1
0
This repository has been archived on 2025-07-31. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
orange_kernel/drivers/net/can/ipms_canfd.c
2025-03-18 10:29:27 +08:00

1197 lines
33 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2021 StarFive, Inc <jenny.zhang@starfivetech.com>
*
* THE PRESENT SOFTWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING
* CUSTOMERS WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER
* FOR THEM TO SAVE TIME. AS A RESULT, STARFIVE SHALL NOT BE HELD LIABLE
* FOR ANY DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY
* CLAIMS ARISING FROM THE CONTENT OF SUCH SOFTWARE AND/OR THE USE MADE
* BY CUSTOMERS OF THE CODING INFORMATION CONTAINED HEREIN IN CONNECTION
* WITH THEIR PRODUCTS.
*/
#include <linux/clk.h>
#include <linux/reset.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/skbuff.h>
#include <linux/string.h>
#include <linux/types.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
//#include <linux/can/led.h>
#include <linux/pm_runtime.h>
#include <linux/of_device.h>
#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#define DRIVER_NAME "ipms_canfd"
/* CAN registers set */
enum canfd_device_reg {
CANFD_RUBF_OFFSET = 0x00, /* Receive Buffer Registers 0x00-0x4f */
CANFD_RUBF_ID_OFFSET = 0x00,
CANFD_RBUF_CTL_OFFSET = 0x04,
CANFD_RBUF_DATA_OFFSET = 0x08,
CANFD_TBUF_OFFSET = 0x50, /* Transmit Buffer Registers 0x50-0x97 */
CANFD_TBUF_ID_OFFSET = 0x50,
CANFD_TBUF_CTL_OFFSET = 0x54,
CANFD_TBUF_DATA_OFFSET = 0x58,
CANFD_TTS_OFFSET = 0x98, /* Transmission Time Stamp 0x98-0x9f */
CANFD_CFG_STAT_OFFSET = 0xa0,
CANFD_TCMD_OFFSET = 0xa1,
CANFD_TCTRL_OFFSET = 0xa2,
CANFD_RCTRL_OFFSET = 0xa3,
CANFD_RTIE_OFFSET = 0xa4,
CANFD_RTIF_OFFSET = 0xa5,
CANFD_ERRINT_OFFSET = 0xa6,
CANFD_LIMIT_OFFSET = 0xa7,
CANFD_S_SEG_1_OFFSET = 0xa8,
CANFD_S_SEG_2_OFFSET = 0xa9,
CANFD_S_SJW_OFFSET = 0xaa,
CANFD_S_PRESC_OFFSET = 0xab,
CANFD_F_SEG_1_OFFSET = 0xac,
CANFD_F_SEG_2_OFFSET = 0xad,
CANFD_F_SJW_OFFSET = 0xae,
CANFD_F_PRESC_OFFSET = 0xaf,
CANFD_EALCAP_OFFSET = 0xb0,
CANFD_RECNT_OFFSET = 0xb2,
CANFD_TECNT_OFFSET = 0xb3,
};
enum canfd_reg_bitchange {
CAN_FD_SET_RST_MASK = 0x80, /* Set Reset Bit */
CAN_FD_OFF_RST_MASK = 0x7f, /* Reset Off Bit */
CAN_FD_SET_FULLCAN_MASK = 0x10, /* set TTTBM as 1->full TTCAN mode */
CAN_FD_OFF_FULLCAN_MASK = 0xef, /* set TTTBM as 0->separate PTB and STB mode */
CAN_FD_SET_FIFO_MASK = 0x20, /* set TSMODE as 1->FIFO mode */
CAN_FD_OFF_FIFO_MASK = 0xdf, /* set TSMODE as 0->Priority mode */
CAN_FD_SET_TSONE_MASK = 0x04,
CAN_FD_OFF_TSONE_MASK = 0xfb,
CAN_FD_SET_TSALL_MASK = 0x02,
CAN_FD_OFF_TSALL_MASK = 0xfd,
CAN_FD_LBMEMOD_MASK = 0x40, /* set loop back mode, external */
CAN_FD_LBMIMOD_MASK = 0x20, /* set loopback internal mode */
CAN_FD_SET_BUSOFF_MASK = 0x01,
CAN_FD_OFF_BUSOFF_MASK = 0xfe,
CAN_FD_SET_TTSEN_MASK = 0x80, /* set ttsen, tts update enable */
CAN_FD_SET_BRS_MASK = 0x10, /* can fd Bit Rate Switch mask */
CAN_FD_OFF_BRS_MASK = 0xef,
CAN_FD_SET_EDL_MASK = 0x20, /* Extended Data Length */
CAN_FD_OFF_EDL_MASK = 0xdf,
CAN_FD_SET_DLC_MASK = 0x0f,
CAN_FD_SET_TENEXT_MASK = 0x40,
CAN_FD_SET_IDE_MASK = 0x80,
CAN_FD_OFF_IDE_MASK = 0x7f,
CAN_FD_SET_RTR_MASK = 0x40,
CAN_FD_OFF_RTR_MASK = 0xbf,
CAN_FD_INTR_ALL_MASK = 0xff, /* all interrupts enable mask */
CAN_FD_SET_RIE_MASK = 0x80,
CAN_FD_OFF_RIE_MASK = 0x7f,
CAN_FD_SET_RFIE_MASK = 0x20,
CAN_FD_OFF_RFIE_MASK = 0xdf,
CAN_FD_SET_RAFIE_MASK = 0x10,
CAN_FD_OFF_RAFIE_MASK = 0xef,
CAN_FD_SET_EIE_MASK = 0x02,
CAN_FD_OFF_EIE_MASK = 0xfd,
CAN_FD_TASCTIVE_MASK = 0x02,
CAN_FD_RASCTIVE_MASK = 0x04,
CAN_FD_SET_TBSEL_MASK = 0x80, /* message writen in STB */
CAN_FD_OFF_TBSEL_MASK = 0x7f, /* message writen in PTB */
CAN_FD_SET_STBY_MASK = 0x20,
CAN_FD_OFF_STBY_MASK = 0xdf,
CAN_FD_SET_TPE_MASK = 0x10, /* Transmit primary enable */
CAN_FD_SET_TPA_MASK = 0x08,
CAN_FD_SET_SACK_MASK = 0x80,
CAN_FD_SET_RREL_MASK = 0x10,
CAN_FD_RSTAT_NOT_EMPTY_MASK = 0x03,
CAN_FD_SET_RIF_MASK = 0x80,
CAN_FD_OFF_RIF_MASK = 0x7f,
CAN_FD_SET_RAFIF_MASK = 0x10,
CAN_FD_SET_RFIF_MASK = 0x20,
CAN_FD_SET_TPIF_MASK = 0x08, /* Transmission Primary Interrupt Flag */
CAN_FD_SET_TSIF_MASK = 0x04,
CAN_FD_SET_EIF_MASK = 0x02,
CAN_FD_SET_AIF_MASK = 0x01,
CAN_FD_SET_EWARN_MASK = 0x80,
CAN_FD_SET_EPASS_MASK = 0x40,
CAN_FD_SET_EPIE_MASK = 0x20,
CAN_FD_SET_EPIF_MASK = 0x10,
CAN_FD_SET_ALIE_MASK = 0x08,
CAN_FD_SET_ALIF_MASK = 0x04,
CAN_FD_SET_BEIE_MASK = 0x02,
CAN_FD_SET_BEIF_MASK = 0x01,
CAN_FD_OFF_EPIE_MASK = 0xdf,
CAN_FD_OFF_BEIE_MASK = 0xfd,
CAN_FD_SET_AFWL_MASK = 0x40,
CAN_FD_SET_EWL_MASK = 0x0b,
CAN_FD_SET_KOER_MASK = 0xe0,
CAN_FD_SET_BIT_ERROR_MASK = 0x20,
CAN_FD_SET_FORM_ERROR_MASK = 0x40,
CAN_FD_SET_STUFF_ERROR_MASK = 0x60,
CAN_FD_SET_ACK_ERROR_MASK = 0x80,
CAN_FD_SET_CRC_ERROR_MASK = 0xa0,
CAN_FD_SET_OTH_ERROR_MASK = 0xc0,
};
/* seg1,seg2,sjw,prescaler all have 8 bits */
#define BITS_OF_BITTIMING_REG 8
/* in can_bittiming strucure every field has 32 bits---->u32 */
#define FBITS_IN_BITTIMING_STR 32
#define SEG_1_SHIFT 0
#define SEG_2_SHIFT 8
#define SJW_SHIFT 16
#define PRESC_SHIFT 24
/* TTSEN bit used for 32 bit register read or write */
#define TTSEN_8_32_SHIFT 24
#define RTR_32_8_SHIFT 24
/* transmit mode */
#define XMIT_FULL 0
#define XMIT_SEP_FIFO 1
#define XMIT_SEP_PRIO 2
#define XMIT_PTB_MODE 3
enum IPMS_CAN_TYPE {
IPMS_CAN_TYPY_CAN = 0,
IPMS_CAN_TYPE_CANFD,
};
struct ipms_canfd_priv {
struct can_priv can;
struct napi_struct napi;
struct device *dev;
struct regmap *reg_syscon;
void __iomem *reg_base;
u32 (*read_reg)(const struct ipms_canfd_priv *priv, enum canfd_device_reg reg);
void (*write_reg)(const struct ipms_canfd_priv *priv, enum canfd_device_reg reg, u32 val);
struct clk *can_clk;
u32 tx_mode;
struct reset_control *resets;
struct clk_bulk_data *clks;
int nr_clks;
u32 can_or_canfd;
};
static struct can_bittiming_const canfd_bittiming_const = {
.name = DRIVER_NAME,
.tseg1_min = 2,
.tseg1_max = 65,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 16,
.brp_min = 1,
.brp_max = 512,
.brp_inc = 1,
};
static struct can_bittiming_const canfd_data_bittiming_const = {
.name = DRIVER_NAME,
.tseg1_min = 2,
.tseg1_max = 17,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 8,
.brp_min = 1,
.brp_max = 512,
.brp_inc = 1,
};
static void canfd_write_reg_le(const struct ipms_canfd_priv *priv,
enum canfd_device_reg reg, u32 val)
{
iowrite32(val, priv->reg_base + reg);
}
static u32 canfd_read_reg_le(const struct ipms_canfd_priv *priv,
enum canfd_device_reg reg)
{
return ioread32(priv->reg_base + reg);
}
static inline unsigned char can_ioread8(const void *addr)
{
void *addr_down;
union val {
u8 val_8[4];
u32 val_32;
} val;
u32 offset = 0;
addr_down = (void *)ALIGN_DOWN((unsigned long)addr, 4);
offset = addr - addr_down;
val.val_32 = ioread32(addr_down);
return val.val_8[offset];
}
static inline void can_iowrite8(unsigned char value, void *addr)
{
void *addr_down;
union val {
u8 val_8[4];
u32 val_32;
} val;
u8 offset = 0;
addr_down = (void *)ALIGN_DOWN((unsigned long)addr, 4);
offset = addr - addr_down;
val.val_32 = ioread32(addr_down);
val.val_8[offset] = value;
iowrite32(val.val_32, addr_down);
}
static void canfd_reigister_set_bit(const struct ipms_canfd_priv *priv,
enum canfd_device_reg reg,
enum canfd_reg_bitchange set_mask)
{
void *addr_down;
union val {
u8 val_8[4];
u32 val_32;
} val;
u8 offset = 0;
addr_down = (void *)ALIGN_DOWN((unsigned long)(priv->reg_base + reg), 4);
offset = (priv->reg_base + reg) - addr_down;
val.val_32 = ioread32(addr_down);
val.val_8[offset] |= set_mask;
iowrite32(val.val_32, addr_down);
}
static void canfd_reigister_off_bit(const struct ipms_canfd_priv *priv,
enum canfd_device_reg reg,
enum canfd_reg_bitchange set_mask)
{
void *addr_down;
union val {
u8 val_8[4];
u32 val_32;
} val;
u8 offset = 0;
addr_down = (void *)ALIGN_DOWN((unsigned long)(priv->reg_base + reg), 4);
offset = (priv->reg_base + reg) - addr_down;
val.val_32 = ioread32(addr_down);
val.val_8[offset] &= set_mask;
iowrite32(val.val_32, addr_down);
}
static int canfd_device_driver_bittime_configuration(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
struct can_bittiming *bt = &priv->can.bittiming;
struct can_bittiming *dbt = &priv->can.data_bittiming;
u32 reset_test, bittiming_temp, dat_bittiming;
reset_test = can_ioread8(priv->reg_base + CANFD_CFG_STAT_OFFSET);
if (!(reset_test & CAN_FD_SET_RST_MASK)) {
netdev_alert(ndev, "Not in reset mode, cannot set bit timing\n");
return -EPERM;
}
bittiming_temp = ((bt->phase_seg1 + bt->prop_seg + 1 - 2) << SEG_1_SHIFT) |
((bt->phase_seg2 - 1) << SEG_2_SHIFT) |
((bt->sjw - 1) << SJW_SHIFT) |
((bt->brp - 1) << PRESC_SHIFT);
/* Check the bittime parameter */
if ((((int)(bt->phase_seg1 + bt->prop_seg + 1) - 2) < 0) ||
(((int)(bt->phase_seg2) - 1) < 0) ||
(((int)(bt->sjw) - 1) < 0) ||
(((int)(bt->brp) - 1) < 0))
return -EINVAL;
priv->write_reg(priv, CANFD_S_SEG_1_OFFSET, bittiming_temp);
if (priv->can_or_canfd == IPMS_CAN_TYPE_CANFD) {
if(dbt->bitrate == 0){
dbt = bt;
}
dat_bittiming = ((dbt->phase_seg1 + dbt->prop_seg + 1 - 2) << SEG_1_SHIFT) |
((dbt->phase_seg2 - 1) << SEG_2_SHIFT) |
((dbt->sjw - 1) << SJW_SHIFT) |
((dbt->brp - 1) << PRESC_SHIFT);
if ((((int)(dbt->phase_seg1 + dbt->prop_seg + 1) - 2) < 0) ||
(((int)(dbt->phase_seg2) - 1) < 0) ||
(((int)(dbt->sjw) - 1) < 0) ||
(((int)(dbt->brp) - 1) < 0))
return -EINVAL;
priv->write_reg(priv, CANFD_F_SEG_1_OFFSET, dat_bittiming);
}
canfd_reigister_off_bit(priv, CANFD_CFG_STAT_OFFSET, CAN_FD_OFF_RST_MASK);
netdev_dbg(ndev, "Slow bit rate: %08x\n", priv->read_reg(priv, CANFD_S_SEG_1_OFFSET));
netdev_dbg(ndev, "Fast bit rate: %08x\n", priv->read_reg(priv, CANFD_F_SEG_1_OFFSET));
return 0;
}
int canfd_get_freebuffer(struct ipms_canfd_priv *priv)
{
/* Get next transmit buffer */
canfd_reigister_set_bit(priv, CANFD_TCTRL_OFFSET, CAN_FD_SET_TENEXT_MASK);
if (can_ioread8(priv->reg_base + CANFD_TCTRL_OFFSET) & CAN_FD_SET_TENEXT_MASK)
return -1;
return 0;
}
static void canfd_tx_interrupt(struct net_device *ndev, u8 isr)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
/* wait till transmission of the PTB or STB finished */
while (isr & (CAN_FD_SET_TPIF_MASK | CAN_FD_SET_TSIF_MASK)) {
if (isr & CAN_FD_SET_TPIF_MASK)
canfd_reigister_set_bit(priv, CANFD_RTIF_OFFSET, CAN_FD_SET_TPIF_MASK);
if (isr & CAN_FD_SET_TSIF_MASK)
canfd_reigister_set_bit(priv, CANFD_RTIF_OFFSET, CAN_FD_SET_TSIF_MASK);
isr = can_ioread8(priv->reg_base + CANFD_RTIF_OFFSET);
}
netif_wake_queue(ndev);
}
static int can_rx(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
u32 can_id;
u8 dlc, control, rx_status;
rx_status = can_ioread8(priv->reg_base + CANFD_RCTRL_OFFSET);
if (!(rx_status & CAN_FD_RSTAT_NOT_EMPTY_MASK))
return 0;
control = can_ioread8(priv->reg_base + CANFD_RBUF_CTL_OFFSET);
can_id = priv->read_reg(priv, CANFD_RUBF_ID_OFFSET);
dlc = can_ioread8(priv->reg_base + CANFD_RBUF_CTL_OFFSET) & CAN_FD_SET_DLC_MASK;
skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
if (!skb) {
stats->rx_dropped++;
return 0;
}
cf->can_dlc = can_cc_dlc2len(dlc);
/* change the CANFD id into socketcan id format */
if (control & CAN_FD_SET_IDE_MASK) {
cf->can_id = can_id;
cf->can_id |= CAN_EFF_FLAG;
} else {
cf->can_id = can_id;
cf->can_id &= (~CAN_EFF_FLAG);
}
if (control & CAN_FD_SET_RTR_MASK)
cf->can_id |= CAN_RTR_FLAG;
if (!(control & CAN_FD_SET_RTR_MASK)) {
*((u32 *)(cf->data + 0)) = priv->read_reg(priv, CANFD_RBUF_DATA_OFFSET);
*((u32 *)(cf->data + 4)) = priv->read_reg(priv, CANFD_RBUF_DATA_OFFSET + 4);
}
canfd_reigister_set_bit(priv, CANFD_RCTRL_OFFSET, CAN_FD_SET_RREL_MASK);
stats->rx_bytes += can_fd_dlc2len(cf->can_dlc);
stats->rx_packets++;
netif_receive_skb(skb);
return 1;
}
static int canfd_rx(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct canfd_frame *cf;
struct sk_buff *skb;
u32 can_id;
u8 dlc, control, rx_status;
int i;
rx_status = can_ioread8(priv->reg_base + CANFD_RCTRL_OFFSET);
if (!(rx_status & CAN_FD_RSTAT_NOT_EMPTY_MASK))
return 0;
control = can_ioread8(priv->reg_base + CANFD_RBUF_CTL_OFFSET);
can_id = priv->read_reg(priv, CANFD_RUBF_ID_OFFSET);
dlc = can_ioread8(priv->reg_base + CANFD_RBUF_CTL_OFFSET) & CAN_FD_SET_DLC_MASK;
if (control & CAN_FD_SET_EDL_MASK)
/* allocate sk_buffer for canfd frame */
skb = alloc_canfd_skb(ndev, &cf);
else
/* allocate sk_buffer for can frame */
skb = alloc_can_skb(ndev, (struct can_frame **)&cf);
if (!skb) {
stats->rx_dropped++;
return 0;
}
/* change the CANFD or CAN2.0 data into socketcan data format */
if (control & CAN_FD_SET_EDL_MASK)
cf->len = can_fd_dlc2len(dlc);
else
cf->len = can_cc_dlc2len(dlc);
/* change the CANFD id into socketcan id format */
if (control & CAN_FD_SET_EDL_MASK) {
cf->can_id = can_id;
if (control & CAN_FD_SET_IDE_MASK)
cf->can_id |= CAN_EFF_FLAG;
else
cf->can_id &= (~CAN_EFF_FLAG);
} else {
cf->can_id = can_id;
if (control & CAN_FD_SET_IDE_MASK)
cf->can_id |= CAN_EFF_FLAG;
else
cf->can_id &= (~CAN_EFF_FLAG);
if (control & CAN_FD_SET_RTR_MASK)
cf->can_id |= CAN_RTR_FLAG;
}
/* CANFD frames handed over to SKB */
if (control & CAN_FD_SET_EDL_MASK) {
for (i = 0; i < cf->len; i += 4)
*((u32 *)(cf->data + i)) = priv->read_reg(priv, CANFD_RBUF_DATA_OFFSET + i);
} else {
/* skb reads the received datas, if the RTR bit not set */
if (!(control & CAN_FD_SET_RTR_MASK)) {
*((u32 *)(cf->data + 0)) = priv->read_reg(priv, CANFD_RBUF_DATA_OFFSET);
*((u32 *)(cf->data + 4)) = priv->read_reg(priv, CANFD_RBUF_DATA_OFFSET + 4);
}
}
canfd_reigister_set_bit(priv, CANFD_RCTRL_OFFSET, CAN_FD_SET_RREL_MASK);
stats->rx_bytes += cf->len;
stats->rx_packets++;
netif_receive_skb(skb);
return 1;
}
static int canfd_rx_poll(struct napi_struct *napi, int quota)
{
struct net_device *ndev = napi->dev;
struct ipms_canfd_priv *priv = netdev_priv(ndev);
int work_done = 0;
u8 rx_status = 0, control = 0;
control = can_ioread8(priv->reg_base + CANFD_RBUF_CTL_OFFSET);
rx_status = can_ioread8(priv->reg_base + CANFD_RCTRL_OFFSET);
/* clear receive interrupt and deal with all the received frames */
while ((rx_status & CAN_FD_RSTAT_NOT_EMPTY_MASK) && (work_done < quota)) {
(control & CAN_FD_SET_EDL_MASK) ? (work_done += canfd_rx(ndev)) : (work_done += can_rx(ndev));
control = can_ioread8(priv->reg_base + CANFD_RBUF_CTL_OFFSET);
rx_status = can_ioread8(priv->reg_base + CANFD_RCTRL_OFFSET);
}
napi_complete(napi);
canfd_reigister_set_bit(priv, CANFD_RTIE_OFFSET, CAN_FD_SET_RIE_MASK);
return work_done;
}
static void canfd_rxfull_interrupt(struct net_device *ndev, u8 isr)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
if (isr & CAN_FD_SET_RAFIF_MASK)
canfd_reigister_set_bit(priv, CANFD_RTIF_OFFSET, CAN_FD_SET_RAFIF_MASK);
if (isr & (CAN_FD_SET_RAFIF_MASK | CAN_FD_SET_RFIF_MASK))
canfd_reigister_set_bit(priv, CANFD_RTIF_OFFSET,
(CAN_FD_SET_RAFIF_MASK | CAN_FD_SET_RFIF_MASK));
}
static int set_canfd_xmit_mode(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
switch (priv->tx_mode) {
case XMIT_FULL:
canfd_reigister_set_bit(priv, CANFD_TCTRL_OFFSET, CAN_FD_SET_FULLCAN_MASK);
break;
case XMIT_SEP_FIFO:
canfd_reigister_off_bit(priv, CANFD_TCTRL_OFFSET, CAN_FD_OFF_FULLCAN_MASK);
canfd_reigister_set_bit(priv, CANFD_TCTRL_OFFSET, CAN_FD_SET_FIFO_MASK);
canfd_reigister_off_bit(priv, CANFD_TCMD_OFFSET, CAN_FD_SET_TBSEL_MASK);
break;
case XMIT_SEP_PRIO:
canfd_reigister_off_bit(priv, CANFD_TCTRL_OFFSET, CAN_FD_OFF_FULLCAN_MASK);
canfd_reigister_off_bit(priv, CANFD_TCTRL_OFFSET, CAN_FD_OFF_FIFO_MASK);
canfd_reigister_off_bit(priv, CANFD_TCMD_OFFSET, CAN_FD_SET_TBSEL_MASK);
break;
case XMIT_PTB_MODE:
canfd_reigister_off_bit(priv, CANFD_TCMD_OFFSET, CAN_FD_OFF_TBSEL_MASK);
break;
default:
break;
}
return 0;
}
static netdev_tx_t canfd_driver_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
struct canfd_frame *cf = (struct canfd_frame *)skb->data;
struct net_device_stats *stats = &ndev->stats;
u32 ttsen, id, ctl, addr_off;
int i;
priv->tx_mode = XMIT_PTB_MODE;
switch (priv->tx_mode) {
case XMIT_FULL:
return NETDEV_TX_BUSY;
case XMIT_PTB_MODE:
set_canfd_xmit_mode(ndev);
canfd_reigister_off_bit(priv, CANFD_TCMD_OFFSET, CAN_FD_OFF_STBY_MASK);
if (cf->can_id & CAN_EFF_FLAG) {
id = (cf->can_id & CAN_EFF_MASK);
ttsen = 0 << TTSEN_8_32_SHIFT;
id |= ttsen;
} else {
id = (cf->can_id & CAN_SFF_MASK);
ttsen = 0 << TTSEN_8_32_SHIFT;
id |= ttsen;
}
ctl = can_fd_len2dlc(cf->len);
/* transmit can fd frame */
if (priv->can_or_canfd == IPMS_CAN_TYPE_CANFD) {
if (can_is_canfd_skb(skb)) {
if (cf->can_id & CAN_EFF_FLAG)
ctl |= CAN_FD_SET_IDE_MASK;
else
ctl &= CAN_FD_OFF_IDE_MASK;
if (cf->flags & CANFD_BRS)
ctl |= CAN_FD_SET_BRS_MASK;
ctl |= CAN_FD_SET_EDL_MASK;
addr_off = CANFD_TBUF_DATA_OFFSET;
for (i = 0; i < cf->len; i += 4) {
priv->write_reg(priv, addr_off,
*((u32 *)(cf->data + i)));
addr_off += 4;
}
} else {
ctl &= CAN_FD_OFF_EDL_MASK;
ctl &= CAN_FD_OFF_BRS_MASK;
if (cf->can_id & CAN_EFF_FLAG)
ctl |= CAN_FD_SET_IDE_MASK;
else
ctl &= CAN_FD_OFF_IDE_MASK;
if (cf->can_id & CAN_RTR_FLAG) {
ctl |= CAN_FD_SET_RTR_MASK;
priv->write_reg(priv,
CANFD_TBUF_ID_OFFSET, id);
priv->write_reg(priv,
CANFD_TBUF_CTL_OFFSET, ctl);
} else {
ctl &= CAN_FD_OFF_RTR_MASK;
addr_off = CANFD_TBUF_DATA_OFFSET;
priv->write_reg(priv, addr_off,
*((u32 *)(cf->data + 0)));
priv->write_reg(priv, addr_off + 4,
*((u32 *)(cf->data + 4)));
}
}
priv->write_reg(priv, CANFD_TBUF_ID_OFFSET, id);
priv->write_reg(priv, CANFD_TBUF_CTL_OFFSET, ctl);
addr_off = CANFD_TBUF_DATA_OFFSET;
} else {
ctl &= CAN_FD_OFF_EDL_MASK;
ctl &= CAN_FD_OFF_BRS_MASK;
if (cf->can_id & CAN_EFF_FLAG)
ctl |= CAN_FD_SET_IDE_MASK;
else
ctl &= CAN_FD_OFF_IDE_MASK;
if (cf->can_id & CAN_RTR_FLAG) {
ctl |= CAN_FD_SET_RTR_MASK;
priv->write_reg(priv, CANFD_TBUF_ID_OFFSET, id);
priv->write_reg(priv, CANFD_TBUF_CTL_OFFSET, ctl);
} else {
ctl &= CAN_FD_OFF_RTR_MASK;
priv->write_reg(priv, CANFD_TBUF_ID_OFFSET, id);
priv->write_reg(priv, CANFD_TBUF_CTL_OFFSET, ctl);
addr_off = CANFD_TBUF_DATA_OFFSET;
priv->write_reg(priv, addr_off,
*((u32 *)(cf->data + 0)));
priv->write_reg(priv, addr_off + 4,
*((u32 *)(cf->data + 4)));
}
}
canfd_reigister_set_bit(priv, CANFD_TCMD_OFFSET, CAN_FD_SET_TPE_MASK);
stats->tx_bytes += cf->len;
netif_stop_queue(ndev);
break;
default:
break;
}
return NETDEV_TX_OK;
}
static int set_reset_mode(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
u8 ret;
ret = can_ioread8(priv->reg_base + CANFD_CFG_STAT_OFFSET);
ret |= CAN_FD_SET_RST_MASK;
can_iowrite8(ret, priv->reg_base + CANFD_CFG_STAT_OFFSET);
return 0;
}
static void canfd_driver_stop(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
int ret;
ret = set_reset_mode(ndev);
if (ret)
netdev_err(ndev, "Mode Resetting Failed!\n");
priv->can.state = CAN_STATE_STOPPED;
}
static int canfd_driver_close(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
netif_stop_queue(ndev);
napi_disable(&priv->napi);
canfd_driver_stop(ndev);
free_irq(ndev->irq, ndev);
close_candev(ndev);
pm_runtime_put(priv->dev);
return 0;
}
static enum can_state get_of_chip_status(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
u8 can_stat, eir;
can_stat = can_ioread8(priv->reg_base + CANFD_CFG_STAT_OFFSET);
eir = can_ioread8(priv->reg_base + CANFD_ERRINT_OFFSET);
if (can_stat & CAN_FD_SET_BUSOFF_MASK)
return CAN_STATE_BUS_OFF;
if ((eir & CAN_FD_SET_EPASS_MASK) && ~(can_stat & CAN_FD_SET_BUSOFF_MASK))
return CAN_STATE_ERROR_PASSIVE;
if (eir & CAN_FD_SET_EWARN_MASK && ~(eir & CAN_FD_SET_EPASS_MASK))
return CAN_STATE_ERROR_WARNING;
if (~(eir & CAN_FD_SET_EPASS_MASK))
return CAN_STATE_ERROR_ACTIVE;
return CAN_STATE_ERROR_ACTIVE;
}
static void canfd_error_interrupt(struct net_device *ndev, u8 isr, u8 eir)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
struct net_device_stats *stats = &ndev->stats;
struct can_frame *cf;
struct sk_buff *skb;
u8 koer, recnt = 0, tecnt = 0, can_stat = 0;
skb = alloc_can_err_skb(ndev, &cf);
koer = can_ioread8(priv->reg_base + CANFD_EALCAP_OFFSET) & CAN_FD_SET_KOER_MASK;
recnt = can_ioread8(priv->reg_base + CANFD_RECNT_OFFSET);
tecnt = can_ioread8(priv->reg_base + CANFD_TECNT_OFFSET);
/*Read can status*/
can_stat = can_ioread8(priv->reg_base + CANFD_CFG_STAT_OFFSET);
/* Bus off --->active error mode */
if ((isr & CAN_FD_SET_EIF_MASK) && priv->can.state == CAN_STATE_BUS_OFF)
priv->can.state = get_of_chip_status(ndev);
/* State selection */
if (can_stat & CAN_FD_SET_BUSOFF_MASK) {
priv->can.state = get_of_chip_status(ndev);
priv->can.can_stats.bus_off++;
canfd_reigister_set_bit(priv, CANFD_CFG_STAT_OFFSET, CAN_FD_SET_BUSOFF_MASK);
can_bus_off(ndev);
if (skb)
cf->can_id |= CAN_ERR_BUSOFF;
} else if ((eir & CAN_FD_SET_EPASS_MASK) && ~(can_stat & CAN_FD_SET_BUSOFF_MASK)) {
priv->can.state = get_of_chip_status(ndev);
priv->can.can_stats.error_passive++;
if (skb) {
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= (recnt > 127) ? CAN_ERR_CRTL_RX_PASSIVE : 0;
cf->data[1] |= (tecnt > 127) ? CAN_ERR_CRTL_TX_PASSIVE : 0;
cf->data[6] = tecnt;
cf->data[7] = recnt;
}
} else if (eir & CAN_FD_SET_EWARN_MASK && ~(eir & CAN_FD_SET_EPASS_MASK)) {
priv->can.state = get_of_chip_status(ndev);
priv->can.can_stats.error_warning++;
if (skb) {
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= (recnt > 95) ? CAN_ERR_CRTL_RX_WARNING : 0;
cf->data[1] |= (tecnt > 95) ? CAN_ERR_CRTL_TX_WARNING : 0;
cf->data[6] = tecnt;
cf->data[7] = recnt;
}
}
/* Check for in protocol defined error interrupt */
if (eir & CAN_FD_SET_BEIF_MASK) {
if (skb)
cf->can_id |= CAN_ERR_BUSERROR | CAN_ERR_PROT;
/* bit error interrupt */
if (koer == CAN_FD_SET_BIT_ERROR_MASK) {
stats->tx_errors++;
if (skb) {
cf->can_id |= CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_BIT;
}
}
/* format error interrupt */
if (koer == CAN_FD_SET_FORM_ERROR_MASK) {
stats->rx_errors++;
if (skb) {
cf->can_id |= CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_FORM;
}
}
/* stuffing error interrupt */
if (koer == CAN_FD_SET_STUFF_ERROR_MASK) {
stats->rx_errors++;
if (skb) {
cf->can_id |= CAN_ERR_PROT;
cf->data[3] = CAN_ERR_PROT_STUFF;
}
}
/* ack error interrupt */
if (koer == CAN_FD_SET_ACK_ERROR_MASK) {
stats->tx_errors++;
if (skb) {
cf->can_id |= CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_LOC_ACK;
}
}
/* crc error interrupt */
if (koer == CAN_FD_SET_CRC_ERROR_MASK) {
stats->rx_errors++;
if (skb) {
cf->can_id |= CAN_ERR_PROT;
cf->data[2] = CAN_ERR_PROT_LOC_CRC_SEQ;
}
}
priv->can.can_stats.bus_error++;
}
if (skb) {
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
netif_rx(skb);
}
netdev_dbg(ndev, "Recnt is 0x%02x", can_ioread8(priv->reg_base + CANFD_RECNT_OFFSET));
netdev_dbg(ndev, "Tecnt is 0x%02x", can_ioread8(priv->reg_base + CANFD_TECNT_OFFSET));
}
static irqreturn_t canfd_interrupt(int irq, void *dev_id)
{
struct net_device *ndev = (struct net_device *)dev_id;
struct ipms_canfd_priv *priv = netdev_priv(ndev);
u8 isr, eir;
u8 isr_handled = 0, eir_handled = 0;
/* read the value of interrupt status register */
isr = can_ioread8(priv->reg_base + CANFD_RTIF_OFFSET);
/* read the value of error interrupt register */
eir = can_ioread8(priv->reg_base + CANFD_ERRINT_OFFSET);
/* Check for Tx interrupt and Processing it */
if (isr & (CAN_FD_SET_TPIF_MASK | CAN_FD_SET_TSIF_MASK)) {
canfd_tx_interrupt(ndev, isr);
isr_handled |= (CAN_FD_SET_TPIF_MASK | CAN_FD_SET_TSIF_MASK);
}
if (isr & (CAN_FD_SET_RAFIF_MASK | CAN_FD_SET_RFIF_MASK)) {
canfd_rxfull_interrupt(ndev, isr);
isr_handled |= (CAN_FD_SET_RAFIF_MASK | CAN_FD_SET_RFIF_MASK);
}
/* Check Rx interrupt and Processing the receive interrupt routine */
if (isr & CAN_FD_SET_RIF_MASK) {
canfd_reigister_off_bit(priv, CANFD_RTIE_OFFSET, CAN_FD_OFF_RIE_MASK);
canfd_reigister_set_bit(priv, CANFD_RTIF_OFFSET, CAN_FD_SET_RIF_MASK);
napi_schedule(&priv->napi);
isr_handled |= CAN_FD_SET_RIF_MASK;
}
if ((isr & CAN_FD_SET_EIF_MASK) | (eir & (CAN_FD_SET_EPIF_MASK | CAN_FD_SET_BEIF_MASK))) {
/* reset EPIF and BEIF. Reset EIF */
canfd_reigister_set_bit(priv, CANFD_ERRINT_OFFSET,
eir & (CAN_FD_SET_EPIF_MASK | CAN_FD_SET_BEIF_MASK));
canfd_reigister_set_bit(priv, CANFD_RTIF_OFFSET,
isr & CAN_FD_SET_EIF_MASK);
canfd_error_interrupt(ndev, isr, eir);
isr_handled |= CAN_FD_SET_EIF_MASK;
eir_handled |= (CAN_FD_SET_EPIF_MASK | CAN_FD_SET_BEIF_MASK);
}
if ((isr_handled == 0) && (eir_handled == 0)) {
netdev_err(ndev, "Unhandled interrupt!\n");
return IRQ_NONE;
}
return IRQ_HANDLED;
}
static int canfd_chip_start(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
int err;
u8 ret;
err = set_reset_mode(ndev);
if (err) {
netdev_err(ndev, "Mode Resetting Failed!\n");
return err;
}
err = canfd_device_driver_bittime_configuration(ndev);
if (err) {
netdev_err(ndev, "Bittime Setting Failed!\n");
return err;
}
/* Set Almost Full Warning Limit */
canfd_reigister_set_bit(priv, CANFD_LIMIT_OFFSET, CAN_FD_SET_AFWL_MASK);
/* Programmable Error Warning Limit = (EWL+1)*8. Set EWL=11->Error Warning=96 */
canfd_reigister_set_bit(priv, CANFD_LIMIT_OFFSET, CAN_FD_SET_EWL_MASK);
/* Interrupts enable */
can_iowrite8(CAN_FD_INTR_ALL_MASK, priv->reg_base + CANFD_RTIE_OFFSET);
/* Error Interrupts enable(Error Passive and Bus Error) */
canfd_reigister_set_bit(priv, CANFD_ERRINT_OFFSET, CAN_FD_SET_EPIE_MASK);
ret = can_ioread8(priv->reg_base + CANFD_CFG_STAT_OFFSET);
/* Check whether it is loopback mode or normal mode */
if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
ret |= CAN_FD_LBMIMOD_MASK;
} else {
ret &= ~CAN_FD_LBMEMOD_MASK;
ret &= ~CAN_FD_LBMIMOD_MASK;
}
can_iowrite8(ret, priv->reg_base + CANFD_CFG_STAT_OFFSET);
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
}
static int canfd_do_set_mode(struct net_device *ndev, enum can_mode mode)
{
int ret;
switch (mode) {
case CAN_MODE_START:
ret = canfd_chip_start(ndev);
if (ret) {
netdev_err(ndev, "Could Not Start CAN device !!\n");
return ret;
}
netif_wake_queue(ndev);
break;
default:
ret = -EOPNOTSUPP;
break;
}
return ret;
}
static int canfd_driver_open(struct net_device *ndev)
{
struct ipms_canfd_priv *priv = netdev_priv(ndev);
int ret;
ret = pm_runtime_get_sync(priv->dev);
if (ret < 0) {
dev_err(priv->dev, " %s: pm_runtime_get failed\n", __func__);
goto err;
}
/* Set chip into reset mode */
ret = set_reset_mode(ndev);
if (ret) {
netdev_err(ndev, "Mode Resetting Failed!\n");
return ret;
}
/* Common open */
ret = open_candev(ndev);
if (ret)
return ret;
/* Register interrupt handler */
ret = request_irq(ndev->irq, canfd_interrupt, IRQF_SHARED, ndev->name, ndev);
if (ret) {
netdev_err(ndev, "Request_irq err: %d\n", ret);
goto exit_irq;
}
ret = canfd_chip_start(ndev);
if (ret) {
netdev_err(ndev, "Could Not Start CAN device !\n");
goto exit_can_start;
}
napi_enable(&priv->napi);
netif_start_queue(ndev);
return 0;
exit_can_start:
free_irq(ndev->irq, ndev);
err:
pm_runtime_put(priv->dev);
exit_irq:
close_candev(ndev);
return ret;
}
static const struct net_device_ops canfd_netdev_ops = {
.ndo_open = canfd_driver_open,
.ndo_stop = canfd_driver_close,
.ndo_start_xmit = canfd_driver_start_xmit,
.ndo_change_mtu = can_change_mtu,
};
static int canfd_driver_probe(struct platform_device *pdev)
{
struct net_device *ndev;
struct ipms_canfd_priv *priv;
void __iomem *addr;
int ret;
u32 frq;
addr = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(addr)) {
ret = PTR_ERR(addr);
goto exit;
}
ndev = alloc_candev(sizeof(struct ipms_canfd_priv), 1);
if (!ndev) {
ret = -ENOMEM;
goto exit;
}
priv = netdev_priv(ndev);
priv->dev = &pdev->dev;
ret = device_property_read_u32(priv->dev, "syscon,can_or_canfd", &priv->can_or_canfd);
if (ret)
goto free_exit;
priv->nr_clks = devm_clk_bulk_get_all(priv->dev, &priv->clks);
if (priv->nr_clks < 0) {
dev_err(priv->dev, "Failed to get can clocks\n");
ret = -ENODEV;
goto free_exit;
}
ret = clk_bulk_prepare_enable(priv->nr_clks, priv->clks);
if (ret) {
dev_err(priv->dev, "Failed to enable clocks\n");
goto free_exit;
}
priv->resets = devm_reset_control_array_get_exclusive(priv->dev);
if (IS_ERR(priv->resets)) {
ret = PTR_ERR(priv->resets);
dev_err(priv->dev, "Failed to get can resets");
goto clk_exit;
}
ret = reset_control_deassert(priv->resets);
if (ret)
goto clk_exit;
priv->can.bittiming_const = &canfd_bittiming_const;
priv->can.data_bittiming_const = &canfd_data_bittiming_const;
priv->can.do_set_mode = canfd_do_set_mode;
/* in user space the execution mode can be chosen */
if (priv->can_or_canfd == IPMS_CAN_TYPE_CANFD)
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_FD;
else
priv->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK;
priv->reg_base = addr;
priv->write_reg = canfd_write_reg_le;
priv->read_reg = canfd_read_reg_le;
pm_runtime_enable(&pdev->dev);
priv->can_clk = devm_clk_get(&pdev->dev, "core_clk");
if (IS_ERR(priv->can_clk)) {
dev_err(&pdev->dev, "Device clock not found.\n");
ret = PTR_ERR(priv->can_clk);
goto reset_exit;
}
device_property_read_u32(priv->dev, "frequency", &frq);
clk_set_rate(priv->can_clk, frq);
priv->can.clock.freq = clk_get_rate(priv->can_clk);
ndev->irq = platform_get_irq(pdev, 0);
/* we support local echo */
ndev->flags |= IFF_ECHO;
ndev->netdev_ops = &canfd_netdev_ops;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, &pdev->dev);
netif_napi_add_weight(ndev, &priv->napi, canfd_rx_poll, 16);
ret = register_candev(ndev);
if (ret) {
dev_err(&pdev->dev, "Fail to register failed (err=%d)\n", ret);
goto reset_exit;
}
dev_info(&pdev->dev, "Driver registered: regs=%p, irp=%d, clock=%d\n",
priv->reg_base, ndev->irq, priv->can.clock.freq);
return 0;
reset_exit:
reset_control_assert(priv->resets);
clk_exit:
clk_bulk_disable_unprepare(priv->nr_clks, priv->clks);
free_exit:
free_candev(ndev);
exit:
return ret;
}
static int canfd_driver_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct ipms_canfd_priv *priv = netdev_priv(ndev);
reset_control_assert(priv->resets);
clk_bulk_disable_unprepare(priv->nr_clks, priv->clks);
pm_runtime_disable(&pdev->dev);
unregister_candev(ndev);
netif_napi_del(&priv->napi);
free_candev(ndev);
return 0;
}
#ifdef CONFIG_PM
static int canfd_runtime_suspend(struct device *dev)
{
struct ipms_canfd_priv *priv = dev_get_drvdata(dev);
reset_control_assert(priv->resets);
clk_bulk_disable_unprepare(priv->nr_clks, priv->clks);
return 0;
}
static int canfd_runtime_resume(struct device *dev)
{
struct ipms_canfd_priv *priv = dev_get_drvdata(dev);
int ret;
ret = clk_bulk_prepare_enable(priv->nr_clks, priv->clks);
if (ret) {
dev_err(dev, "Failed to prepare_enable clk\n");
return ret;
}
ret = reset_control_deassert(priv->resets);
if (ret) {
dev_err(dev, "Failed to deassert reset\n");
return ret;
}
return 0;
}
#endif
static const struct dev_pm_ops canfd_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
pm_runtime_force_resume)
SET_RUNTIME_PM_OPS(canfd_runtime_suspend,
canfd_runtime_resume, NULL)
};
static const struct of_device_id canfd_of_match[] = {
{ .compatible = "ipms,can" },
{ }
};
MODULE_DEVICE_TABLE(of, canfd_of_match);
static struct platform_driver can_driver = {
.probe = canfd_driver_probe,
.remove = canfd_driver_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &canfd_pm_ops,
.of_match_table = canfd_of_match,
},
};
module_platform_driver(can_driver);
MODULE_AUTHOR("jenny.zhang <jenny.zhang@starfivetech.com>");
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("ipms can controller driver");