1
0
This repository has been archived on 2025-07-31. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
orange_kernel/drivers/dma/mmp_pdma_x1.c
2025-03-18 10:29:27 +08:00

1665 lines
41 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright 2012 Marvell International Ltd.
*/
#include <linux/err.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/dmaengine.h>
#include <linux/platform_device.h>
#include <linux/device.h>
#include <linux/platform_data/mmp_dma.h>
#include <linux/dmapool.h>
#include <linux/clk.h>
#include <linux/reset.h>
#include <linux/of_device.h>
#include <linux/of_dma.h>
#include <linux/of.h>
#include <linux/delay.h>
#include <linux/pm_runtime.h>
#include <linux/pm_qos.h>
#include "dmaengine.h"
#define DDADRH(n) (0x0300 + ((n) << 4))
#define DSADRH(n) (0x0304 + ((n) << 4))
#define DTADRH(n) (0x0308 + ((n) << 4))
#define DCSR_LPAEEN BIT(21) /* Long Physical Address Extension enable */
#define DRCMR_INVALID 100 /* Max DMA request number + 1 */
#define DCMD_BURST64 (4 << 16) /* 64 byte burst */
#define DCSR 0x0000
#define DALGN 0x00a0
#define DINT 0x00f0
#define DDADR 0x0200
#define DSADR(n) (0x0204 + ((n) << 4))
#define DTADR(n) (0x0208 + ((n) << 4))
#define DCMD 0x020c
#define DCSR_RUN BIT(31) /* Run Bit (read / write) */
#define DCSR_NODESC BIT(30) /* No-Descriptor Fetch (read / write) */
#define DCSR_STOPIRQEN BIT(29) /* Stop Interrupt Enable (read / write) */
#define DCSR_REQPEND BIT(8) /* Request Pending (read-only) */
#define DCSR_STOPSTATE BIT(3) /* Stop State (read-only) */
#define DCSR_ENDINTR BIT(2) /* End Interrupt (read / write) */
#define DCSR_STARTINTR BIT(1) /* Start Interrupt (read / write) */
#define DCSR_BUSERR BIT(0) /* Bus Error Interrupt (read / write) */
#define DCSR_EORIRQEN BIT(28) /* End of Receive Interrupt Enable (R/W) */
#define DCSR_EORJMPEN BIT(27) /* Jump to next descriptor on EOR */
#define DCSR_EORSTOPEN BIT(26) /* STOP on an EOR */
#define DCSR_SETCMPST BIT(25) /* Set Descriptor Compare Status */
#define DCSR_CLRCMPST BIT(24) /* Clear Descriptor Compare Status */
#define DCSR_CMPST BIT(10) /* The Descriptor Compare Status */
#define DCSR_EORINTR BIT(9) /* The end of Receive */
#define DRCMR(n) ((((n) < 64) ? 0x0100 : 0x1100) + (((n) & 0x3f) << 2))
#define DRCMR_MAPVLD BIT(7) /* Map Valid (read / write) */
#define DRCMR_CHLNUM 0x1f /* mask for Channel Number (read / write) */
#define DDADR_DESCADDR 0xfffffff0 /* Address of next descriptor (mask) */
#define DDADR_STOP BIT(0) /* Stop (read / write) */
#define DCMD_INCSRCADDR BIT(31) /* Source Address Increment Setting. */
#define DCMD_INCTRGADDR BIT(30) /* Target Address Increment Setting. */
#define DCMD_FLOWSRC BIT(29) /* Flow Control by the source. */
#define DCMD_FLOWTRG BIT(28) /* Flow Control by the target. */
#define DCMD_STARTIRQEN BIT(22) /* Start Interrupt Enable */
#define DCMD_ENDIRQEN BIT(21) /* End Interrupt Enable */
#define DCMD_ENDIAN BIT(18) /* Device Endian-ness. */
#define DCMD_BURST8 (1 << 16) /* 8 byte burst */
#define DCMD_BURST16 (2 << 16) /* 16 byte burst */
#define DCMD_BURST32 (3 << 16) /* 32 byte burst */
#define DCMD_WIDTH1 (1 << 14) /* 1 byte width */
#define DCMD_WIDTH2 (2 << 14) /* 2 byte width (HalfWord) */
#define DCMD_WIDTH4 (3 << 14) /* 4 byte width (Word) */
#define DCMD_LENGTH 0x01fff /* length mask (max = 8K - 1) */
#define PDMA_MAX_DESC_BYTES DCMD_LENGTH
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
struct mmp_pdma_desc_hw {
u32 ddadr; /* Points to the next descriptor + flags */
u32 dsadr; /* DSADR value for the current transfer */
u32 dtadr; /* DTADR value for the current transfer */
u32 dcmd; /* DCMD value for the current transfer */
u32 ddadrh; /* Points to the next descriptor + flags */
u32 dsadrh; /* DSADR value for the current transfer */
u32 dtadrh; /* DTADR value for the current transfer */
u32 rsvd; /* DCMD value for the current transfer */
} __aligned(64);
#else
struct mmp_pdma_desc_hw {
u32 ddadr; /* Points to the next descriptor + flags */
u32 dsadr; /* DSADR value for the current transfer */
u32 dtadr; /* DTADR value for the current transfer */
u32 dcmd; /* DCMD value for the current transfer */
} __aligned(32);
#endif
struct mmp_pdma_desc_sw {
struct mmp_pdma_desc_hw desc;
struct list_head node;
struct list_head tx_list;
struct dma_async_tx_descriptor async_tx;
};
struct mmp_pdma_phy;
struct mmp_pdma_chan {
struct device *dev;
struct dma_chan chan;
struct dma_async_tx_descriptor desc;
struct mmp_pdma_phy *phy;
enum dma_transfer_direction dir;
struct dma_slave_config slave_config;
struct mmp_pdma_desc_sw *cyclic_first; /* first desc_sw if channel
* is in cyclic mode */
/* channel's basic info */
struct tasklet_struct tasklet;
u32 dcmd;
u32 drcmr;
u32 dev_addr;
/* list for desc */
spinlock_t desc_lock; /* Descriptor list lock */
struct list_head chain_pending; /* Link descriptors queue for pending */
struct list_head chain_running; /* Link descriptors queue for running */
bool idle; /* channel statue machine */
bool byte_align;
int user_do_qos;
int qos_count; /* Per-channel qos count */
enum dma_status status; /* channel state machine */
u32 bytes_residue;
struct dma_pool *desc_pool; /* Descriptors pool */
};
struct mmp_pdma_phy {
int idx;
void __iomem *base;
struct mmp_pdma_chan *vchan;
};
struct reserved_chan{
int chan_id;
int drcmr;
};
struct mmp_pdma_device {
int dma_channels;
int nr_reserved_channels;
struct reserved_chan *reserved_channels;
s32 lpm_qos;
struct clk *clk;
struct reset_control *resets;
int max_burst_size;
void __iomem *base;
struct device *dev;
struct dma_device device;
struct mmp_pdma_phy *phy;
spinlock_t phy_lock; /* protect alloc/free phy channels */
};
#define tx_to_mmp_pdma_desc(tx) \
container_of(tx, struct mmp_pdma_desc_sw, async_tx)
#define to_mmp_pdma_desc(lh) \
container_of(lh, struct mmp_pdma_desc_sw, node)
#define to_mmp_pdma_chan(dchan) \
container_of(dchan, struct mmp_pdma_chan, chan)
#define to_mmp_pdma_dev(dmadev) \
container_of(dmadev, struct mmp_pdma_device, device)
static void mmp_pdma_qos_get(struct mmp_pdma_chan *chan);
static void mmp_pdma_qos_put(struct mmp_pdma_chan *chan);
#define QSPI_PHY_CHAN 15
static int mmp_pdma_config_write(struct dma_chan *dchan,
struct dma_slave_config *cfg,
enum dma_transfer_direction direction);
static void set_desc(struct mmp_pdma_phy *phy, dma_addr_t addr)
{
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
u32 ddadrh;
#endif
u32 reg = (phy->idx << 4) + DDADR;
writel(addr & 0xffffffff, phy->base + reg);
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
/* config higher bits for desc address */
ddadrh = (addr >> 32);
writel(ddadrh, phy->base + DDADRH(phy->idx));
#endif
}
static void enable_chan(struct mmp_pdma_phy *phy)
{
u32 reg, dalgn;
u32 dcsr;
unsigned long flags;
struct mmp_pdma_device *pdev;
if (phy == NULL)
return;
if (!phy->vchan)
return;
pdev = to_mmp_pdma_dev(phy->vchan->chan.device);
spin_lock_irqsave(&pdev->phy_lock, flags);
reg = DRCMR(phy->vchan->drcmr);
writel(DRCMR_MAPVLD | phy->idx, phy->base + reg);
dalgn = readl(phy->base + DALGN);
if (phy->vchan->byte_align)
dalgn |= 1 << phy->idx;
else
dalgn &= ~(1 << phy->idx);
writel(dalgn, phy->base + DALGN);
reg = (phy->idx << 2) + DCSR;
dcsr = readl(phy->base + reg);
dcsr |= (DCSR_RUN | DCSR_EORIRQEN | DCSR_EORSTOPEN);
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
/* use long descriptor mode: set DCSR_LPAEEN bit */
dcsr |= DCSR_LPAEEN;
#endif
writel(dcsr, phy->base + reg);
spin_unlock_irqrestore(&pdev->phy_lock, flags);
}
static void disable_chan(struct mmp_pdma_phy *phy)
{
u32 reg;
u32 dcsr, cnt = 1000;
if (!phy)
return;
reg = (phy->idx << 2) + DCSR;
dcsr = readl(phy->base + reg);
dcsr &= ~(DCSR_RUN | DCSR_EORIRQEN | DCSR_EORSTOPEN);
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
/* use long descriptor mode: set DCSR_LPAEEN bit */
dcsr &= ~DCSR_LPAEEN;
#endif
writel(dcsr, phy->base + reg);
/* ensure dma is stopped. */
dcsr = readl(phy->base + reg);
while (!(dcsr & (0x1 << 3)) && --cnt) {
udelay(10);
dcsr = readl(phy->base + reg);
}
WARN_ON(!cnt);
}
static int clear_chan_irq(struct mmp_pdma_phy *phy)
{
u32 dcsr;
u32 dint = readl(phy->base + DINT);
u32 reg = (phy->idx << 2) + DCSR;
if (!(dint & BIT(phy->idx)))
return -EAGAIN;
/* clear irq */
dcsr = readl(phy->base + reg);
writel(dcsr, phy->base + reg);
if ((dcsr & DCSR_BUSERR) && (phy->vchan))
dev_warn(phy->vchan->dev, "DCSR_BUSERR\n");
return 0;
}
static irqreturn_t mmp_pdma_chan_handler(int irq, void *dev_id)
{
struct mmp_pdma_phy *phy = dev_id;
struct mmp_pdma_chan *pchan = phy->vchan;
if (clear_chan_irq(phy) != 0)
return IRQ_NONE;
if (pchan)
tasklet_schedule(&pchan->tasklet);
return IRQ_HANDLED;
}
static bool is_channel_reserved(struct mmp_pdma_device *pdev, int chan_id)
{
int i;
for (i = 0; i < pdev->nr_reserved_channels; i++) {
if (chan_id == pdev->reserved_channels[i].chan_id)
return true;
}
return false;
}
static struct mmp_pdma_phy * lookup_phy_for_drcmr(struct mmp_pdma_device *pdev, int drcmr)
{
int i;
int chan_id;
struct mmp_pdma_phy *phy;
for (i = 0; i < pdev->nr_reserved_channels; i++) {
if (drcmr == pdev->reserved_channels[i].drcmr) {
chan_id = pdev->reserved_channels[i].chan_id;
phy = &pdev->phy[chan_id];
return phy;
}
}
return NULL;
}
static irqreturn_t mmp_pdma_int_handler(int irq, void *dev_id)
{
struct mmp_pdma_device *pdev = dev_id;
struct mmp_pdma_phy *phy;
u32 dint = readl(pdev->base + DINT);
int i, ret;
int irq_num = 0;
unsigned long flags;
while (dint) {
i = __ffs(dint);
/* only handle interrupts belonging to pdma driver*/
if (i >= pdev->dma_channels)
break;
dint &= (dint - 1);
phy = &pdev->phy[i];
spin_lock_irqsave(&pdev->phy_lock, flags);
ret = mmp_pdma_chan_handler(irq, phy);
spin_unlock_irqrestore(&pdev->phy_lock, flags);
if (ret == IRQ_HANDLED)
irq_num++;
}
if (irq_num)
return IRQ_HANDLED;
return IRQ_NONE;
}
/* lookup free phy channel as descending priority */
static struct mmp_pdma_phy *lookup_phy(struct mmp_pdma_chan *pchan)
{
int prio, i;
struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
struct mmp_pdma_phy *phy, *found = NULL;
unsigned long flags;
/*
* dma channel priorities
* ch 0 - 3, 16 - 19 <--> (0)
* ch 4 - 7, 20 - 23 <--> (1)
* ch 8 - 11, 24 - 27 <--> (2)
* ch 12 - 15, 28 - 31 <--> (3)
*/
spin_lock_irqsave(&pdev->phy_lock, flags);
phy = lookup_phy_for_drcmr(pdev, pchan->drcmr);
if (phy != NULL) {
if (!phy->vchan) {
phy->vchan = pchan;
found = phy;
}
goto out_unlock;
}
for (prio = 0; prio <= ((pdev->dma_channels - 1) & 0xf) >> 2; prio++) {
for (i = 0; i < pdev->dma_channels; i++) {
if (prio != (i & 0xf) >> 2)
continue;
if (is_channel_reserved(pdev, i))
continue;
phy = &pdev->phy[i];
if (!phy->vchan) {
phy->vchan = pchan;
found = phy;
goto out_unlock;
}
}
}
out_unlock:
spin_unlock_irqrestore(&pdev->phy_lock, flags);
return found;
}
static void mmp_pdma_free_phy(struct mmp_pdma_chan *pchan)
{
struct mmp_pdma_device *pdev = to_mmp_pdma_dev(pchan->chan.device);
unsigned long flags;
u32 reg;
if (!pchan->phy)
return;
/* clear the channel mapping in DRCMR */
reg = DRCMR(pchan->drcmr);
writel(0, pchan->phy->base + reg);
spin_lock_irqsave(&pdev->phy_lock, flags);
pchan->phy->vchan = NULL;
pchan->phy = NULL;
spin_unlock_irqrestore(&pdev->phy_lock, flags);
}
/*
* start_pending_queue - transfer any pending transactions
* pending list ==> running list
*/
static int start_pending_queue(struct mmp_pdma_chan *chan)
{
struct mmp_pdma_desc_sw *desc;
struct mmp_pdma_desc_sw *_desc;
/* still in running, irq will start the pending list */
if (chan->status == DMA_IN_PROGRESS) {
dev_dbg(chan->dev, "DMA controller still busy\n");
return -1;
}
if (list_empty(&chan->chain_pending)) {
/* chance to re-fetch phy channel with higher prio */
mmp_pdma_free_phy(chan);
dev_dbg(chan->dev, "no pending list\n");
return -1;
}
if (!chan->phy) {
chan->phy = lookup_phy(chan);
if (!chan->phy) {
dev_dbg(chan->dev, "no free dma channel\n");
return -1;
}
}
/*
* pending -> running
* reintilize pending list
*/
list_for_each_entry_safe(desc, _desc, &chan->chain_pending, node) {
list_del(&desc->node);
list_add_tail(&desc->node, &chan->chain_running);
if (desc->desc.ddadr & DDADR_STOP)
break;
}
desc = list_first_entry(&chan->chain_running,
struct mmp_pdma_desc_sw, node);
/*
* Program the descriptor's address into the DMA controller,
* then start the DMA transaction
*/
set_desc(chan->phy, desc->async_tx.phys);
enable_chan(chan->phy);
chan->idle = false;
chan->status = DMA_IN_PROGRESS;
chan->bytes_residue = 0;
return 0;
}
/* desc->tx_list ==> pending list */
static dma_cookie_t mmp_pdma_tx_submit(struct dma_async_tx_descriptor *tx)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(tx->chan);
struct mmp_pdma_desc_sw *desc = tx_to_mmp_pdma_desc(tx);
struct mmp_pdma_desc_sw *child;
unsigned long flags;
dma_cookie_t cookie = -EBUSY;
spin_lock_irqsave(&chan->desc_lock, flags);
list_for_each_entry(child, &desc->tx_list, node) {
cookie = dma_cookie_assign(&child->async_tx);
}
/* softly link to pending list - desc->tx_list ==> pending list */
list_splice_tail_init(&desc->tx_list, &chan->chain_pending);
spin_unlock_irqrestore(&chan->desc_lock, flags);
return cookie;
}
static struct mmp_pdma_desc_sw *
mmp_pdma_alloc_descriptor(struct mmp_pdma_chan *chan)
{
struct mmp_pdma_desc_sw *desc;
dma_addr_t pdesc;
desc = dma_pool_zalloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
if (!desc) {
dev_err(chan->dev, "out of memory for link descriptor\n");
return NULL;
}
INIT_LIST_HEAD(&desc->tx_list);
dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
/* each desc has submit */
desc->async_tx.tx_submit = mmp_pdma_tx_submit;
desc->async_tx.phys = pdesc;
return desc;
}
/*
* mmp_pdma_alloc_chan_resources - Allocate resources for DMA channel.
*
* This function will create a dma pool for descriptor allocation.
* Request irq only when channel is requested
* Return - The number of allocated descriptors.
*/
static int mmp_pdma_alloc_chan_resources(struct dma_chan *dchan)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
if (chan->desc_pool)
return 1;
chan->desc_pool = dma_pool_create(dev_name(&dchan->dev->device),
chan->dev,
sizeof(struct mmp_pdma_desc_sw),
__alignof__(struct mmp_pdma_desc_sw),
0);
if (!chan->desc_pool) {
dev_err(chan->dev, "unable to allocate descriptor pool\n");
return -ENOMEM;
}
chan->status = DMA_COMPLETE;
chan->dir = 0;
chan->dcmd = 0;
mmp_pdma_free_phy(chan);
chan->idle = true;
chan->dev_addr = 0;
return 1;
}
static void mmp_pdma_free_desc_list(struct mmp_pdma_chan *chan,
struct list_head *list)
{
struct mmp_pdma_desc_sw *desc, *_desc;
list_for_each_entry_safe(desc, _desc, list, node) {
list_del(&desc->node);
dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
}
}
static void mmp_pdma_free_chan_resources(struct dma_chan *dchan)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
unsigned long flags;
/* wait until task ends if necessary */
tasklet_kill(&chan->tasklet);
spin_lock_irqsave(&chan->desc_lock, flags);
mmp_pdma_free_desc_list(chan, &chan->chain_pending);
mmp_pdma_free_desc_list(chan, &chan->chain_running);
spin_unlock_irqrestore(&chan->desc_lock, flags);
dma_pool_destroy(chan->desc_pool);
chan->desc_pool = NULL;
chan->idle = true;
chan->dev_addr = 0;
chan->status = DMA_COMPLETE;
chan->dir = 0;
chan->dcmd = 0;
mmp_pdma_free_phy(chan);
return;
}
#define INVALID_BURST_SETTING -1
#define DEFAULT_MAX_BURST_SIZE 32
static int get_max_burst_setting(unsigned int max_burst_size)
{
switch (max_burst_size) {
case 8:
return DCMD_BURST8;
case 16:
return DCMD_BURST16;
case 32:
return DCMD_BURST32;
case 64:
return DCMD_BURST64;
default:
return INVALID_BURST_SETTING;
}
}
static struct dma_async_tx_descriptor *
mmp_pdma_prep_memcpy(struct dma_chan *dchan,
dma_addr_t dma_dst, dma_addr_t dma_src,
size_t len, unsigned long flags)
{
struct mmp_pdma_chan *chan;
struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
size_t copy = 0;
struct mmp_pdma_device *dev;
int value;
if (!dchan)
return NULL;
if (!len)
return NULL;
chan = to_mmp_pdma_chan(dchan);
chan->byte_align = false;
if (!chan->dir) {
chan->dir = DMA_MEM_TO_MEM;
chan->dcmd = DCMD_INCTRGADDR | DCMD_INCSRCADDR;
dev = to_mmp_pdma_dev(dchan->device);
value = get_max_burst_setting(dev->max_burst_size);
BUG_ON(value == INVALID_BURST_SETTING);
chan->dcmd |= value;
}
do {
/* Allocate the link descriptor from DMA pool */
new = mmp_pdma_alloc_descriptor(chan);
if (!new) {
dev_err(chan->dev, "no memory for desc\n");
goto fail;
}
copy = min_t(size_t, len, PDMA_MAX_DESC_BYTES);
if (dma_src & 0x7 || dma_dst & 0x7)
chan->byte_align = true;
new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & copy);
/*
* Check whether descriptor/source-addr/target-addr is in
* region higher than 4G. If so, set related higher bits to 1.
*/
if (chan->dir == DMA_MEM_TO_DEV) {
new->desc.dsadr = dma_src & 0xffffffff;
new->desc.dtadr = dma_dst;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
new->desc.dsadrh = (dma_src >> 32);
new->desc.dtadrh = 0;
#endif
} else if (chan->dir == DMA_DEV_TO_MEM) {
new->desc.dsadr = dma_src;
new->desc.dtadr = dma_dst & 0xffffffff;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
new->desc.dsadrh = 0;
new->desc.dtadrh = (dma_dst >> 32);
#endif
} else if (chan->dir == DMA_MEM_TO_MEM) {
new->desc.dsadr = dma_src & 0xffffffff;
new->desc.dtadr = dma_dst & 0xffffffff;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
new->desc.dsadrh = (dma_src >> 32);
new->desc.dtadrh = (dma_dst >> 32);
#endif
} else {
dev_err(chan->dev, "wrong direction: 0x%x\n", chan->dir);
goto fail;
}
if (!first)
first = new;
else {
prev->desc.ddadr = new->async_tx.phys;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
prev->desc.ddadrh = (new->async_tx.phys >> 32);
#endif
}
new->async_tx.cookie = 0;
async_tx_ack(&new->async_tx);
prev = new;
len -= copy;
if (chan->dir == DMA_MEM_TO_DEV) {
dma_src += copy;
} else if (chan->dir == DMA_DEV_TO_MEM) {
dma_dst += copy;
} else if (chan->dir == DMA_MEM_TO_MEM) {
dma_src += copy;
dma_dst += copy;
}
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &first->tx_list);
} while (len);
first->async_tx.flags = flags; /* client is in control of this ack */
first->async_tx.cookie = -EBUSY;
/* last desc and fire IRQ */
new->desc.ddadr = DDADR_STOP;
new->desc.dcmd |= DCMD_ENDIRQEN;
chan->cyclic_first = NULL;
return &first->async_tx;
fail:
if (first)
mmp_pdma_free_desc_list(chan, &first->tx_list);
return NULL;
}
static struct dma_async_tx_descriptor *
mmp_pdma_prep_slave_sg(struct dma_chan *dchan, struct scatterlist *sgl,
unsigned int sg_len, enum dma_transfer_direction dir,
unsigned long flags, void *context)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new = NULL;
size_t len, avail;
struct scatterlist *sg;
dma_addr_t addr;
int i;
if ((sgl == NULL) || (sg_len == 0))
return NULL;
chan->byte_align = true;
mmp_pdma_config_write(dchan, &chan->slave_config, dir);
for_each_sg(sgl, sg, sg_len, i) {
addr = sg_dma_address(sg);
avail = sg_dma_len(sgl);
do {
len = min_t(size_t, avail, PDMA_MAX_DESC_BYTES);
if (addr & 0x7)
chan->byte_align = true;
/* allocate and populate the descriptor */
new = mmp_pdma_alloc_descriptor(chan);
if (!new) {
dev_err(chan->dev, "no memory for desc\n");
goto fail;
}
new->desc.dcmd = chan->dcmd | (DCMD_LENGTH & len);
/*
* Check whether descriptor/source-addr/target-addr is in
* region higher than 4G. If so, set related higher bits to 1.
*/
if (dir == DMA_MEM_TO_DEV) {
new->desc.dsadr = addr & 0xffffffff;
new->desc.dtadr = chan->dev_addr;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
new->desc.dsadrh = (addr >> 32);
new->desc.dtadrh = 0;
#endif
} else if (dir == DMA_DEV_TO_MEM) {
new->desc.dsadr = chan->dev_addr;
new->desc.dtadr = addr & 0xffffffff;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
new->desc.dsadrh = 0;
new->desc.dtadrh = (addr >> 32);
#endif
} else {
dev_err(chan->dev, "wrong direction: 0x%x\n", chan->dir);
goto fail;
}
if (!first)
first = new;
else {
prev->desc.ddadr = new->async_tx.phys;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
prev->desc.ddadrh = (new->async_tx.phys >> 32);
#endif
}
new->async_tx.cookie = 0;
async_tx_ack(&new->async_tx);
prev = new;
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &first->tx_list);
/* update metadata */
addr += len;
avail -= len;
} while (avail);
}
first->async_tx.cookie = -EBUSY;
first->async_tx.flags = flags;
/* last desc and fire IRQ */
new->desc.ddadr = DDADR_STOP;
new->desc.dcmd |= DCMD_ENDIRQEN;
chan->dir = dir;
chan->cyclic_first = NULL;
return &first->async_tx;
fail:
if (first)
mmp_pdma_free_desc_list(chan, &first->tx_list);
return NULL;
}
static struct dma_async_tx_descriptor *
mmp_pdma_prep_dma_cyclic(struct dma_chan *dchan,
dma_addr_t buf_addr, size_t len, size_t period_len,
enum dma_transfer_direction direction,
unsigned long flags)
{
struct mmp_pdma_chan *chan;
struct mmp_pdma_desc_sw *first = NULL, *prev = NULL, *new;
dma_addr_t dma_src, dma_dst;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
dma_addr_t dma_srch, dma_dsth;
#endif
if (!dchan || !len || !period_len)
return NULL;
/* the buffer length must be a multiple of period_len */
if (len % period_len != 0)
return NULL;
if (period_len > PDMA_MAX_DESC_BYTES)
return NULL;
chan = to_mmp_pdma_chan(dchan);
mmp_pdma_config_write(dchan, &chan->slave_config, direction);
switch (direction) {
case DMA_MEM_TO_DEV:
dma_src = buf_addr & 0xffffffff;
dma_dst = chan->dev_addr;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
dma_srch = (buf_addr >> 32);
dma_dsth = 0;
#endif
break;
case DMA_DEV_TO_MEM:
dma_dst = buf_addr & 0xffffffff;
dma_src = chan->dev_addr;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
dma_dsth = (buf_addr >> 32);
dma_srch = 0;
#endif
break;
default:
dev_err(chan->dev, "Unsupported direction for cyclic DMA\n");
return NULL;
}
chan->dir = direction;
do {
/* Allocate the link descriptor from DMA pool */
new = mmp_pdma_alloc_descriptor(chan);
if (!new) {
dev_err(chan->dev, "no memory for desc\n");
goto fail;
}
new->desc.dcmd = (chan->dcmd | DCMD_ENDIRQEN |
(DCMD_LENGTH & period_len));
new->desc.dsadr = dma_src;
new->desc.dtadr = dma_dst;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
new->desc.dsadrh = dma_dsth;
new->desc.dtadrh = dma_srch;
#endif
if (!first)
first = new;
else {
prev->desc.ddadr = new->async_tx.phys;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
prev->desc.ddadrh = (new->async_tx.phys >> 32);
#endif
}
new->async_tx.cookie = 0;
async_tx_ack(&new->async_tx);
prev = new;
len -= period_len;
if (chan->dir == DMA_MEM_TO_DEV)
dma_src += period_len;
else
dma_dst += period_len;
/* Insert the link descriptor to the LD ring */
list_add_tail(&new->node, &first->tx_list);
} while (len);
first->async_tx.flags = flags; /* client is in control of this ack */
first->async_tx.cookie = -EBUSY;
/* make the cyclic link */
new->desc.ddadr = first->async_tx.phys;
chan->cyclic_first = first;
return &first->async_tx;
fail:
if (first)
mmp_pdma_free_desc_list(chan, &first->tx_list);
return NULL;
}
static int mmp_pdma_config_write(struct dma_chan *dchan,
struct dma_slave_config *cfg,
enum dma_transfer_direction direction)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
u32 maxburst = 0, addr = 0;
enum dma_slave_buswidth width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
if (!dchan)
return -EINVAL;
if (direction == DMA_DEV_TO_MEM) {
chan->dcmd = DCMD_INCTRGADDR | DCMD_FLOWSRC;
maxburst = cfg->src_maxburst;
width = cfg->src_addr_width;
addr = cfg->src_addr;
} else if (direction == DMA_MEM_TO_DEV) {
chan->dcmd = DCMD_INCSRCADDR | DCMD_FLOWTRG;
maxburst = cfg->dst_maxburst;
width = cfg->dst_addr_width;
addr = cfg->dst_addr;
}
if (width == DMA_SLAVE_BUSWIDTH_1_BYTE)
chan->dcmd |= DCMD_WIDTH1;
else if (width == DMA_SLAVE_BUSWIDTH_2_BYTES)
chan->dcmd |= DCMD_WIDTH2;
else if (width == DMA_SLAVE_BUSWIDTH_4_BYTES)
chan->dcmd |= DCMD_WIDTH4;
if (maxburst == 8)
chan->dcmd |= DCMD_BURST8;
else if (maxburst == 16)
chan->dcmd |= DCMD_BURST16;
else if (maxburst == 32)
chan->dcmd |= DCMD_BURST32;
chan->dir = direction;
chan->dev_addr = addr;
return 0;
}
static int mmp_pdma_pause_chan(struct dma_chan *dchan)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
if (!chan->phy)
return -1;
disable_chan(chan->phy);
chan->status = DMA_PAUSED;
return 0;
}
static int mmp_pdma_config(struct dma_chan *dchan,
struct dma_slave_config *cfg)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
memcpy(&chan->slave_config, cfg, sizeof(*cfg));
return 0;
}
static int mmp_pdma_terminate_all(struct dma_chan *dchan)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
unsigned long flags;
if (!dchan)
return -EINVAL;
spin_lock_irqsave(&chan->desc_lock, flags);
disable_chan(chan->phy);
chan->status = DMA_COMPLETE;
mmp_pdma_free_phy(chan);
mmp_pdma_free_desc_list(chan, &chan->chain_pending);
mmp_pdma_free_desc_list(chan, &chan->chain_running);
chan->bytes_residue = 0;
spin_unlock_irqrestore(&chan->desc_lock, flags);
chan->idle = true;
mmp_pdma_qos_put(chan);
return 0;
}
static unsigned int mmp_pdma_residue(struct mmp_pdma_chan *chan,
dma_cookie_t cookie)
{
struct mmp_pdma_desc_sw *sw;
u32 curr, residue = 0;
bool passed = false;
bool cyclic = chan->cyclic_first != NULL;
/*
* If the channel does not have a phy pointer anymore, it has already
* been completed. Therefore, its residue is 0.
*/
if (!chan->phy)
return chan->bytes_residue; /* special case for EORIRQEN */
if (chan->dir == DMA_DEV_TO_MEM)
curr = readl(chan->phy->base + DTADR(chan->phy->idx));
else
curr = readl(chan->phy->base + DSADR(chan->phy->idx));
list_for_each_entry(sw, &chan->chain_running, node) {
u32 start, end, len;
if (chan->dir == DMA_DEV_TO_MEM)
start = sw->desc.dtadr;
else
start = sw->desc.dsadr;
len = sw->desc.dcmd & DCMD_LENGTH;
end = start + len;
/*
* 'passed' will be latched once we found the descriptor which
* lies inside the boundaries of the curr pointer. All
* descriptors that occur in the list _after_ we found that
* partially handled descriptor are still to be processed and
* are hence added to the residual bytes counter.
*/
if (passed) {
residue += len;
} else if (curr >= start && curr <= end) {
residue += end - curr;
passed = true;
}
/*
* Descriptors that have the ENDIRQEN bit set mark the end of a
* transaction chain, and the cookie assigned with it has been
* returned previously from mmp_pdma_tx_submit().
*
* In case we have multiple transactions in the running chain,
* and the cookie does not match the one the user asked us
* about, reset the state variables and start over.
*
* This logic does not apply to cyclic transactions, where all
* descriptors have the ENDIRQEN bit set, and for which we
* can't have multiple transactions on one channel anyway.
*/
if (cyclic || !(sw->desc.dcmd & DCMD_ENDIRQEN))
continue;
if (sw->async_tx.cookie == cookie) {
return residue;
} else {
residue = 0;
passed = false;
}
}
/* We should only get here in case of cyclic transactions */
return residue;
}
static enum dma_status mmp_pdma_tx_status(struct dma_chan *dchan,
dma_cookie_t cookie,
struct dma_tx_state *txstate)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
enum dma_status ret;
unsigned long flags;
spin_lock_irqsave(&chan->desc_lock, flags);
ret = dma_cookie_status(dchan, cookie, txstate);
if (likely(ret != DMA_ERROR))
dma_set_residue(txstate, mmp_pdma_residue(chan, cookie));
spin_unlock_irqrestore(&chan->desc_lock, flags);
if (ret == DMA_COMPLETE)
return ret;
else
return chan->status;
}
/*
* mmp_pdma_issue_pending - Issue the DMA start command
* pending list ==> running list
*/
static void mmp_pdma_issue_pending(struct dma_chan *dchan)
{
struct mmp_pdma_chan *chan = to_mmp_pdma_chan(dchan);
unsigned long flags;
int ret = 0;
mmp_pdma_qos_get(chan);
spin_lock_irqsave(&chan->desc_lock, flags);
ret = start_pending_queue(chan);
spin_unlock_irqrestore(&chan->desc_lock, flags);
if (ret)
mmp_pdma_qos_put(chan);
}
/*
* dma_do_tasklet
* Do call back
* Start pending list
*/
static void dma_do_tasklet(struct tasklet_struct *t)
{
struct mmp_pdma_chan *chan = from_tasklet(chan, t, tasklet);
struct mmp_pdma_desc_sw *desc, *_desc;
LIST_HEAD(chain_cleanup);
unsigned long flags;
struct dmaengine_desc_callback cb;
int ret = 0;
/* return if this channel has been stopped */
spin_lock_irqsave(&chan->desc_lock, flags);
if (chan->status == DMA_COMPLETE) {
spin_unlock_irqrestore(&chan->desc_lock, flags);
return;
}
spin_unlock_irqrestore(&chan->desc_lock, flags);
if (chan->cyclic_first) {
spin_lock_irqsave(&chan->desc_lock, flags);
desc = chan->cyclic_first;
dmaengine_desc_get_callback(&desc->async_tx, &cb);
spin_unlock_irqrestore(&chan->desc_lock, flags);
dmaengine_desc_callback_invoke(&cb, NULL);
return;
}
/* submit pending list; callback for each desc; free desc */
spin_lock_irqsave(&chan->desc_lock, flags);
/* special for the EORIRQEN case, residue is not 0 */
list_for_each_entry(desc, &chan->chain_running, node) {
if (desc->desc.dcmd & DCMD_ENDIRQEN) {
chan->bytes_residue =
mmp_pdma_residue(chan, desc->async_tx.cookie);
break;
}
}
list_for_each_entry_safe(desc, _desc, &chan->chain_running, node) {
/*
* move the descriptors to a temporary list so we can drop
* the lock during the entire cleanup operation
*/
list_move(&desc->node, &chain_cleanup);
/*
* Look for the first list entry which has the ENDIRQEN flag
* set. That is the descriptor we got an interrupt for, so
* complete that transaction and its cookie.
*/
if (desc->desc.dcmd & DCMD_ENDIRQEN) {
dma_cookie_t cookie = desc->async_tx.cookie;
dma_cookie_complete(&desc->async_tx);
dev_dbg(chan->dev, "completed_cookie=%d\n", cookie);
break;
}
}
/*
* The hardware is idle and ready for more when the
* chain_running list is empty.
*/
chan->status = list_empty(&chan->chain_running) ?
DMA_COMPLETE : DMA_IN_PROGRESS;
/* Start any pending transactions automatically */
ret = start_pending_queue(chan);
spin_unlock_irqrestore(&chan->desc_lock, flags);
/* restart pending transactions failed, do not need qos anymore */
if (ret)
mmp_pdma_qos_put(chan);
/* Run the callback for each descriptor, in order */
list_for_each_entry_safe(desc, _desc, &chain_cleanup, node) {
struct dma_async_tx_descriptor *txd = &desc->async_tx;
/* Remove from the list of transactions */
list_del(&desc->node);
/* Run the link descriptor callback function */
dmaengine_desc_get_callback(txd, &cb);
dmaengine_desc_callback_invoke(&cb, NULL);
dma_pool_free(chan->desc_pool, desc, txd->phys);
}
}
static int mmp_pdma_remove(struct platform_device *op)
{
struct mmp_pdma_device *pdev = platform_get_drvdata(op);
struct mmp_pdma_phy *phy;
int i, irq = 0, irq_num = 0;
if (op->dev.of_node)
of_dma_controller_free(op->dev.of_node);
for (i = 0; i < pdev->dma_channels; i++) {
if (platform_get_irq(op, i) > 0)
irq_num++;
}
if (irq_num != pdev->dma_channels) {
irq = platform_get_irq(op, 0);
devm_free_irq(&op->dev, irq, pdev);
} else {
for (i = 0; i < pdev->dma_channels; i++) {
phy = &pdev->phy[i];
irq = platform_get_irq(op, i);
devm_free_irq(&op->dev, irq, phy);
}
}
dma_async_device_unregister(&pdev->device);
reset_control_assert(pdev->resets);
clk_disable_unprepare(pdev->clk);
kfree(pdev->reserved_channels);
platform_set_drvdata(op, NULL);
return 0;
}
static int mmp_pdma_chan_init(struct mmp_pdma_device *pdev, int idx, int irq)
{
struct mmp_pdma_phy *phy = &pdev->phy[idx];
struct mmp_pdma_chan *chan;
int ret;
chan = devm_kzalloc(pdev->dev, sizeof(*chan), GFP_KERNEL);
if (chan == NULL)
return -ENOMEM;
phy->idx = idx;
phy->base = pdev->base;
if (irq) {
ret = devm_request_irq(pdev->dev, irq, mmp_pdma_chan_handler,
IRQF_SHARED, "pdma", phy);
if (ret) {
dev_err(pdev->dev, "channel request irq fail!\n");
return ret;
}
}
spin_lock_init(&chan->desc_lock);
chan->dev = pdev->dev;
chan->chan.device = &pdev->device;
tasklet_setup(&chan->tasklet, dma_do_tasklet);
INIT_LIST_HEAD(&chan->chain_pending);
INIT_LIST_HEAD(&chan->chain_running);
chan->status = DMA_COMPLETE;
chan->bytes_residue = 0;
chan->qos_count = 0;
chan->user_do_qos = 1;
/* register virt channel to dma engine */
list_add_tail(&chan->chan.device_node, &pdev->device.channels);
return 0;
}
static const struct of_device_id mmp_pdma_dt_ids[] = {
{ .compatible = "ky,pdma-1.0", },
{}
};
MODULE_DEVICE_TABLE(of, mmp_pdma_dt_ids);
static struct dma_chan *mmp_pdma_dma_xlate(struct of_phandle_args *dma_spec,
struct of_dma *ofdma)
{
struct mmp_pdma_device *d = ofdma->of_dma_data;
struct dma_chan *chan;
#ifdef CONFIG_PM
struct mmp_pdma_chan *c;
#endif
chan = dma_get_any_slave_channel(&d->device);
if (!chan)
return NULL;
to_mmp_pdma_chan(chan)->drcmr = dma_spec->args[0];
#ifdef CONFIG_PM
if (unlikely(dma_spec->args_count != 2))
dev_err(d->dev, "#dma-cells should be 2!\n");
c = to_mmp_pdma_chan(chan);
c->user_do_qos = dma_spec->args[1] ? 1 : 0;
if (c->user_do_qos)
dev_dbg(d->dev, "channel %d: user does qos itself\n",
c->chan.chan_id);
else
dev_dbg(d->dev, "channel %d: pdma does qos\n",
c->chan.chan_id);
#endif
return chan;
}
static int mmp_pdma_probe(struct platform_device *op)
{
struct mmp_pdma_device *pdev;
const struct of_device_id *of_id;
struct mmp_dma_platdata *pdata = dev_get_platdata(&op->dev);
struct resource *iores;
int i, ret, irq = 0;
int dma_channels = 0, irq_num = 0;
const enum dma_slave_buswidth widths =
DMA_SLAVE_BUSWIDTH_1_BYTE | DMA_SLAVE_BUSWIDTH_2_BYTES |
DMA_SLAVE_BUSWIDTH_4_BYTES;
int nr_reserved_channels;
const int *list;
unsigned int max_burst_size = DEFAULT_MAX_BURST_SIZE;
pdev = devm_kzalloc(&op->dev, sizeof(*pdev), GFP_KERNEL);
if (!pdev)
return -ENOMEM;
pdev->dev = &op->dev;
spin_lock_init(&pdev->phy_lock);
iores = platform_get_resource(op, IORESOURCE_MEM, 0);
pdev->base = devm_ioremap_resource(pdev->dev, iores);
if (IS_ERR(pdev->base))
return PTR_ERR(pdev->base);
pdev->clk = devm_clk_get(pdev->dev,NULL);
if(IS_ERR(pdev->clk))
return PTR_ERR(pdev->clk);
ret = clk_prepare_enable(pdev->clk);
if (ret)
return dev_err_probe(pdev->dev, ret, "could not enable dma bus clock\n");
pdev->resets = devm_reset_control_get_optional(pdev->dev,NULL);
if(IS_ERR(pdev->resets)) {
ret = PTR_ERR(pdev->resets);
goto err_rst;
}
ret = reset_control_deassert(pdev->resets);
if(ret)
goto err_rst;
of_id = of_match_device(mmp_pdma_dt_ids, pdev->dev);
if (of_id) {
int n;
of_property_read_u32(pdev->dev->of_node, "#dma-channels",
&dma_channels);
list = of_get_property(pdev->dev->of_node, "reserved-channels",
&n);
if (of_property_read_u32(pdev->dev->of_node, "max-burst-size",
&max_burst_size)) {
dev_err(pdev->dev, "Cannot find the max-burst-size node "
"in the device tree, set it to %d\n",
DEFAULT_MAX_BURST_SIZE);
max_burst_size = DEFAULT_MAX_BURST_SIZE;
}
if (get_max_burst_setting(max_burst_size) == INVALID_BURST_SETTING) {
dev_err(pdev->dev, "Unsupported max-burst-size value %d "
"in the device tree, set it to %d\n",
max_burst_size, DEFAULT_MAX_BURST_SIZE);
max_burst_size = DEFAULT_MAX_BURST_SIZE;
}
if (list) {
int num_args = 2;
nr_reserved_channels = n / (sizeof(u32) * num_args);
pdev->nr_reserved_channels = nr_reserved_channels;
pdev->reserved_channels = kzalloc(nr_reserved_channels * sizeof(struct reserved_chan),
GFP_KERNEL);
if (pdev->reserved_channels == NULL)
return -ENOMEM;
for (i = 0; i < nr_reserved_channels; i++) {
int value;
of_property_read_u32_index(pdev->dev->of_node, "reserved-channels", i * num_args, &value);
pdev->reserved_channels[i].chan_id = value;
of_property_read_u32_index(pdev->dev->of_node, "reserved-channels", i * num_args + 1, &value);
pdev->reserved_channels[i].drcmr = value;
}
}
} else if (pdata && pdata->dma_channels) {
dma_channels = pdata->dma_channels;
} else {
dma_channels = 32; /* default 32 channel */
}
pdev->dma_channels = dma_channels;
pdev->max_burst_size = max_burst_size;
dev_dbg(pdev->dev, "set max burst size to %d\n", max_burst_size);
#ifdef CONFIG_PM
pm_runtime_enable(&op->dev);
/*
* We can't ensure the pm operations are always in non-atomic context.
* Actually it depends on the drivers' behavior. So mark it as irq safe.
*/
pm_runtime_irq_safe(&op->dev);
#endif
for (i = 0; i < dma_channels; i++) {
if (platform_get_irq_optional(op, i) > 0)
irq_num++;
}
pdev->phy = devm_kcalloc(pdev->dev, dma_channels, sizeof(*pdev->phy),
GFP_KERNEL);
if (pdev->phy == NULL)
return -ENOMEM;
INIT_LIST_HEAD(&pdev->device.channels);
if (irq_num != dma_channels) {
/* all chan share one irq, demux inside */
irq = platform_get_irq(op, 0);
ret = devm_request_irq(pdev->dev, irq, mmp_pdma_int_handler,
IRQF_SHARED, "pdma", pdev);
if (ret)
return ret;
}
for (i = 0; i < dma_channels; i++) {
irq = (irq_num != dma_channels) ? 0 : platform_get_irq(op, i);
ret = mmp_pdma_chan_init(pdev, i, irq);
if (ret)
return ret;
}
dma_cap_set(DMA_SLAVE, pdev->device.cap_mask);
dma_cap_set(DMA_MEMCPY, pdev->device.cap_mask);
dma_cap_set(DMA_CYCLIC, pdev->device.cap_mask);
dma_cap_set(DMA_PRIVATE, pdev->device.cap_mask);
pdev->device.dev = &op->dev;
pdev->device.device_alloc_chan_resources = mmp_pdma_alloc_chan_resources;
pdev->device.device_free_chan_resources = mmp_pdma_free_chan_resources;
pdev->device.device_tx_status = mmp_pdma_tx_status;
pdev->device.device_prep_dma_memcpy = mmp_pdma_prep_memcpy;
pdev->device.device_prep_slave_sg = mmp_pdma_prep_slave_sg;
pdev->device.device_prep_dma_cyclic = mmp_pdma_prep_dma_cyclic;
pdev->device.device_issue_pending = mmp_pdma_issue_pending;
pdev->device.device_config = mmp_pdma_config;
pdev->device.device_pause = mmp_pdma_pause_chan;
pdev->device.device_terminate_all = mmp_pdma_terminate_all;
pdev->device.copy_align = DMAENGINE_ALIGN_8_BYTES;
pdev->device.src_addr_widths = widths;
pdev->device.dst_addr_widths = widths;
pdev->device.directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
pdev->device.residue_granularity = DMA_RESIDUE_GRANULARITY_DESCRIPTOR;
#ifdef CONFIG_KY_PDMA_SUPPORT_64BIT
dma_set_mask(pdev->dev, DMA_BIT_MASK(64));
#else
dma_set_mask(pdev->dev, pdev->dev->coherent_dma_mask);
#endif
ret = dma_async_device_register(&pdev->device);
if (ret) {
dev_err(pdev->device.dev, "unable to register\n");
return ret;
}
if (op->dev.of_node) {
/* Device-tree DMA controller registration */
ret = of_dma_controller_register(op->dev.of_node,
mmp_pdma_dma_xlate, pdev);
if (ret < 0) {
dev_err(&op->dev, "of_dma_controller_register failed\n");
dma_async_device_unregister(&pdev->device);
return ret;
}
}
platform_set_drvdata(op, pdev);
dev_dbg(pdev->device.dev, "initialized %d channels\n", dma_channels);
return 0;
err_rst:
clk_disable_unprepare(pdev->clk);
return ret;
}
/*
* Per-channel qos get/put function. This function ensures that pm_
* runtime_get/put are not called multi times for one channel.
* This guarantees pm_runtime_get/put always match for the entire device.
*/
static void mmp_pdma_qos_get(struct mmp_pdma_chan *chan)
{
unsigned long flags;
if (chan->user_do_qos)
return;
spin_lock_irqsave(&chan->desc_lock, flags);
if (chan->qos_count == 0) {
chan->qos_count = 1;
/*
* Safe in spin_lock because it's marked as irq safe.
* Similar case for mmp_pdma_qos_put().
*/
pm_runtime_get_sync(chan->dev);
}
spin_unlock_irqrestore(&chan->desc_lock, flags);
}
static void mmp_pdma_qos_put(struct mmp_pdma_chan *chan)
{
unsigned long flags;
if (chan->user_do_qos)
return;
spin_lock_irqsave(&chan->desc_lock, flags);
if (chan->qos_count == 1) {
chan->qos_count = 0;
pm_runtime_put_autosuspend(chan->dev);
}
spin_unlock_irqrestore(&chan->desc_lock, flags);
}
static const struct platform_device_id mmp_pdma_id_table[] = {
{ "mmp-pdma", },
{ },
};
#ifdef CONFIG_PM_SLEEP
static int mmp_pdma_suspend_noirq(struct device *dev)
{
struct mmp_pdma_device *pdev = dev_get_drvdata(dev);
clk_disable_unprepare(pdev->clk);
return 0;
}
static int mmp_pdma_resume_noirq(struct device *dev)
{
struct mmp_pdma_device *pdev = dev_get_drvdata(dev);
clk_prepare_enable(pdev->clk);
return 0;
}
static const struct dev_pm_ops x1_mmp_pdma_pm_qos = {
NOIRQ_SYSTEM_SLEEP_PM_OPS(mmp_pdma_suspend_noirq, mmp_pdma_resume_noirq)
};
#endif
static struct platform_driver mmp_pdma_driver = {
.driver = {
.name = "mmp-pdma",
#ifdef CONFIG_PM_SLEEP
.pm = &x1_mmp_pdma_pm_qos,
#endif
.of_match_table = mmp_pdma_dt_ids,
},
.id_table = mmp_pdma_id_table,
.probe = mmp_pdma_probe,
.remove = mmp_pdma_remove,
};
static int __init mmp_pdma_init(void)
{
return platform_driver_register(&mmp_pdma_driver);
}
static void __exit mmp_pdma_exit(void)
{
platform_driver_unregister(&mmp_pdma_driver);
}
subsys_initcall(mmp_pdma_init);
module_exit(mmp_pdma_exit);
MODULE_DESCRIPTION("MARVELL MMP Peripheral DMA Driver");
MODULE_AUTHOR("Marvell International Ltd.");
MODULE_LICENSE("GPL v2");