_merged,
|
|
.has_work = ssg_has_work,
|
|
.limit_depth = ssg_limit_depth,
|
|
.depth_updated = ssg_depth_updated,
|
|
.init_hctx = ssg_init_hctx,
|
|
.init_sched = ssg_init_queue,
|
|
.exit_sched = ssg_exit_queue,
|
|
},
|
|
|
|
#ifdef CONFIG_BLK_DEBUG_FS
|
|
.queue_debugfs_attrs = ssg_queue_debugfs_attrs,
|
|
#endif
|
|
.elevator_attrs = ssg_attrs,
|
|
.elevator_name = "ssg",
|
|
.elevator_alias = "ssg",
|
|
.elevator_features = ELEVATOR_F_ZBD_SEQ_WRITE,
|
|
.elevator_owner = THIS_MODULE,
|
|
};
|
|
MODULE_ALIAS("ssg");
|
|
|
|
static int __init ssg_iosched_init(void)
|
|
{
|
|
int ret;
|
|
|
|
ret = elv_register(&ssg_iosched);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = ssg_blkcg_init();
|
|
if (ret) {
|
|
elv_unregister(&ssg_iosched);
|
|
return ret;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void __exit ssg_iosched_exit(void)
|
|
{
|
|
ssg_blkcg_exit();
|
|
elv_unregister(&ssg_iosched);
|
|
}
|
|
|
|
module_init(ssg_iosched_init);
|
|
module_exit(ssg_iosched_exit);
|
|
|
|
MODULE_AUTHOR("Jisoo Oh");
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_DESCRIPTION("SSG IO Scheduler");
|