Files
kernel/drivers/spi/spi-x1.c

1191 lines
31 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Support for Ky x1 spi controller
*
* Copyright (c) 2023, ky Corporation.
*
*/
#include <linux/err.h>
#include <linux/bitops.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/device.h>
#include <linux/ioport.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/platform_device.h>
#include <linux/spi/spi.h>
#include <linux/of_device.h>
#include <linux/delay.h>
#include <linux/gpio.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/pm_runtime.h>
#include <linux/acpi.h>
#include "spi-x1.h"
#define TIMOUT_DFLT 3000
#define TIMOUT_DFLT_SLAVE 0x40000
//#define CONFIG_X1_SSP_DEBUG 1
static bool x1_spi_txfifo_full(const struct spi_driver_data *drv_data)
{
return !(x1_spi_read(drv_data, STATUS) & STATUS_TNF);
}
static u32 x1_configure_topctrl(const struct spi_driver_data *drv_data, u8 bits)
{
/*
* set Motorola Frame Format
* set DSS
*/
return TOP_FRF_Motorola | TOP_DSS(bits);
}
static void set_dvfm_constraint(struct spi_driver_data *drv_data)
{
#if 0
if (drv_data->qos_idle_value != PM_QOS_CPUIDLE_BLOCK_DEFAULT_VALUE)
freq_qos_update_request(&drv_data->qos_idle,
drv_data->qos_idle_value);
#endif
}
static void unset_dvfm_constraint(struct spi_driver_data *drv_data)
{
#if 0
if (drv_data->qos_idle_value != PM_QOS_CPUIDLE_BLOCK_DEFAULT_VALUE)
freq_qos_update_request(&drv_data->qos_idle,
PM_QOS_CPUIDLE_BLOCK_DEFAULT_VALUE);
#endif
}
static void init_dvfm_constraint(struct spi_driver_data *drv_data)
{
#if 0
#ifdef CONFIG_PM
struct freq_constraints *idle_qos;
idle_qos = cpuidle_get_constraints();
freq_qos_add_request(idle_qos, &drv_data->qos_idle, FREQ_QOS_MAX,
PM_QOS_CPUIDLE_BLOCK_DEFAULT_VALUE);
#endif
#endif
}
static void deinit_dvfm_constraint(struct spi_driver_data *drv_data)
{
#if 0
#ifdef CONFIG_PM
freq_qos_remove_request(&drv_data->qos_idle);
#endif
#endif
}
static void cs_assert(struct spi_driver_data *drv_data)
{
struct chip_data *chip = drv_data->cur_chip;
if (chip->cs_control) {
chip->cs_control(X1_CS_ASSERT);
return;
}
if (gpio_is_valid(chip->gpio_cs)) {
gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
return;
}
}
static void cs_deassert(struct spi_driver_data *drv_data)
{
struct chip_data *chip = drv_data->cur_chip;
if (chip->cs_control) {
chip->cs_control(X1_CS_DEASSERT);
return;
}
if (gpio_is_valid(chip->gpio_cs)) {
gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
return;
}
}
/* clear all rx fifo useless data */
int x1_spi_flush(struct spi_driver_data *drv_data)
{
unsigned long limit = loops_per_jiffy << 1;
do {
while (x1_spi_read(drv_data, STATUS) & STATUS_RNE)
x1_spi_read(drv_data, DATAR);
} while ((x1_spi_read(drv_data, STATUS) & STATUS_BSY) && --limit);
x1_spi_write(drv_data, STATUS, STATUS_ROR);
return limit;
}
static int null_writer(struct spi_driver_data *drv_data)
{
u8 n_bytes = drv_data->n_bytes;
if (x1_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
x1_spi_write(drv_data, DATAR, 0);
drv_data->tx += n_bytes;
return 1;
}
static int null_reader(struct spi_driver_data *drv_data)
{
u8 n_bytes = drv_data->n_bytes;
while ((x1_spi_read(drv_data, STATUS) & STATUS_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
x1_spi_read(drv_data, DATAR);
drv_data->rx += n_bytes;
}
return drv_data->rx == drv_data->rx_end;
}
static int u8_writer(struct spi_driver_data *drv_data)
{
if (x1_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
x1_spi_write(drv_data, DATAR, *(u8 *)(drv_data->tx));
++drv_data->tx;
return 1;
}
static int u8_reader(struct spi_driver_data *drv_data)
{
while ((x1_spi_read(drv_data, STATUS) & STATUS_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u8 *)(drv_data->rx) = x1_spi_read(drv_data, DATAR);
++drv_data->rx;
}
return drv_data->rx == drv_data->rx_end;
}
static int u16_writer(struct spi_driver_data *drv_data)
{
if (x1_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
x1_spi_write(drv_data, DATAR, *(u16 *)(drv_data->tx));
drv_data->tx += 2;
return 1;
}
static int u16_reader(struct spi_driver_data *drv_data)
{
while ((x1_spi_read(drv_data, STATUS) & STATUS_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u16 *)(drv_data->rx) = x1_spi_read(drv_data, DATAR);
drv_data->rx += 2;
}
return drv_data->rx == drv_data->rx_end;
}
static int u32_writer(struct spi_driver_data *drv_data)
{
if (x1_spi_txfifo_full(drv_data)
|| (drv_data->tx == drv_data->tx_end))
return 0;
x1_spi_write(drv_data, DATAR, *(u32 *)(drv_data->tx));
drv_data->tx += 4;
return 1;
}
static int u32_reader(struct spi_driver_data *drv_data)
{
while ((x1_spi_read(drv_data, STATUS) & STATUS_RNE)
&& (drv_data->rx < drv_data->rx_end)) {
*(u32 *)(drv_data->rx) = x1_spi_read(drv_data, DATAR);
drv_data->rx += 4;
}
return drv_data->rx == drv_data->rx_end;
}
void *x1_spi_next_transfer(struct spi_driver_data *drv_data)
{
struct spi_message *msg = drv_data->cur_msg;
struct spi_transfer *trans = drv_data->cur_transfer;
/* Move to next transfer */
if (trans->transfer_list.next != &msg->transfers) {
drv_data->cur_transfer =
list_entry(trans->transfer_list.next,
struct spi_transfer,
transfer_list);
return RUNNING_STATE;
} else
return DONE_STATE;
}
/* caller already set message->status; dma and pio irqs are blocked */
static void giveback(struct spi_driver_data *drv_data)
{
struct spi_transfer* last_transfer;
struct spi_message *msg;
msg = drv_data->cur_msg;
drv_data->cur_msg = NULL;
drv_data->cur_transfer = NULL;
last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
transfer_list);
/* Delay if requested before any change in chip select */
spi_transfer_delay_exec(last_transfer);
/* Drop chip select UNLESS cs_change is true or we are returning
* a message with an error, or next message is for another chip
*/
if (!last_transfer->cs_change)
cs_deassert(drv_data);
else {
struct spi_message *next_msg;
/* Holding of cs was hinted, but we need to make sure
* the next message is for the same chip. Don't waste
* time with the following tests unless this was hinted.
*
* We cannot postpone this until pump_messages, because
* after calling msg->complete (below) the driver that
* sent the current message could be unloaded, which
* could invalidate the cs_control() callback...
*/
/* get a pointer to the next message, if any */
next_msg = spi_get_next_queued_message(drv_data->master);
/* see if the next and current messages point
* to the same chip
*/
if (next_msg && next_msg->spi != msg->spi)
next_msg = NULL;
if (!next_msg || msg->state == ERROR_STATE)
cs_deassert(drv_data);
}
drv_data->cur_chip = NULL;
spi_finalize_current_message(drv_data->master);
unset_dvfm_constraint(drv_data);
if (drv_data->slave_mode)
del_timer(&drv_data->slave_rx_timer);
complete(&drv_data->cur_msg_completion);
}
static void reset_fifo_ctrl(struct spi_driver_data *drv_data)
{
struct chip_data *chip = drv_data->cur_chip;
u32 fifo_ctrl = 0;
fifo_ctrl |= chip->threshold;
x1_spi_write(drv_data, FIFO_CTRL, fifo_ctrl);
}
static void reset_int_en(struct spi_driver_data *drv_data)
{
u32 int_en = 0;
int_en = x1_spi_read(drv_data, INT_EN);
int_en &= ~drv_data->int_cr;
x1_spi_write(drv_data, INT_EN, int_en);
}
static void int_error_stop(struct spi_driver_data *drv_data, const char* msg)
{
/* Stop and reset SSP */
x1_spi_write(drv_data, STATUS, drv_data->clear_sr);
reset_fifo_ctrl(drv_data);
reset_int_en(drv_data);
x1_spi_write(drv_data, TO, 0);
x1_spi_flush(drv_data);
x1_spi_write(drv_data, TOP_CTRL,
x1_spi_read(drv_data, TOP_CTRL) & ~(TOP_SSE | TOP_HOLD_FRAME_LOW));
dev_err(&drv_data->pdev->dev, "%s\n", msg);
drv_data->cur_msg->state = ERROR_STATE;
queue_work(system_wq, &drv_data->pump_transfers);
}
static void int_transfer_complete(struct spi_driver_data *drv_data)
{
/* Stop SSP */
x1_spi_write(drv_data, STATUS, drv_data->clear_sr);
reset_fifo_ctrl(drv_data);
reset_int_en(drv_data);
x1_spi_write(drv_data, TO, 0);
/* Update total byte transferred return count actual bytes read */
drv_data->cur_msg->actual_length += drv_data->len -
(drv_data->rx_end - drv_data->rx);
/* Transfer delays and chip select release are
* handled in pump_transfers or giveback
*/
/* Move to next transfer */
drv_data->cur_msg->state = x1_spi_next_transfer(drv_data);
/* Schedule transfer tasklet */
queue_work(system_wq, &drv_data->pump_transfers);
}
static irqreturn_t interrupt_transfer(struct spi_driver_data *drv_data)
{
u32 irq_mask = (x1_spi_read(drv_data, INT_EN) & INT_EN_TIE) ?
drv_data->mask_sr : drv_data->mask_sr & ~STATUS_TFS;
u32 irq_status = x1_spi_read(drv_data, STATUS) & irq_mask;
if (irq_status & STATUS_ROR) {
int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
return IRQ_HANDLED;
}
if (irq_status & STATUS_TINT) {
x1_spi_write(drv_data, STATUS, STATUS_TINT);
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
}
/* Drain rx fifo, Fill tx fifo and prevent overruns */
do {
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
} while (drv_data->write(drv_data));
if (drv_data->read(drv_data)) {
int_transfer_complete(drv_data);
return IRQ_HANDLED;
}
if (drv_data->tx == drv_data->tx_end) {
u32 int_en;
int_en = x1_spi_read(drv_data, INT_EN);
int_en &= ~INT_EN_TIE;
x1_spi_write(drv_data, INT_EN, int_en);
}
/* We did something */
return IRQ_HANDLED;
}
static irqreturn_t ssp_int(int irq, void *dev_id)
{
struct spi_driver_data *drv_data = dev_id;
u32 int_en;
u32 mask = drv_data->mask_sr;
u32 int_status;
/*
* The IRQ might be shared with other peripherals so we must first
* check that are we RPM suspended or not. If we are we assume that
* the IRQ was not for us (we shouldn't be RPM suspended when the
* interrupt is enabled).
*/
if (pm_runtime_suspended(&drv_data->pdev->dev))
return IRQ_NONE;
/*
* If the device is not yet in RPM suspended state and we get an
* interrupt that is meant for another device, check if status bits
* are all set to one. That means that the device is already
* powered off.
*/
int_status = x1_spi_read(drv_data, STATUS);
if (int_status == ~0)
return IRQ_NONE;
int_en = x1_spi_read(drv_data, INT_EN);
/* Ignore possible writes if we don't need to write */
if (!(int_en & INT_EN_TIE))
mask &= ~STATUS_TFS;
/* Ignore RX timeout interrupt if it is disabled */
if (!(int_en & INT_EN_TINTE))
mask &= ~STATUS_TINT;
if (!(int_status & mask))
return IRQ_NONE;
if (!drv_data->cur_msg) {
x1_spi_write(drv_data, TOP_CTRL,
x1_spi_read(drv_data, TOP_CTRL)
& ~(TOP_SSE | TOP_HOLD_FRAME_LOW));
x1_spi_write(drv_data, INT_EN,
x1_spi_read(drv_data, INT_EN)
& ~drv_data->int_cr);
x1_spi_write(drv_data, TO, 0);
x1_spi_write(drv_data, STATUS, drv_data->clear_sr);
dev_err(&drv_data->pdev->dev,
"bad message state in interrupt handler\n");
/* Never fail */
return IRQ_HANDLED;
}
return drv_data->transfer_handler(drv_data);
}
static void slave_rx_timer_expired(struct timer_list *t) {
struct spi_driver_data *drv_data = from_timer(drv_data, t, slave_rx_timer);
#ifdef CONFIG_X1_SSP_DEBUG
pr_err("%s\n", __func__);
pr_err("spi top = 0x%x\n", x1_spi_read(drv_data, TOP_CTRL));
pr_err("fifo = 0x%x\n", x1_spi_read(drv_data, FIFO_CTRL));
pr_err("int_en = 0x%x\n", x1_spi_read(drv_data, INT_EN));
pr_err("to = 0x%x\n", x1_spi_read(drv_data, TO));
#endif
x1_spi_slave_sw_timeout_callback(drv_data);
}
static void pump_transfers(struct work_struct *work)
{
struct spi_driver_data *drv_data = container_of(work, struct spi_driver_data, pump_transfers);
struct spi_message *message = NULL;
struct spi_transfer *transfer = NULL;
struct spi_transfer *previous = NULL;
struct chip_data *chip = NULL;
u8 bits = 0;
u32 top_ctrl;
u32 fifo_ctrl;
u32 int_en = 0;
u32 dma_thresh = drv_data->cur_chip->dma_threshold;
u32 dma_burst = drv_data->cur_chip->dma_burst_size;
if (drv_data->slave_mode)
mod_timer(&drv_data->slave_rx_timer,
jiffies + msecs_to_jiffies(1000));
/* Get current state information */
message = drv_data->cur_msg;
transfer = drv_data->cur_transfer;
chip = drv_data->cur_chip;
/* Handle for abort */
if (message->state == ERROR_STATE) {
message->status = -EIO;
giveback(drv_data);
return;
}
/* Handle end of message */
if (message->state == DONE_STATE) {
message->status = 0;
giveback(drv_data);
return;
}
/* Delay if requested at end of transfer before CS change */
if (message->state == RUNNING_STATE) {
previous = list_entry(transfer->transfer_list.prev,
struct spi_transfer,
transfer_list);
spi_transfer_delay_exec(previous);
/* Drop chip select only if cs_change is requested */
if (previous->cs_change)
cs_deassert(drv_data);
}
/* Check if we can DMA this transfer */
if (!x1_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
/* reject already-mapped transfers; PIO won't always work */
if (message->is_dma_mapped
|| transfer->rx_dma || transfer->tx_dma) {
dev_err(&drv_data->pdev->dev,
"pump_transfers: mapped transfer length of "
"%u is greater than %d\n",
transfer->len, MAX_DMA_LEN);
message->status = -EINVAL;
giveback(drv_data);
return;
}
/* warn ... we force this to PIO mode */
dev_warn_ratelimited(&message->spi->dev,
"pump_transfers: DMA disabled for transfer length %ld "
"greater than %d\n",
(long)drv_data->len, MAX_DMA_LEN);
}
/* Setup the transfer state based on the type of transfer */
if (x1_spi_flush(drv_data) == 0) {
dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
message->status = -EIO;
giveback(drv_data);
return;
}
drv_data->n_bytes = chip->n_bytes;
drv_data->tx = (void *)transfer->tx_buf;
drv_data->tx_end = drv_data->tx + transfer->len;
drv_data->rx = transfer->rx_buf;
drv_data->rx_end = drv_data->rx + transfer->len;
drv_data->rx_dma = transfer->rx_dma;
drv_data->tx_dma = transfer->tx_dma;
drv_data->len = transfer->len;
drv_data->write = drv_data->tx ? chip->write : null_writer;
drv_data->read = drv_data->rx ? chip->read : null_reader;
/* Change speed and bit per word on a per transfer */
bits = transfer->bits_per_word;
if (bits <= 8) {
drv_data->n_bytes = 1;
drv_data->read = drv_data->read != null_reader ?
u8_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u8_writer : null_writer;
} else if (bits <= 16) {
drv_data->n_bytes = 2;
drv_data->read = drv_data->read != null_reader ?
u16_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u16_writer : null_writer;
} else if (bits <= 32) {
drv_data->n_bytes = 4;
drv_data->read = drv_data->read != null_reader ?
u32_reader : null_reader;
drv_data->write = drv_data->write != null_writer ?
u32_writer : null_writer;
}
/*
* if bits/word is changed in dma mode, then must check the
* thresholds and burst also
*/
if (chip->enable_dma) {
if (x1_spi_set_dma_burst_and_threshold(chip,
message->spi,
bits, &dma_burst,
&dma_thresh))
dev_warn_ratelimited(&message->spi->dev,
"pump_transfers: DMA burst size reduced to match bits_per_word\n");
}
top_ctrl = x1_configure_topctrl(drv_data, bits);
dev_dbg(&message->spi->dev, "%u Hz, %s\n",
drv_data->master->max_speed_hz,
chip->enable_dma ? "DMA" : "PIO");
top_ctrl |= chip->top_ctrl;
fifo_ctrl = chip->fifo_ctrl;
if (drv_data->ssp_enhancement) {
/*
* If transfer length is times of 4, then use
* 32 bit fifo width with endian swap support
*/
if (drv_data->len % 4 == 0 && transfer->bits_per_word <= 16) {
if (transfer->bits_per_word <= 8)
fifo_ctrl |= FIFO_WR_ENDIAN_8BITS |
FIFO_RD_ENDIAN_8BITS;
else if (transfer->bits_per_word <= 16)
fifo_ctrl |= FIFO_WR_ENDIAN_16BITS |
FIFO_RD_ENDIAN_16BITS;
bits = 32;
drv_data->n_bytes = 4;
if(transfer->rx_buf)
drv_data->read = u32_reader;
if(transfer->tx_buf)
drv_data->write = u32_writer;
if (chip->enable_dma) {
if (x1_spi_set_dma_burst_and_threshold(chip,
message->spi,
bits, &dma_burst,
&dma_thresh))
dev_warn_ratelimited(&message->spi->dev,
"pump_transfers:"
"DMA burst size reduced to"
"match bits_per_word\n");
}
top_ctrl &= ~TOP_DSS_MASK;
top_ctrl |= TOP_DSS(32);
}
}
message->state = RUNNING_STATE;
drv_data->dma_mapped = 0;
if (x1_spi_dma_is_possible(drv_data->len))
drv_data->dma_mapped = x1_spi_map_dma_buffers(drv_data);
if (drv_data->dma_mapped) {
/* Ensure we have the correct interrupt handler */
drv_data->transfer_handler = x1_spi_dma_transfer;
x1_spi_dma_prepare(drv_data, dma_burst);
/* Clear status and start DMA engine */
fifo_ctrl |= chip->fifo_ctrl | dma_thresh | drv_data->dma_fifo_ctrl;
top_ctrl |= chip->top_ctrl | drv_data->dma_top_ctrl;
x1_spi_write(drv_data, STATUS, drv_data->clear_sr);
x1_spi_dma_start(drv_data);
int_en = x1_spi_read(drv_data, INT_EN) | drv_data->dma_cr;
} else {
/* Ensure we have the correct interrupt handler */
drv_data->transfer_handler = interrupt_transfer;
fifo_ctrl = fifo_ctrl | chip->fifo_ctrl | chip->threshold;
int_en = x1_spi_read(drv_data, INT_EN) | drv_data->int_cr;
x1_spi_write(drv_data, STATUS, drv_data->clear_sr);
}
x1_spi_write(drv_data, TO, chip->timeout);
cs_assert(drv_data);
/*
* TODO: refine these logic
* x1_spi_get_ssrc1_change_mask
* if ((x1_spi_read(drv_data, SSCR0) != cr0)
* cs_assert(drv_data);
* x1_spi_write(drv_data, SSCR1, cr1);
*/
set_dvfm_constraint(drv_data); /*disable system to idle while DMA */
if (drv_data->slave_mode)
top_ctrl |= TOP_SSE | TOP_SCLKDIR | TOP_SFRMDIR;
else
top_ctrl |= TOP_HOLD_FRAME_LOW;
/*
* This part changed the logic
* 1. clear SSE
* 2. write TOP_CTRL and other register
* 3. set SSE in the end of this function
*/
top_ctrl &= ~TOP_SSE;
x1_spi_write(drv_data, TOP_CTRL, top_ctrl);
x1_spi_write(drv_data, FIFO_CTRL, fifo_ctrl);
x1_spi_write(drv_data, INT_EN, int_en);
top_ctrl |= TOP_SSE;
#ifdef CONFIG_X1_SSP_DEBUG
dev_err(&message->spi->dev, "spi top = 0x%x\n", top_ctrl);
dev_err(&message->spi->dev, "fifo = 0x%x\n", x1_spi_read(drv_data, FIFO_CTRL));
dev_err(&message->spi->dev, "int_en = 0x%x\n", x1_spi_read(drv_data, INT_EN));
dev_err(&message->spi->dev, "to = 0x%x\n", x1_spi_read(drv_data, TO));
#endif
x1_spi_write(drv_data, TOP_CTRL, top_ctrl);
}
static int x1_spi_transfer_one_message(struct spi_master *master,
struct spi_message *msg)
{
struct spi_driver_data *drv_data = spi_master_get_devdata(master);
drv_data->cur_msg = msg;
/* Initial message state*/
drv_data->cur_msg->state = START_STATE;
drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
struct spi_transfer,
transfer_list);
/*
* prepare to setup the SSP, in pump_transfers, using the per
* chip configuration
*/
drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
if (master->max_speed_hz != drv_data->cur_transfer->speed_hz) {
master->max_speed_hz = drv_data->cur_transfer->speed_hz;
clk_set_rate(drv_data->clk, master->max_speed_hz);
}
reinit_completion(&drv_data->cur_msg_completion);
/* Mark as busy and launch transfers */
queue_work(system_wq, &drv_data->pump_transfers);
wait_for_completion(&drv_data->cur_msg_completion);
return 0;
}
static int x1_spi_unprepare_transfer(struct spi_master *master)
{
struct spi_driver_data *drv_data = spi_master_get_devdata(master);
/* Disable the SSP now */
x1_spi_write(drv_data, TOP_CTRL,
x1_spi_read(drv_data, TOP_CTRL) & ~(TOP_SSE | TOP_HOLD_FRAME_LOW));
return 0;
}
static int setup_cs(struct spi_device *spi, struct chip_data *chip)
{
int err = 0;
if (chip == NULL)
return 0;
return err;
}
static int setup(struct spi_device *spi)
{
struct chip_data *chip;
struct spi_driver_data *drv_data = spi_master_get_devdata(spi->master);
uint tx_thres, tx_hi_thres, rx_thres;
tx_thres = TX_THRESH_DFLT;
tx_hi_thres = 0;
rx_thres = RX_THRESH_DFLT;
/* Only alloc on first setup */
chip = spi_get_ctldata(spi);
if (!chip) {
chip = devm_kzalloc(&spi->master->dev, sizeof(struct chip_data),
GFP_KERNEL);
if (!chip)
return -ENOMEM;
chip->gpio_cs = -1;
chip->enable_dma = 0;
chip->timeout =
drv_data->slave_mode ? TIMOUT_DFLT_SLAVE : TIMOUT_DFLT;
}
chip->top_ctrl = 0;
chip->fifo_ctrl = 0;
chip->enable_dma = drv_data->master_info->enable_dma;
if (drv_data->slave_mode)
chip->dma_burst_size = 32;
if (chip->enable_dma) {
/* set up legal burst and threshold for dma */
if (x1_spi_set_dma_burst_and_threshold(chip, spi,
spi->bits_per_word,
&chip->dma_burst_size,
&chip->dma_threshold)) {
dev_warn(&spi->dev,
"in setup: DMA burst size reduced to match bits_per_word\n");
}
}
chip->threshold = (FIFO_RxTresh(rx_thres) & FIFO_RFT) |
(FIFO_TxTresh(tx_thres) & FIFO_TFT);
chip->top_ctrl &= ~(TOP_SPO | TOP_SPH);
chip->top_ctrl |= (((spi->mode & SPI_CPHA) != 0) ? TOP_SPH : 0)
| (((spi->mode & SPI_CPOL) != 0) ? TOP_SPO : 0);
if (spi->mode & SPI_LOOP)
chip->top_ctrl |= TOP_LBM;
/* Enable rx fifo auto full control */
if (drv_data->ssp_enhancement)
chip->fifo_ctrl |= FIFO_RXFIFO_AUTO_FULL_CTRL;
if (spi->bits_per_word <= 8) {
chip->n_bytes = 1;
chip->read = u8_reader;
chip->write = u8_writer;
} else if (spi->bits_per_word <= 16) {
chip->n_bytes = 2;
chip->read = u16_reader;
chip->write = u16_writer;
} else if (spi->bits_per_word <= 32) {
chip->n_bytes = 4;
chip->read = u32_reader;
chip->write = u32_writer;
}
if (spi->master->max_speed_hz != spi->max_speed_hz) {
spi->master->max_speed_hz = spi->max_speed_hz;
clk_set_rate(drv_data->clk, spi->master->max_speed_hz);
}
spi_set_ctldata(spi, chip);
return setup_cs(spi, chip);
}
static void cleanup(struct spi_device *spi)
{
struct chip_data *chip = spi_get_ctldata(spi);
if (!chip)
return;
if (gpio_is_valid(chip->gpio_cs))
gpio_free(chip->gpio_cs);
devm_kfree(&spi->dev, chip);
}
static const struct of_device_id x1_spi_dt_ids[] = {
{ .compatible = "ky,x1-spi", .data = (void *) X1_SSP },
{}
};
MODULE_DEVICE_TABLE(of, x1_spi_dt_ids);
static int x1_spi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct x1_spi_master *platform_info;
struct spi_master *master = NULL;
struct spi_driver_data *drv_data = NULL;
struct device_node *np = dev->of_node;
const struct of_device_id *id =
of_match_device(of_match_ptr(x1_spi_dt_ids), dev);
struct resource *iores;
u32 bus_num;
#if 0
const __be32 *prop;
unsigned int proplen;
#endif
int status;
u32 tmp;
platform_info = dev_get_platdata(dev);
if (!platform_info) {
platform_info = devm_kzalloc(dev, sizeof(*platform_info),
GFP_KERNEL);
if (!platform_info)
return -ENOMEM;
platform_info->num_chipselect = 1;
/* TODO: NO DMA on FPGA yet */
if (of_get_property(np, "x1,ssp-disable-dma", NULL))
platform_info->enable_dma = 0;
else
platform_info->enable_dma = 1;
}
master = spi_alloc_master(dev, sizeof(struct spi_driver_data));
if (!master) {
dev_err(&pdev->dev, "cannot alloc spi_master\n");
return -ENOMEM;
}
drv_data = spi_master_get_devdata(master);
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (iores == NULL) {
dev_err(dev, "no memory resource defined\n");
status = -ENODEV;
goto out_error_master_alloc;
}
drv_data->ioaddr = devm_ioremap_resource(dev, iores);
if (drv_data->ioaddr == NULL) {
dev_err(dev, "failed to ioremap() registers\n");
status = -ENODEV;
goto out_error_master_alloc;
}
drv_data->irq = platform_get_irq(pdev, 0);
if (drv_data->irq < 0) {
dev_err(dev, "no IRQ resource defined\n");
status = -ENODEV;
goto out_error_master_alloc;
}
/* Receive FIFO auto full ctrl enable */
if (of_get_property(np, "x1,ssp-enhancement", NULL))
drv_data->ssp_enhancement = 1;
if (of_get_property(np, "x1,ssp-slave-mode", NULL)) {
drv_data->slave_mode = 1;
dev_warn(&pdev->dev, "slave mode\n");
timer_setup(&drv_data->slave_rx_timer,
slave_rx_timer_expired, 0);
}
#if 0
prop = of_get_property(dev->of_node, "x1,ssp-lpm-qos", &proplen);
if (!prop) {
dev_err(&pdev->dev, "lpm-qos for spi is not defined!\n");
status = -EINVAL;
goto out_error_master_alloc;
} else
drv_data->qos_idle_value = be32_to_cpup(prop);
#endif
init_dvfm_constraint(drv_data);
master->dev.of_node = dev->of_node;
drv_data->ssp_type = (uintptr_t) id->data;
if (!of_property_read_u32(np, "x1,ssp-id", &bus_num))
master->bus_num = bus_num;
drv_data->ssdr_physical = iores->start + DATAR;
drv_data->clk = devm_clk_get(dev, NULL);
if (IS_ERR_OR_NULL(drv_data->clk)) {
dev_err(&pdev->dev, "cannot get clk\n");
status = -ENODEV;
goto out_error_clk_check;
}
drv_data->reset = devm_reset_control_get_optional(dev, NULL);
if (IS_ERR_OR_NULL(drv_data->reset)) {
dev_err(&pdev->dev, "Failed to get spi's reset\n");
status = -ENODEV;
goto out_error_clk_check;
}
drv_data->master = master;
drv_data->master_info = platform_info;
drv_data->pdev = pdev;
master->dev.parent = &pdev->dev;
/* the spi->mode bits understood by this driver: */
master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
master->dma_alignment = DMA_ALIGNMENT;
master->cleanup = cleanup;
master->setup = setup;
master->transfer_one_message = x1_spi_transfer_one_message;
master->unprepare_transfer_hardware = x1_spi_unprepare_transfer;
master->auto_runtime_pm = true;
master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
drv_data->int_cr = INT_EN_TIE | INT_EN_RIE | INT_EN_TINTE; /* INT_EN */
drv_data->dma_cr = (drv_data->slave_mode) ? INT_EN_TINTE : 0;
drv_data->clear_sr = STATUS_ROR | STATUS_TINT;
drv_data->mask_sr = STATUS_TINT | STATUS_RFS | STATUS_TFS | STATUS_ROR;
drv_data->dma_top_ctrl = DEFAULT_DMA_TOP_CTRL;
drv_data->dma_fifo_ctrl = DEFAULT_DMA_FIFO_CTRL;
status = devm_request_irq(&pdev->dev, drv_data->irq, ssp_int, IRQF_SHARED, dev_name(dev),
drv_data);
if (status < 0) {
dev_err(&pdev->dev, "cannot get IRQ %d\n", drv_data->irq);
goto out_error_master_alloc;
}
/* Setup DMA if requested */
if (platform_info->enable_dma) {
status = x1_spi_dma_setup(drv_data);
if (status) {
dev_dbg(dev, "no DMA channels available, using PIO\n");
platform_info->enable_dma = false;
}
}
status = of_property_read_u32(np, "x1,ssp-clock-rate", &master->max_speed_hz);
if (status < 0) {
dev_err(&pdev->dev, "cannot get clock-rate from DT file\n");
goto out_error_master_alloc;
}
clk_set_rate(drv_data->clk, master->max_speed_hz);
master->max_speed_hz = clk_get_rate(drv_data->clk);
clk_prepare_enable(drv_data->clk);
reset_control_deassert(drv_data->reset);
/* Load default SSP configuration */
x1_spi_write(drv_data, TOP_CTRL, 0);
x1_spi_write(drv_data, FIFO_CTRL, 0);
tmp = FIFO_RxTresh(RX_THRESH_DFLT) |
FIFO_TxTresh(TX_THRESH_DFLT);
x1_spi_write(drv_data, FIFO_CTRL, tmp);
tmp = TOP_FRF_Motorola | TOP_DSS(8);
x1_spi_write(drv_data, TOP_CTRL, tmp);
x1_spi_write(drv_data, TO, 0);
x1_spi_write(drv_data, PSP_CTRL, 0);
master->num_chipselect = platform_info->num_chipselect;
INIT_WORK(&drv_data->pump_transfers, pump_transfers);
pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
init_completion(&drv_data->cur_msg_completion);
/* Register with the SPI framework */
platform_set_drvdata(pdev, drv_data);
status = devm_spi_register_master(&pdev->dev, master);
if (status != 0) {
dev_err(&pdev->dev, "problem registering spi master\n");
goto out_error_clock_enabled;
}
return status;
out_error_clock_enabled:
reset_control_assert(drv_data->reset);
clk_disable_unprepare(drv_data->clk);
x1_spi_dma_release(drv_data);
free_irq(drv_data->irq, drv_data);
out_error_clk_check:
deinit_dvfm_constraint(drv_data);
out_error_master_alloc:
spi_master_put(master);
return status;
}
static int x1_spi_remove(struct platform_device *pdev)
{
struct spi_driver_data *drv_data = platform_get_drvdata(pdev);
if (!drv_data)
return 0;
pm_runtime_get_sync(&pdev->dev);
/* Disable the SSP at the peripheral and SOC level */
x1_spi_write(drv_data, TOP_CTRL, 0);
x1_spi_write(drv_data, FIFO_CTRL, 0); /* whether need this line? */
reset_control_assert(drv_data->reset);
clk_disable_unprepare(drv_data->clk);
/* Release DMA */
if (drv_data->master_info->enable_dma)
x1_spi_dma_release(drv_data);
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
/* Release IRQ */
free_irq(drv_data->irq, drv_data);
deinit_dvfm_constraint(drv_data);
return 0;
}
static void x1_spi_shutdown(struct platform_device *pdev)
{
int status = 0;
if ((status = x1_spi_remove(pdev)) != 0)
dev_err(&pdev->dev, "shutdown failed with %d\n", status);
}
#ifdef CONFIG_PM_SLEEP
static int x1_spi_suspend(struct device *dev)
{
struct spi_driver_data *drv_data = dev_get_drvdata(dev);
int status = 0;
pm_runtime_get_sync(dev);
status = spi_master_suspend(drv_data->master);
if (status != 0)
return status;
x1_spi_write(drv_data, TOP_CTRL, 0);
x1_spi_write(drv_data, FIFO_CTRL, 0); /* whether need this line? */
status = pm_runtime_force_suspend(dev);
return status;
}
static int x1_spi_resume(struct device *dev)
{
struct spi_driver_data *drv_data = dev_get_drvdata(dev);
int status = 0;
/* Enable the SSP clock */
status = pm_runtime_force_resume(dev);
if (status) {
dev_err(dev, "failed to resume pm_runtime (%d)\n", status);
return status;
}
/* Start the queue running */
status = spi_master_resume(drv_data->master);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
if (status != 0) {
dev_err(dev, "problem starting queue (%d)\n", status);
return status;
}
return 0;
}
#endif
#ifdef CONFIG_PM
/** static int x1_spi_runtime_suspend(struct device *dev)
* {
* struct spi_driver_data *drv_data = dev_get_drvdata(dev);
*
* reset_control_assert(drv_data->reset);
* clk_disable_unprepare(drv_data->clk);
*
* return 0;
*}
*/
/**
* static int x1_spi_runtime_resume(struct device *dev)
* {
* struct spi_driver_data *drv_data = dev_get_drvdata(dev);
*
* clk_prepare_enable(drv_data->clk);
* reset_control_deassert(drv_data->reset);
* return 0;
*}
*/
#endif
static const struct dev_pm_ops x1_spi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(x1_spi_suspend, x1_spi_resume)
/**
* SET_RUNTIME_PM_OPS(x1_spi_runtime_suspend,
* x1_spi_runtime_resume, NULL)
*/
};
static struct platform_driver driver = {
.driver = {
.name = "x1-spi",
.pm = &x1_spi_pm_ops,
.of_match_table = x1_spi_dt_ids,
},
.probe = x1_spi_probe,
.remove = x1_spi_remove,
.shutdown = x1_spi_shutdown,
};
static int __init x1_spi_init(void)
{
return platform_driver_register(&driver);
}
module_init(x1_spi_init);
static void __exit x1_spi_exit(void)
{
platform_driver_unregister(&driver);
}
module_exit(x1_spi_exit);
MODULE_AUTHOR("Ky");
MODULE_DESCRIPTION("Ky x1 spi controller driver");
MODULE_LICENSE("GPL v2");