b244682e38
Signed-off-by: Felix Fietkau <nbd@openwrt.org> SVN-Revision: 37769
2231 lines
59 KiB
C
2231 lines
59 KiB
C
/*-
|
|
* Linux port done by David McCullough <david_mccullough@mcafee.com>
|
|
* Copyright (C) 2004-2010 David McCullough
|
|
* The license and original author are listed below.
|
|
*
|
|
* Copyright (c) 2003 Sam Leffler, Errno Consulting
|
|
* Copyright (c) 2003 Global Technology Associates, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
__FBSDID("$FreeBSD: src/sys/dev/safe/safe.c,v 1.18 2007/03/21 03:42:50 sam Exp $");
|
|
*/
|
|
|
|
#include <linux/version.h>
|
|
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,38) && !defined(AUTOCONF_INCLUDED)
|
|
#include <linux/config.h>
|
|
#endif
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/random.h>
|
|
#include <linux/skbuff.h>
|
|
#include <asm/io.h>
|
|
|
|
/*
|
|
* SafeNet SafeXcel-1141 hardware crypto accelerator
|
|
*/
|
|
|
|
#include <cryptodev.h>
|
|
#include <uio.h>
|
|
#include <safe/safereg.h>
|
|
#include <safe/safevar.h>
|
|
|
|
#if 1
|
|
#define DPRINTF(a) do { \
|
|
if (debug) { \
|
|
printk("%s: ", sc ? \
|
|
device_get_nameunit(sc->sc_dev) : "safe"); \
|
|
printk a; \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
#define DPRINTF(a)
|
|
#endif
|
|
|
|
/*
|
|
* until we find a cleaner way, include the BSD md5/sha1 code
|
|
* here
|
|
*/
|
|
#define HMAC_HACK 1
|
|
#ifdef HMAC_HACK
|
|
#include <safe/hmachack.h>
|
|
#include <safe/md5.h>
|
|
#include <safe/md5.c>
|
|
#include <safe/sha1.h>
|
|
#include <safe/sha1.c>
|
|
#endif /* HMAC_HACK */
|
|
|
|
/* add proc entry for this */
|
|
struct safe_stats safestats;
|
|
|
|
#define debug safe_debug
|
|
int safe_debug = 0;
|
|
module_param(safe_debug, int, 0644);
|
|
MODULE_PARM_DESC(safe_debug, "Enable debug");
|
|
|
|
static void safe_callback(struct safe_softc *, struct safe_ringentry *);
|
|
static void safe_feed(struct safe_softc *, struct safe_ringentry *);
|
|
#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
|
|
static void safe_rng_init(struct safe_softc *);
|
|
int safe_rngbufsize = 8; /* 32 bytes each read */
|
|
module_param(safe_rngbufsize, int, 0644);
|
|
MODULE_PARM_DESC(safe_rngbufsize, "RNG polling buffer size (32-bit words)");
|
|
int safe_rngmaxalarm = 8; /* max alarms before reset */
|
|
module_param(safe_rngmaxalarm, int, 0644);
|
|
MODULE_PARM_DESC(safe_rngmaxalarm, "RNG max alarms before reset");
|
|
#endif /* SAFE_NO_RNG */
|
|
|
|
static void safe_totalreset(struct safe_softc *sc);
|
|
static int safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op);
|
|
static int safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op);
|
|
static int safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re);
|
|
static int safe_kprocess(device_t dev, struct cryptkop *krp, int hint);
|
|
static int safe_kstart(struct safe_softc *sc);
|
|
static int safe_ksigbits(struct safe_softc *sc, struct crparam *cr);
|
|
static void safe_kfeed(struct safe_softc *sc);
|
|
static void safe_kpoll(unsigned long arg);
|
|
static void safe_kload_reg(struct safe_softc *sc, u_int32_t off,
|
|
u_int32_t len, struct crparam *n);
|
|
|
|
static int safe_newsession(device_t, u_int32_t *, struct cryptoini *);
|
|
static int safe_freesession(device_t, u_int64_t);
|
|
static int safe_process(device_t, struct cryptop *, int);
|
|
|
|
static device_method_t safe_methods = {
|
|
/* crypto device methods */
|
|
DEVMETHOD(cryptodev_newsession, safe_newsession),
|
|
DEVMETHOD(cryptodev_freesession,safe_freesession),
|
|
DEVMETHOD(cryptodev_process, safe_process),
|
|
DEVMETHOD(cryptodev_kprocess, safe_kprocess),
|
|
};
|
|
|
|
#define READ_REG(sc,r) readl((sc)->sc_base_addr + (r))
|
|
#define WRITE_REG(sc,r,val) writel((val), (sc)->sc_base_addr + (r))
|
|
|
|
#define SAFE_MAX_CHIPS 8
|
|
static struct safe_softc *safe_chip_idx[SAFE_MAX_CHIPS];
|
|
|
|
/*
|
|
* split our buffers up into safe DMAable byte fragments to avoid lockup
|
|
* bug in 1141 HW on rev 1.0.
|
|
*/
|
|
|
|
static int
|
|
pci_map_linear(
|
|
struct safe_softc *sc,
|
|
struct safe_operand *buf,
|
|
void *addr,
|
|
int len)
|
|
{
|
|
dma_addr_t tmp;
|
|
int chunk, tlen = len;
|
|
|
|
tmp = pci_map_single(sc->sc_pcidev, addr, len, PCI_DMA_BIDIRECTIONAL);
|
|
|
|
buf->mapsize += len;
|
|
while (len > 0) {
|
|
chunk = (len > sc->sc_max_dsize) ? sc->sc_max_dsize : len;
|
|
buf->segs[buf->nsegs].ds_addr = tmp;
|
|
buf->segs[buf->nsegs].ds_len = chunk;
|
|
buf->segs[buf->nsegs].ds_tlen = tlen;
|
|
buf->nsegs++;
|
|
tmp += chunk;
|
|
len -= chunk;
|
|
tlen = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* map in a given uio buffer (great on some arches :-)
|
|
*/
|
|
|
|
static int
|
|
pci_map_uio(struct safe_softc *sc, struct safe_operand *buf, struct uio *uio)
|
|
{
|
|
struct iovec *iov = uio->uio_iov;
|
|
int n;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
buf->mapsize = 0;
|
|
buf->nsegs = 0;
|
|
|
|
for (n = 0; n < uio->uio_iovcnt; n++) {
|
|
pci_map_linear(sc, buf, iov->iov_base, iov->iov_len);
|
|
iov++;
|
|
}
|
|
|
|
/* identify this buffer by the first segment */
|
|
buf->map = (void *) buf->segs[0].ds_addr;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* map in a given sk_buff
|
|
*/
|
|
|
|
static int
|
|
pci_map_skb(struct safe_softc *sc,struct safe_operand *buf,struct sk_buff *skb)
|
|
{
|
|
int i;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
buf->mapsize = 0;
|
|
buf->nsegs = 0;
|
|
|
|
pci_map_linear(sc, buf, skb->data, skb_headlen(skb));
|
|
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
pci_map_linear(sc, buf,
|
|
page_address(skb_frag_page(&skb_shinfo(skb)->frags[i])) +
|
|
skb_shinfo(skb)->frags[i].page_offset,
|
|
skb_shinfo(skb)->frags[i].size);
|
|
}
|
|
|
|
/* identify this buffer by the first segment */
|
|
buf->map = (void *) buf->segs[0].ds_addr;
|
|
return(0);
|
|
}
|
|
|
|
|
|
#if 0 /* not needed at this time */
|
|
static void
|
|
pci_sync_operand(struct safe_softc *sc, struct safe_operand *buf)
|
|
{
|
|
int i;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
for (i = 0; i < buf->nsegs; i++)
|
|
pci_dma_sync_single_for_cpu(sc->sc_pcidev, buf->segs[i].ds_addr,
|
|
buf->segs[i].ds_len, PCI_DMA_BIDIRECTIONAL);
|
|
}
|
|
#endif
|
|
|
|
static void
|
|
pci_unmap_operand(struct safe_softc *sc, struct safe_operand *buf)
|
|
{
|
|
int i;
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
for (i = 0; i < buf->nsegs; i++) {
|
|
if (buf->segs[i].ds_tlen) {
|
|
DPRINTF(("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen));
|
|
pci_unmap_single(sc->sc_pcidev, buf->segs[i].ds_addr,
|
|
buf->segs[i].ds_tlen, PCI_DMA_BIDIRECTIONAL);
|
|
DPRINTF(("%s - unmap %d 0x%x %d done\n", __FUNCTION__, i, buf->segs[i].ds_addr, buf->segs[i].ds_tlen));
|
|
}
|
|
buf->segs[i].ds_addr = 0;
|
|
buf->segs[i].ds_len = 0;
|
|
buf->segs[i].ds_tlen = 0;
|
|
}
|
|
buf->nsegs = 0;
|
|
buf->mapsize = 0;
|
|
buf->map = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* SafeXcel Interrupt routine
|
|
*/
|
|
static irqreturn_t
|
|
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,19)
|
|
safe_intr(int irq, void *arg)
|
|
#else
|
|
safe_intr(int irq, void *arg, struct pt_regs *regs)
|
|
#endif
|
|
{
|
|
struct safe_softc *sc = arg;
|
|
int stat;
|
|
unsigned long flags;
|
|
|
|
stat = READ_REG(sc, SAFE_HM_STAT);
|
|
|
|
DPRINTF(("%s(stat=0x%x)\n", __FUNCTION__, stat));
|
|
|
|
if (stat == 0) /* shared irq, not for us */
|
|
return IRQ_NONE;
|
|
|
|
WRITE_REG(sc, SAFE_HI_CLR, stat); /* IACK */
|
|
|
|
if ((stat & SAFE_INT_PE_DDONE)) {
|
|
/*
|
|
* Descriptor(s) done; scan the ring and
|
|
* process completed operations.
|
|
*/
|
|
spin_lock_irqsave(&sc->sc_ringmtx, flags);
|
|
while (sc->sc_back != sc->sc_front) {
|
|
struct safe_ringentry *re = sc->sc_back;
|
|
|
|
#ifdef SAFE_DEBUG
|
|
if (debug) {
|
|
safe_dump_ringstate(sc, __func__);
|
|
safe_dump_request(sc, __func__, re);
|
|
}
|
|
#endif
|
|
/*
|
|
* safe_process marks ring entries that were allocated
|
|
* but not used with a csr of zero. This insures the
|
|
* ring front pointer never needs to be set backwards
|
|
* in the event that an entry is allocated but not used
|
|
* because of a setup error.
|
|
*/
|
|
DPRINTF(("%s re->re_desc.d_csr=0x%x\n", __FUNCTION__, re->re_desc.d_csr));
|
|
if (re->re_desc.d_csr != 0) {
|
|
if (!SAFE_PE_CSR_IS_DONE(re->re_desc.d_csr)) {
|
|
DPRINTF(("%s !CSR_IS_DONE\n", __FUNCTION__));
|
|
break;
|
|
}
|
|
if (!SAFE_PE_LEN_IS_DONE(re->re_desc.d_len)) {
|
|
DPRINTF(("%s !LEN_IS_DONE\n", __FUNCTION__));
|
|
break;
|
|
}
|
|
sc->sc_nqchip--;
|
|
safe_callback(sc, re);
|
|
}
|
|
if (++(sc->sc_back) == sc->sc_ringtop)
|
|
sc->sc_back = sc->sc_ring;
|
|
}
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
}
|
|
|
|
/*
|
|
* Check to see if we got any DMA Error
|
|
*/
|
|
if (stat & SAFE_INT_PE_ERROR) {
|
|
printk("%s: dmaerr dmastat %08x\n", device_get_nameunit(sc->sc_dev),
|
|
(int)READ_REG(sc, SAFE_PE_DMASTAT));
|
|
safestats.st_dmaerr++;
|
|
safe_totalreset(sc);
|
|
#if 0
|
|
safe_feed(sc);
|
|
#endif
|
|
}
|
|
|
|
if (sc->sc_needwakeup) { /* XXX check high watermark */
|
|
int wakeup = sc->sc_needwakeup & (CRYPTO_SYMQ|CRYPTO_ASYMQ);
|
|
DPRINTF(("%s: wakeup crypto %x\n", __func__,
|
|
sc->sc_needwakeup));
|
|
sc->sc_needwakeup &= ~wakeup;
|
|
crypto_unblock(sc->sc_cid, wakeup);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* safe_feed() - post a request to chip
|
|
*/
|
|
static void
|
|
safe_feed(struct safe_softc *sc, struct safe_ringentry *re)
|
|
{
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
#ifdef SAFE_DEBUG
|
|
if (debug) {
|
|
safe_dump_ringstate(sc, __func__);
|
|
safe_dump_request(sc, __func__, re);
|
|
}
|
|
#endif
|
|
sc->sc_nqchip++;
|
|
if (sc->sc_nqchip > safestats.st_maxqchip)
|
|
safestats.st_maxqchip = sc->sc_nqchip;
|
|
/* poke h/w to check descriptor ring, any value can be written */
|
|
WRITE_REG(sc, SAFE_HI_RD_DESCR, 0);
|
|
}
|
|
|
|
#define N(a) (sizeof(a) / sizeof (a[0]))
|
|
static void
|
|
safe_setup_enckey(struct safe_session *ses, caddr_t key)
|
|
{
|
|
int i;
|
|
|
|
bcopy(key, ses->ses_key, ses->ses_klen / 8);
|
|
|
|
/* PE is little-endian, insure proper byte order */
|
|
for (i = 0; i < N(ses->ses_key); i++)
|
|
ses->ses_key[i] = htole32(ses->ses_key[i]);
|
|
}
|
|
|
|
static void
|
|
safe_setup_mackey(struct safe_session *ses, int algo, caddr_t key, int klen)
|
|
{
|
|
#ifdef HMAC_HACK
|
|
MD5_CTX md5ctx;
|
|
SHA1_CTX sha1ctx;
|
|
int i;
|
|
|
|
|
|
for (i = 0; i < klen; i++)
|
|
key[i] ^= HMAC_IPAD_VAL;
|
|
|
|
if (algo == CRYPTO_MD5_HMAC) {
|
|
MD5Init(&md5ctx);
|
|
MD5Update(&md5ctx, key, klen);
|
|
MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
|
|
bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
|
|
} else {
|
|
SHA1Init(&sha1ctx);
|
|
SHA1Update(&sha1ctx, key, klen);
|
|
SHA1Update(&sha1ctx, hmac_ipad_buffer,
|
|
SHA1_HMAC_BLOCK_LEN - klen);
|
|
bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
|
|
}
|
|
|
|
for (i = 0; i < klen; i++)
|
|
key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
|
|
|
|
if (algo == CRYPTO_MD5_HMAC) {
|
|
MD5Init(&md5ctx);
|
|
MD5Update(&md5ctx, key, klen);
|
|
MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
|
|
bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
|
|
} else {
|
|
SHA1Init(&sha1ctx);
|
|
SHA1Update(&sha1ctx, key, klen);
|
|
SHA1Update(&sha1ctx, hmac_opad_buffer,
|
|
SHA1_HMAC_BLOCK_LEN - klen);
|
|
bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
|
|
}
|
|
|
|
for (i = 0; i < klen; i++)
|
|
key[i] ^= HMAC_OPAD_VAL;
|
|
|
|
#if 0
|
|
/*
|
|
* this code prevents SHA working on a BE host,
|
|
* so it is obviously wrong. I think the byte
|
|
* swap setup we do with the chip fixes this for us
|
|
*/
|
|
|
|
/* PE is little-endian, insure proper byte order */
|
|
for (i = 0; i < N(ses->ses_hminner); i++) {
|
|
ses->ses_hminner[i] = htole32(ses->ses_hminner[i]);
|
|
ses->ses_hmouter[i] = htole32(ses->ses_hmouter[i]);
|
|
}
|
|
#endif
|
|
#else /* HMAC_HACK */
|
|
printk("safe: md5/sha not implemented\n");
|
|
#endif /* HMAC_HACK */
|
|
}
|
|
#undef N
|
|
|
|
/*
|
|
* Allocate a new 'session' and return an encoded session id. 'sidp'
|
|
* contains our registration id, and should contain an encoded session
|
|
* id on successful allocation.
|
|
*/
|
|
static int
|
|
safe_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
|
|
{
|
|
struct safe_softc *sc = device_get_softc(dev);
|
|
struct cryptoini *c, *encini = NULL, *macini = NULL;
|
|
struct safe_session *ses = NULL;
|
|
int sesn;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (sidp == NULL || cri == NULL || sc == NULL)
|
|
return (EINVAL);
|
|
|
|
for (c = cri; c != NULL; c = c->cri_next) {
|
|
if (c->cri_alg == CRYPTO_MD5_HMAC ||
|
|
c->cri_alg == CRYPTO_SHA1_HMAC ||
|
|
c->cri_alg == CRYPTO_NULL_HMAC) {
|
|
if (macini)
|
|
return (EINVAL);
|
|
macini = c;
|
|
} else if (c->cri_alg == CRYPTO_DES_CBC ||
|
|
c->cri_alg == CRYPTO_3DES_CBC ||
|
|
c->cri_alg == CRYPTO_AES_CBC ||
|
|
c->cri_alg == CRYPTO_NULL_CBC) {
|
|
if (encini)
|
|
return (EINVAL);
|
|
encini = c;
|
|
} else
|
|
return (EINVAL);
|
|
}
|
|
if (encini == NULL && macini == NULL)
|
|
return (EINVAL);
|
|
if (encini) { /* validate key length */
|
|
switch (encini->cri_alg) {
|
|
case CRYPTO_DES_CBC:
|
|
if (encini->cri_klen != 64)
|
|
return (EINVAL);
|
|
break;
|
|
case CRYPTO_3DES_CBC:
|
|
if (encini->cri_klen != 192)
|
|
return (EINVAL);
|
|
break;
|
|
case CRYPTO_AES_CBC:
|
|
if (encini->cri_klen != 128 &&
|
|
encini->cri_klen != 192 &&
|
|
encini->cri_klen != 256)
|
|
return (EINVAL);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sc->sc_sessions == NULL) {
|
|
ses = sc->sc_sessions = (struct safe_session *)
|
|
kmalloc(sizeof(struct safe_session), SLAB_ATOMIC);
|
|
if (ses == NULL)
|
|
return (ENOMEM);
|
|
memset(ses, 0, sizeof(struct safe_session));
|
|
sesn = 0;
|
|
sc->sc_nsessions = 1;
|
|
} else {
|
|
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
|
|
if (sc->sc_sessions[sesn].ses_used == 0) {
|
|
ses = &sc->sc_sessions[sesn];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ses == NULL) {
|
|
sesn = sc->sc_nsessions;
|
|
ses = (struct safe_session *)
|
|
kmalloc((sesn + 1) * sizeof(struct safe_session), SLAB_ATOMIC);
|
|
if (ses == NULL)
|
|
return (ENOMEM);
|
|
memset(ses, 0, (sesn + 1) * sizeof(struct safe_session));
|
|
bcopy(sc->sc_sessions, ses, sesn *
|
|
sizeof(struct safe_session));
|
|
bzero(sc->sc_sessions, sesn *
|
|
sizeof(struct safe_session));
|
|
kfree(sc->sc_sessions);
|
|
sc->sc_sessions = ses;
|
|
ses = &sc->sc_sessions[sesn];
|
|
sc->sc_nsessions++;
|
|
}
|
|
}
|
|
|
|
bzero(ses, sizeof(struct safe_session));
|
|
ses->ses_used = 1;
|
|
|
|
if (encini) {
|
|
ses->ses_klen = encini->cri_klen;
|
|
if (encini->cri_key != NULL)
|
|
safe_setup_enckey(ses, encini->cri_key);
|
|
}
|
|
|
|
if (macini) {
|
|
ses->ses_mlen = macini->cri_mlen;
|
|
if (ses->ses_mlen == 0) {
|
|
if (macini->cri_alg == CRYPTO_MD5_HMAC)
|
|
ses->ses_mlen = MD5_HASH_LEN;
|
|
else
|
|
ses->ses_mlen = SHA1_HASH_LEN;
|
|
}
|
|
|
|
if (macini->cri_key != NULL) {
|
|
safe_setup_mackey(ses, macini->cri_alg, macini->cri_key,
|
|
macini->cri_klen / 8);
|
|
}
|
|
}
|
|
|
|
*sidp = SAFE_SID(device_get_unit(sc->sc_dev), sesn);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Deallocate a session.
|
|
*/
|
|
static int
|
|
safe_freesession(device_t dev, u_int64_t tid)
|
|
{
|
|
struct safe_softc *sc = device_get_softc(dev);
|
|
int session, ret;
|
|
u_int32_t sid = ((u_int32_t) tid) & 0xffffffff;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (sc == NULL)
|
|
return (EINVAL);
|
|
|
|
session = SAFE_SESSION(sid);
|
|
if (session < sc->sc_nsessions) {
|
|
bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
|
|
ret = 0;
|
|
} else
|
|
ret = EINVAL;
|
|
return (ret);
|
|
}
|
|
|
|
|
|
static int
|
|
safe_process(device_t dev, struct cryptop *crp, int hint)
|
|
{
|
|
struct safe_softc *sc = device_get_softc(dev);
|
|
int err = 0, i, nicealign, uniform;
|
|
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
|
|
int bypass, oplen, ivsize;
|
|
caddr_t iv;
|
|
int16_t coffset;
|
|
struct safe_session *ses;
|
|
struct safe_ringentry *re;
|
|
struct safe_sarec *sa;
|
|
struct safe_pdesc *pd;
|
|
u_int32_t cmd0, cmd1, staterec, rand_iv[4];
|
|
unsigned long flags;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (crp == NULL || crp->crp_callback == NULL || sc == NULL) {
|
|
safestats.st_invalid++;
|
|
return (EINVAL);
|
|
}
|
|
if (SAFE_SESSION(crp->crp_sid) >= sc->sc_nsessions) {
|
|
safestats.st_badsession++;
|
|
return (EINVAL);
|
|
}
|
|
|
|
spin_lock_irqsave(&sc->sc_ringmtx, flags);
|
|
if (sc->sc_front == sc->sc_back && sc->sc_nqchip != 0) {
|
|
safestats.st_ringfull++;
|
|
sc->sc_needwakeup |= CRYPTO_SYMQ;
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
return (ERESTART);
|
|
}
|
|
re = sc->sc_front;
|
|
|
|
staterec = re->re_sa.sa_staterec; /* save */
|
|
/* NB: zero everything but the PE descriptor */
|
|
bzero(&re->re_sa, sizeof(struct safe_ringentry) - sizeof(re->re_desc));
|
|
re->re_sa.sa_staterec = staterec; /* restore */
|
|
|
|
re->re_crp = crp;
|
|
re->re_sesn = SAFE_SESSION(crp->crp_sid);
|
|
|
|
re->re_src.nsegs = 0;
|
|
re->re_dst.nsegs = 0;
|
|
|
|
if (crp->crp_flags & CRYPTO_F_SKBUF) {
|
|
re->re_src_skb = (struct sk_buff *)crp->crp_buf;
|
|
re->re_dst_skb = (struct sk_buff *)crp->crp_buf;
|
|
} else if (crp->crp_flags & CRYPTO_F_IOV) {
|
|
re->re_src_io = (struct uio *)crp->crp_buf;
|
|
re->re_dst_io = (struct uio *)crp->crp_buf;
|
|
} else {
|
|
safestats.st_badflags++;
|
|
err = EINVAL;
|
|
goto errout; /* XXX we don't handle contiguous blocks! */
|
|
}
|
|
|
|
sa = &re->re_sa;
|
|
ses = &sc->sc_sessions[re->re_sesn];
|
|
|
|
crd1 = crp->crp_desc;
|
|
if (crd1 == NULL) {
|
|
safestats.st_nodesc++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
crd2 = crd1->crd_next;
|
|
|
|
cmd0 = SAFE_SA_CMD0_BASIC; /* basic group operation */
|
|
cmd1 = 0;
|
|
if (crd2 == NULL) {
|
|
if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
|
|
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
|
|
crd1->crd_alg == CRYPTO_NULL_HMAC) {
|
|
maccrd = crd1;
|
|
enccrd = NULL;
|
|
cmd0 |= SAFE_SA_CMD0_OP_HASH;
|
|
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
|
|
crd1->crd_alg == CRYPTO_3DES_CBC ||
|
|
crd1->crd_alg == CRYPTO_AES_CBC ||
|
|
crd1->crd_alg == CRYPTO_NULL_CBC) {
|
|
maccrd = NULL;
|
|
enccrd = crd1;
|
|
cmd0 |= SAFE_SA_CMD0_OP_CRYPT;
|
|
} else {
|
|
safestats.st_badalg++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
} else {
|
|
if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
|
|
crd1->crd_alg == CRYPTO_SHA1_HMAC ||
|
|
crd1->crd_alg == CRYPTO_NULL_HMAC) &&
|
|
(crd2->crd_alg == CRYPTO_DES_CBC ||
|
|
crd2->crd_alg == CRYPTO_3DES_CBC ||
|
|
crd2->crd_alg == CRYPTO_AES_CBC ||
|
|
crd2->crd_alg == CRYPTO_NULL_CBC) &&
|
|
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
|
|
maccrd = crd1;
|
|
enccrd = crd2;
|
|
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
|
|
crd1->crd_alg == CRYPTO_3DES_CBC ||
|
|
crd1->crd_alg == CRYPTO_AES_CBC ||
|
|
crd1->crd_alg == CRYPTO_NULL_CBC) &&
|
|
(crd2->crd_alg == CRYPTO_MD5_HMAC ||
|
|
crd2->crd_alg == CRYPTO_SHA1_HMAC ||
|
|
crd2->crd_alg == CRYPTO_NULL_HMAC) &&
|
|
(crd1->crd_flags & CRD_F_ENCRYPT)) {
|
|
enccrd = crd1;
|
|
maccrd = crd2;
|
|
} else {
|
|
safestats.st_badalg++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
cmd0 |= SAFE_SA_CMD0_OP_BOTH;
|
|
}
|
|
|
|
if (enccrd) {
|
|
if (enccrd->crd_flags & CRD_F_KEY_EXPLICIT)
|
|
safe_setup_enckey(ses, enccrd->crd_key);
|
|
|
|
if (enccrd->crd_alg == CRYPTO_DES_CBC) {
|
|
cmd0 |= SAFE_SA_CMD0_DES;
|
|
cmd1 |= SAFE_SA_CMD1_CBC;
|
|
ivsize = 2*sizeof(u_int32_t);
|
|
} else if (enccrd->crd_alg == CRYPTO_3DES_CBC) {
|
|
cmd0 |= SAFE_SA_CMD0_3DES;
|
|
cmd1 |= SAFE_SA_CMD1_CBC;
|
|
ivsize = 2*sizeof(u_int32_t);
|
|
} else if (enccrd->crd_alg == CRYPTO_AES_CBC) {
|
|
cmd0 |= SAFE_SA_CMD0_AES;
|
|
cmd1 |= SAFE_SA_CMD1_CBC;
|
|
if (ses->ses_klen == 128)
|
|
cmd1 |= SAFE_SA_CMD1_AES128;
|
|
else if (ses->ses_klen == 192)
|
|
cmd1 |= SAFE_SA_CMD1_AES192;
|
|
else
|
|
cmd1 |= SAFE_SA_CMD1_AES256;
|
|
ivsize = 4*sizeof(u_int32_t);
|
|
} else {
|
|
cmd0 |= SAFE_SA_CMD0_CRYPT_NULL;
|
|
ivsize = 0;
|
|
}
|
|
|
|
/*
|
|
* Setup encrypt/decrypt state. When using basic ops
|
|
* we can't use an inline IV because hash/crypt offset
|
|
* must be from the end of the IV to the start of the
|
|
* crypt data and this leaves out the preceding header
|
|
* from the hash calculation. Instead we place the IV
|
|
* in the state record and set the hash/crypt offset to
|
|
* copy both the header+IV.
|
|
*/
|
|
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
|
|
cmd0 |= SAFE_SA_CMD0_OUTBOUND;
|
|
|
|
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
|
|
iv = enccrd->crd_iv;
|
|
else
|
|
read_random((iv = (caddr_t) &rand_iv[0]), sizeof(rand_iv));
|
|
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
|
|
crypto_copyback(crp->crp_flags, crp->crp_buf,
|
|
enccrd->crd_inject, ivsize, iv);
|
|
}
|
|
bcopy(iv, re->re_sastate.sa_saved_iv, ivsize);
|
|
/* make iv LE */
|
|
for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++)
|
|
re->re_sastate.sa_saved_iv[i] =
|
|
cpu_to_le32(re->re_sastate.sa_saved_iv[i]);
|
|
cmd0 |= SAFE_SA_CMD0_IVLD_STATE | SAFE_SA_CMD0_SAVEIV;
|
|
re->re_flags |= SAFE_QFLAGS_COPYOUTIV;
|
|
} else {
|
|
cmd0 |= SAFE_SA_CMD0_INBOUND;
|
|
|
|
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
|
|
bcopy(enccrd->crd_iv,
|
|
re->re_sastate.sa_saved_iv, ivsize);
|
|
} else {
|
|
crypto_copydata(crp->crp_flags, crp->crp_buf,
|
|
enccrd->crd_inject, ivsize,
|
|
(caddr_t)re->re_sastate.sa_saved_iv);
|
|
}
|
|
/* make iv LE */
|
|
for (i = 0; i < ivsize/sizeof(re->re_sastate.sa_saved_iv[0]); i++)
|
|
re->re_sastate.sa_saved_iv[i] =
|
|
cpu_to_le32(re->re_sastate.sa_saved_iv[i]);
|
|
cmd0 |= SAFE_SA_CMD0_IVLD_STATE;
|
|
}
|
|
/*
|
|
* For basic encryption use the zero pad algorithm.
|
|
* This pads results to an 8-byte boundary and
|
|
* suppresses padding verification for inbound (i.e.
|
|
* decrypt) operations.
|
|
*
|
|
* NB: Not sure if the 8-byte pad boundary is a problem.
|
|
*/
|
|
cmd0 |= SAFE_SA_CMD0_PAD_ZERO;
|
|
|
|
/* XXX assert key bufs have the same size */
|
|
bcopy(ses->ses_key, sa->sa_key, sizeof(sa->sa_key));
|
|
}
|
|
|
|
if (maccrd) {
|
|
if (maccrd->crd_flags & CRD_F_KEY_EXPLICIT) {
|
|
safe_setup_mackey(ses, maccrd->crd_alg,
|
|
maccrd->crd_key, maccrd->crd_klen / 8);
|
|
}
|
|
|
|
if (maccrd->crd_alg == CRYPTO_MD5_HMAC) {
|
|
cmd0 |= SAFE_SA_CMD0_MD5;
|
|
cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
|
|
} else if (maccrd->crd_alg == CRYPTO_SHA1_HMAC) {
|
|
cmd0 |= SAFE_SA_CMD0_SHA1;
|
|
cmd1 |= SAFE_SA_CMD1_HMAC; /* NB: enable HMAC */
|
|
} else {
|
|
cmd0 |= SAFE_SA_CMD0_HASH_NULL;
|
|
}
|
|
/*
|
|
* Digest data is loaded from the SA and the hash
|
|
* result is saved to the state block where we
|
|
* retrieve it for return to the caller.
|
|
*/
|
|
/* XXX assert digest bufs have the same size */
|
|
bcopy(ses->ses_hminner, sa->sa_indigest,
|
|
sizeof(sa->sa_indigest));
|
|
bcopy(ses->ses_hmouter, sa->sa_outdigest,
|
|
sizeof(sa->sa_outdigest));
|
|
|
|
cmd0 |= SAFE_SA_CMD0_HSLD_SA | SAFE_SA_CMD0_SAVEHASH;
|
|
re->re_flags |= SAFE_QFLAGS_COPYOUTICV;
|
|
}
|
|
|
|
if (enccrd && maccrd) {
|
|
/*
|
|
* The offset from hash data to the start of
|
|
* crypt data is the difference in the skips.
|
|
*/
|
|
bypass = maccrd->crd_skip;
|
|
coffset = enccrd->crd_skip - maccrd->crd_skip;
|
|
if (coffset < 0) {
|
|
DPRINTF(("%s: hash does not precede crypt; "
|
|
"mac skip %u enc skip %u\n",
|
|
__func__, maccrd->crd_skip, enccrd->crd_skip));
|
|
safestats.st_skipmismatch++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
oplen = enccrd->crd_skip + enccrd->crd_len;
|
|
if (maccrd->crd_skip + maccrd->crd_len != oplen) {
|
|
DPRINTF(("%s: hash amount %u != crypt amount %u\n",
|
|
__func__, maccrd->crd_skip + maccrd->crd_len,
|
|
oplen));
|
|
safestats.st_lenmismatch++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
#ifdef SAFE_DEBUG
|
|
if (debug) {
|
|
printf("mac: skip %d, len %d, inject %d\n",
|
|
maccrd->crd_skip, maccrd->crd_len,
|
|
maccrd->crd_inject);
|
|
printf("enc: skip %d, len %d, inject %d\n",
|
|
enccrd->crd_skip, enccrd->crd_len,
|
|
enccrd->crd_inject);
|
|
printf("bypass %d coffset %d oplen %d\n",
|
|
bypass, coffset, oplen);
|
|
}
|
|
#endif
|
|
if (coffset & 3) { /* offset must be 32-bit aligned */
|
|
DPRINTF(("%s: coffset %u misaligned\n",
|
|
__func__, coffset));
|
|
safestats.st_coffmisaligned++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
coffset >>= 2;
|
|
if (coffset > 255) { /* offset must be <256 dwords */
|
|
DPRINTF(("%s: coffset %u too big\n",
|
|
__func__, coffset));
|
|
safestats.st_cofftoobig++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
/*
|
|
* Tell the hardware to copy the header to the output.
|
|
* The header is defined as the data from the end of
|
|
* the bypass to the start of data to be encrypted.
|
|
* Typically this is the inline IV. Note that you need
|
|
* to do this even if src+dst are the same; it appears
|
|
* that w/o this bit the crypted data is written
|
|
* immediately after the bypass data.
|
|
*/
|
|
cmd1 |= SAFE_SA_CMD1_HDRCOPY;
|
|
/*
|
|
* Disable IP header mutable bit handling. This is
|
|
* needed to get correct HMAC calculations.
|
|
*/
|
|
cmd1 |= SAFE_SA_CMD1_MUTABLE;
|
|
} else {
|
|
if (enccrd) {
|
|
bypass = enccrd->crd_skip;
|
|
oplen = bypass + enccrd->crd_len;
|
|
} else {
|
|
bypass = maccrd->crd_skip;
|
|
oplen = bypass + maccrd->crd_len;
|
|
}
|
|
coffset = 0;
|
|
}
|
|
/* XXX verify multiple of 4 when using s/g */
|
|
if (bypass > 96) { /* bypass offset must be <= 96 bytes */
|
|
DPRINTF(("%s: bypass %u too big\n", __func__, bypass));
|
|
safestats.st_bypasstoobig++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
|
|
if (crp->crp_flags & CRYPTO_F_SKBUF) {
|
|
if (pci_map_skb(sc, &re->re_src, re->re_src_skb)) {
|
|
safestats.st_noload++;
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
} else if (crp->crp_flags & CRYPTO_F_IOV) {
|
|
if (pci_map_uio(sc, &re->re_src, re->re_src_io)) {
|
|
safestats.st_noload++;
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
}
|
|
nicealign = safe_dmamap_aligned(sc, &re->re_src);
|
|
uniform = safe_dmamap_uniform(sc, &re->re_src);
|
|
|
|
DPRINTF(("src nicealign %u uniform %u nsegs %u\n",
|
|
nicealign, uniform, re->re_src.nsegs));
|
|
if (re->re_src.nsegs > 1) {
|
|
re->re_desc.d_src = sc->sc_spalloc.dma_paddr +
|
|
((caddr_t) sc->sc_spfree - (caddr_t) sc->sc_spring);
|
|
for (i = 0; i < re->re_src_nsegs; i++) {
|
|
/* NB: no need to check if there's space */
|
|
pd = sc->sc_spfree;
|
|
if (++(sc->sc_spfree) == sc->sc_springtop)
|
|
sc->sc_spfree = sc->sc_spring;
|
|
|
|
KASSERT((pd->pd_flags&3) == 0 ||
|
|
(pd->pd_flags&3) == SAFE_PD_DONE,
|
|
("bogus source particle descriptor; flags %x",
|
|
pd->pd_flags));
|
|
pd->pd_addr = re->re_src_segs[i].ds_addr;
|
|
pd->pd_size = re->re_src_segs[i].ds_len;
|
|
pd->pd_flags = SAFE_PD_READY;
|
|
}
|
|
cmd0 |= SAFE_SA_CMD0_IGATHER;
|
|
} else {
|
|
/*
|
|
* No need for gather, reference the operand directly.
|
|
*/
|
|
re->re_desc.d_src = re->re_src_segs[0].ds_addr;
|
|
}
|
|
|
|
if (enccrd == NULL && maccrd != NULL) {
|
|
/*
|
|
* Hash op; no destination needed.
|
|
*/
|
|
} else {
|
|
if (crp->crp_flags & (CRYPTO_F_IOV|CRYPTO_F_SKBUF)) {
|
|
if (!nicealign) {
|
|
safestats.st_iovmisaligned++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
if (uniform != 1) {
|
|
device_printf(sc->sc_dev, "!uniform source\n");
|
|
if (!uniform) {
|
|
/*
|
|
* There's no way to handle the DMA
|
|
* requirements with this uio. We
|
|
* could create a separate DMA area for
|
|
* the result and then copy it back,
|
|
* but for now we just bail and return
|
|
* an error. Note that uio requests
|
|
* > SAFE_MAX_DSIZE are handled because
|
|
* the DMA map and segment list for the
|
|
* destination wil result in a
|
|
* destination particle list that does
|
|
* the necessary scatter DMA.
|
|
*/
|
|
safestats.st_iovnotuniform++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
} else
|
|
re->re_dst = re->re_src;
|
|
} else {
|
|
safestats.st_badflags++;
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
|
|
if (re->re_dst.nsegs > 1) {
|
|
re->re_desc.d_dst = sc->sc_dpalloc.dma_paddr +
|
|
((caddr_t) sc->sc_dpfree - (caddr_t) sc->sc_dpring);
|
|
for (i = 0; i < re->re_dst_nsegs; i++) {
|
|
pd = sc->sc_dpfree;
|
|
KASSERT((pd->pd_flags&3) == 0 ||
|
|
(pd->pd_flags&3) == SAFE_PD_DONE,
|
|
("bogus dest particle descriptor; flags %x",
|
|
pd->pd_flags));
|
|
if (++(sc->sc_dpfree) == sc->sc_dpringtop)
|
|
sc->sc_dpfree = sc->sc_dpring;
|
|
pd->pd_addr = re->re_dst_segs[i].ds_addr;
|
|
pd->pd_flags = SAFE_PD_READY;
|
|
}
|
|
cmd0 |= SAFE_SA_CMD0_OSCATTER;
|
|
} else {
|
|
/*
|
|
* No need for scatter, reference the operand directly.
|
|
*/
|
|
re->re_desc.d_dst = re->re_dst_segs[0].ds_addr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* All done with setup; fillin the SA command words
|
|
* and the packet engine descriptor. The operation
|
|
* is now ready for submission to the hardware.
|
|
*/
|
|
sa->sa_cmd0 = cmd0 | SAFE_SA_CMD0_IPCI | SAFE_SA_CMD0_OPCI;
|
|
sa->sa_cmd1 = cmd1
|
|
| (coffset << SAFE_SA_CMD1_OFFSET_S)
|
|
| SAFE_SA_CMD1_SAREV1 /* Rev 1 SA data structure */
|
|
| SAFE_SA_CMD1_SRPCI
|
|
;
|
|
/*
|
|
* NB: the order of writes is important here. In case the
|
|
* chip is scanning the ring because of an outstanding request
|
|
* it might nab this one too. In that case we need to make
|
|
* sure the setup is complete before we write the length
|
|
* field of the descriptor as it signals the descriptor is
|
|
* ready for processing.
|
|
*/
|
|
re->re_desc.d_csr = SAFE_PE_CSR_READY | SAFE_PE_CSR_SAPCI;
|
|
if (maccrd)
|
|
re->re_desc.d_csr |= SAFE_PE_CSR_LOADSA | SAFE_PE_CSR_HASHFINAL;
|
|
wmb();
|
|
re->re_desc.d_len = oplen
|
|
| SAFE_PE_LEN_READY
|
|
| (bypass << SAFE_PE_LEN_BYPASS_S)
|
|
;
|
|
|
|
safestats.st_ipackets++;
|
|
safestats.st_ibytes += oplen;
|
|
|
|
if (++(sc->sc_front) == sc->sc_ringtop)
|
|
sc->sc_front = sc->sc_ring;
|
|
|
|
/* XXX honor batching */
|
|
safe_feed(sc, re);
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
return (0);
|
|
|
|
errout:
|
|
if (re->re_src.map != re->re_dst.map)
|
|
pci_unmap_operand(sc, &re->re_dst);
|
|
if (re->re_src.map)
|
|
pci_unmap_operand(sc, &re->re_src);
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
if (err != ERESTART) {
|
|
crp->crp_etype = err;
|
|
crypto_done(crp);
|
|
} else {
|
|
sc->sc_needwakeup |= CRYPTO_SYMQ;
|
|
}
|
|
return (err);
|
|
}
|
|
|
|
static void
|
|
safe_callback(struct safe_softc *sc, struct safe_ringentry *re)
|
|
{
|
|
struct cryptop *crp = (struct cryptop *)re->re_crp;
|
|
struct cryptodesc *crd;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
safestats.st_opackets++;
|
|
safestats.st_obytes += re->re_dst.mapsize;
|
|
|
|
if (re->re_desc.d_csr & SAFE_PE_CSR_STATUS) {
|
|
device_printf(sc->sc_dev, "csr 0x%x cmd0 0x%x cmd1 0x%x\n",
|
|
re->re_desc.d_csr,
|
|
re->re_sa.sa_cmd0, re->re_sa.sa_cmd1);
|
|
safestats.st_peoperr++;
|
|
crp->crp_etype = EIO; /* something more meaningful? */
|
|
}
|
|
|
|
if (re->re_dst.map != NULL && re->re_dst.map != re->re_src.map)
|
|
pci_unmap_operand(sc, &re->re_dst);
|
|
pci_unmap_operand(sc, &re->re_src);
|
|
|
|
/*
|
|
* If result was written to a differet mbuf chain, swap
|
|
* it in as the return value and reclaim the original.
|
|
*/
|
|
if ((crp->crp_flags & CRYPTO_F_SKBUF) && re->re_src_skb != re->re_dst_skb) {
|
|
device_printf(sc->sc_dev, "no CRYPTO_F_SKBUF swapping support\n");
|
|
/* kfree_skb(skb) */
|
|
/* crp->crp_buf = (caddr_t)re->re_dst_skb */
|
|
return;
|
|
}
|
|
|
|
if (re->re_flags & SAFE_QFLAGS_COPYOUTICV) {
|
|
/* copy out ICV result */
|
|
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
|
|
if (!(crd->crd_alg == CRYPTO_MD5_HMAC ||
|
|
crd->crd_alg == CRYPTO_SHA1_HMAC ||
|
|
crd->crd_alg == CRYPTO_NULL_HMAC))
|
|
continue;
|
|
if (crd->crd_alg == CRYPTO_SHA1_HMAC) {
|
|
/*
|
|
* SHA-1 ICV's are byte-swapped; fix 'em up
|
|
* before copy them to their destination.
|
|
*/
|
|
re->re_sastate.sa_saved_indigest[0] =
|
|
cpu_to_be32(re->re_sastate.sa_saved_indigest[0]);
|
|
re->re_sastate.sa_saved_indigest[1] =
|
|
cpu_to_be32(re->re_sastate.sa_saved_indigest[1]);
|
|
re->re_sastate.sa_saved_indigest[2] =
|
|
cpu_to_be32(re->re_sastate.sa_saved_indigest[2]);
|
|
} else {
|
|
re->re_sastate.sa_saved_indigest[0] =
|
|
cpu_to_le32(re->re_sastate.sa_saved_indigest[0]);
|
|
re->re_sastate.sa_saved_indigest[1] =
|
|
cpu_to_le32(re->re_sastate.sa_saved_indigest[1]);
|
|
re->re_sastate.sa_saved_indigest[2] =
|
|
cpu_to_le32(re->re_sastate.sa_saved_indigest[2]);
|
|
}
|
|
crypto_copyback(crp->crp_flags, crp->crp_buf,
|
|
crd->crd_inject,
|
|
sc->sc_sessions[re->re_sesn].ses_mlen,
|
|
(caddr_t)re->re_sastate.sa_saved_indigest);
|
|
break;
|
|
}
|
|
}
|
|
crypto_done(crp);
|
|
}
|
|
|
|
|
|
#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
|
|
#define SAFE_RNG_MAXWAIT 1000
|
|
|
|
static void
|
|
safe_rng_init(struct safe_softc *sc)
|
|
{
|
|
u_int32_t w, v;
|
|
int i;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
WRITE_REG(sc, SAFE_RNG_CTRL, 0);
|
|
/* use default value according to the manual */
|
|
WRITE_REG(sc, SAFE_RNG_CNFG, 0x834); /* magic from SafeNet */
|
|
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
|
|
|
|
/*
|
|
* There is a bug in rev 1.0 of the 1140 that when the RNG
|
|
* is brought out of reset the ready status flag does not
|
|
* work until the RNG has finished its internal initialization.
|
|
*
|
|
* So in order to determine the device is through its
|
|
* initialization we must read the data register, using the
|
|
* status reg in the read in case it is initialized. Then read
|
|
* the data register until it changes from the first read.
|
|
* Once it changes read the data register until it changes
|
|
* again. At this time the RNG is considered initialized.
|
|
* This could take between 750ms - 1000ms in time.
|
|
*/
|
|
i = 0;
|
|
w = READ_REG(sc, SAFE_RNG_OUT);
|
|
do {
|
|
v = READ_REG(sc, SAFE_RNG_OUT);
|
|
if (v != w) {
|
|
w = v;
|
|
break;
|
|
}
|
|
DELAY(10);
|
|
} while (++i < SAFE_RNG_MAXWAIT);
|
|
|
|
/* Wait Until data changes again */
|
|
i = 0;
|
|
do {
|
|
v = READ_REG(sc, SAFE_RNG_OUT);
|
|
if (v != w)
|
|
break;
|
|
DELAY(10);
|
|
} while (++i < SAFE_RNG_MAXWAIT);
|
|
}
|
|
|
|
static __inline void
|
|
safe_rng_disable_short_cycle(struct safe_softc *sc)
|
|
{
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
WRITE_REG(sc, SAFE_RNG_CTRL,
|
|
READ_REG(sc, SAFE_RNG_CTRL) &~ SAFE_RNG_CTRL_SHORTEN);
|
|
}
|
|
|
|
static __inline void
|
|
safe_rng_enable_short_cycle(struct safe_softc *sc)
|
|
{
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
WRITE_REG(sc, SAFE_RNG_CTRL,
|
|
READ_REG(sc, SAFE_RNG_CTRL) | SAFE_RNG_CTRL_SHORTEN);
|
|
}
|
|
|
|
static __inline u_int32_t
|
|
safe_rng_read(struct safe_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
i = 0;
|
|
while (READ_REG(sc, SAFE_RNG_STAT) != 0 && ++i < SAFE_RNG_MAXWAIT)
|
|
;
|
|
return READ_REG(sc, SAFE_RNG_OUT);
|
|
}
|
|
|
|
static int
|
|
safe_read_random(void *arg, u_int32_t *buf, int maxwords)
|
|
{
|
|
struct safe_softc *sc = (struct safe_softc *) arg;
|
|
int i, rc;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
safestats.st_rng++;
|
|
/*
|
|
* Fetch the next block of data.
|
|
*/
|
|
if (maxwords > safe_rngbufsize)
|
|
maxwords = safe_rngbufsize;
|
|
if (maxwords > SAFE_RNG_MAXBUFSIZ)
|
|
maxwords = SAFE_RNG_MAXBUFSIZ;
|
|
retry:
|
|
/* read as much as we can */
|
|
for (rc = 0; rc < maxwords; rc++) {
|
|
if (READ_REG(sc, SAFE_RNG_STAT) != 0)
|
|
break;
|
|
buf[rc] = READ_REG(sc, SAFE_RNG_OUT);
|
|
}
|
|
if (rc == 0)
|
|
return 0;
|
|
/*
|
|
* Check the comparator alarm count and reset the h/w if
|
|
* it exceeds our threshold. This guards against the
|
|
* hardware oscillators resonating with external signals.
|
|
*/
|
|
if (READ_REG(sc, SAFE_RNG_ALM_CNT) > safe_rngmaxalarm) {
|
|
u_int32_t freq_inc, w;
|
|
|
|
DPRINTF(("%s: alarm count %u exceeds threshold %u\n", __func__,
|
|
(unsigned)READ_REG(sc, SAFE_RNG_ALM_CNT), safe_rngmaxalarm));
|
|
safestats.st_rngalarm++;
|
|
safe_rng_enable_short_cycle(sc);
|
|
freq_inc = 18;
|
|
for (i = 0; i < 64; i++) {
|
|
w = READ_REG(sc, SAFE_RNG_CNFG);
|
|
freq_inc = ((w + freq_inc) & 0x3fL);
|
|
w = ((w & ~0x3fL) | freq_inc);
|
|
WRITE_REG(sc, SAFE_RNG_CNFG, w);
|
|
|
|
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
|
|
|
|
(void) safe_rng_read(sc);
|
|
DELAY(25);
|
|
|
|
if (READ_REG(sc, SAFE_RNG_ALM_CNT) == 0) {
|
|
safe_rng_disable_short_cycle(sc);
|
|
goto retry;
|
|
}
|
|
freq_inc = 1;
|
|
}
|
|
safe_rng_disable_short_cycle(sc);
|
|
} else
|
|
WRITE_REG(sc, SAFE_RNG_ALM_CNT, 0);
|
|
|
|
return(rc);
|
|
}
|
|
#endif /* defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG) */
|
|
|
|
|
|
/*
|
|
* Resets the board. Values in the regesters are left as is
|
|
* from the reset (i.e. initial values are assigned elsewhere).
|
|
*/
|
|
static void
|
|
safe_reset_board(struct safe_softc *sc)
|
|
{
|
|
u_int32_t v;
|
|
/*
|
|
* Reset the device. The manual says no delay
|
|
* is needed between marking and clearing reset.
|
|
*/
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
v = READ_REG(sc, SAFE_PE_DMACFG) &~
|
|
(SAFE_PE_DMACFG_PERESET | SAFE_PE_DMACFG_PDRRESET |
|
|
SAFE_PE_DMACFG_SGRESET);
|
|
WRITE_REG(sc, SAFE_PE_DMACFG, v
|
|
| SAFE_PE_DMACFG_PERESET
|
|
| SAFE_PE_DMACFG_PDRRESET
|
|
| SAFE_PE_DMACFG_SGRESET);
|
|
WRITE_REG(sc, SAFE_PE_DMACFG, v);
|
|
}
|
|
|
|
/*
|
|
* Initialize registers we need to touch only once.
|
|
*/
|
|
static void
|
|
safe_init_board(struct safe_softc *sc)
|
|
{
|
|
u_int32_t v, dwords;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
v = READ_REG(sc, SAFE_PE_DMACFG);
|
|
v &=~ ( SAFE_PE_DMACFG_PEMODE
|
|
| SAFE_PE_DMACFG_FSENA /* failsafe enable */
|
|
| SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
|
|
| SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
|
|
| SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
|
|
| SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
|
|
| SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
|
|
| SAFE_PE_DMACFG_ESPACKET /* swap the packet data */
|
|
);
|
|
v |= SAFE_PE_DMACFG_FSENA /* failsafe enable */
|
|
| SAFE_PE_DMACFG_GPRPCI /* gather ring on PCI */
|
|
| SAFE_PE_DMACFG_SPRPCI /* scatter ring on PCI */
|
|
| SAFE_PE_DMACFG_ESDESC /* endian-swap descriptors */
|
|
| SAFE_PE_DMACFG_ESPDESC /* endian-swap part. desc's */
|
|
| SAFE_PE_DMACFG_ESSA /* endian-swap SA's */
|
|
#if 0
|
|
| SAFE_PE_DMACFG_ESPACKET /* swap the packet data */
|
|
#endif
|
|
;
|
|
WRITE_REG(sc, SAFE_PE_DMACFG, v);
|
|
|
|
#ifdef __BIG_ENDIAN
|
|
/* tell the safenet that we are 4321 and not 1234 */
|
|
WRITE_REG(sc, SAFE_ENDIAN, 0xe4e41b1b);
|
|
#endif
|
|
|
|
if (sc->sc_chiprev == SAFE_REV(1,0)) {
|
|
/*
|
|
* Avoid large PCI DMA transfers. Rev 1.0 has a bug where
|
|
* "target mode transfers" done while the chip is DMA'ing
|
|
* >1020 bytes cause the hardware to lockup. To avoid this
|
|
* we reduce the max PCI transfer size and use small source
|
|
* particle descriptors (<= 256 bytes).
|
|
*/
|
|
WRITE_REG(sc, SAFE_DMA_CFG, 256);
|
|
device_printf(sc->sc_dev,
|
|
"Reduce max DMA size to %u words for rev %u.%u WAR\n",
|
|
(unsigned) ((READ_REG(sc, SAFE_DMA_CFG)>>2) & 0xff),
|
|
(unsigned) SAFE_REV_MAJ(sc->sc_chiprev),
|
|
(unsigned) SAFE_REV_MIN(sc->sc_chiprev));
|
|
sc->sc_max_dsize = 256;
|
|
} else {
|
|
sc->sc_max_dsize = SAFE_MAX_DSIZE;
|
|
}
|
|
|
|
/* NB: operands+results are overlaid */
|
|
WRITE_REG(sc, SAFE_PE_PDRBASE, sc->sc_ringalloc.dma_paddr);
|
|
WRITE_REG(sc, SAFE_PE_RDRBASE, sc->sc_ringalloc.dma_paddr);
|
|
/*
|
|
* Configure ring entry size and number of items in the ring.
|
|
*/
|
|
KASSERT((sizeof(struct safe_ringentry) % sizeof(u_int32_t)) == 0,
|
|
("PE ring entry not 32-bit aligned!"));
|
|
dwords = sizeof(struct safe_ringentry) / sizeof(u_int32_t);
|
|
WRITE_REG(sc, SAFE_PE_RINGCFG,
|
|
(dwords << SAFE_PE_RINGCFG_OFFSET_S) | SAFE_MAX_NQUEUE);
|
|
WRITE_REG(sc, SAFE_PE_RINGPOLL, 0); /* disable polling */
|
|
|
|
WRITE_REG(sc, SAFE_PE_GRNGBASE, sc->sc_spalloc.dma_paddr);
|
|
WRITE_REG(sc, SAFE_PE_SRNGBASE, sc->sc_dpalloc.dma_paddr);
|
|
WRITE_REG(sc, SAFE_PE_PARTSIZE,
|
|
(SAFE_TOTAL_DPART<<16) | SAFE_TOTAL_SPART);
|
|
/*
|
|
* NB: destination particles are fixed size. We use
|
|
* an mbuf cluster and require all results go to
|
|
* clusters or smaller.
|
|
*/
|
|
WRITE_REG(sc, SAFE_PE_PARTCFG, sc->sc_max_dsize);
|
|
|
|
/* it's now safe to enable PE mode, do it */
|
|
WRITE_REG(sc, SAFE_PE_DMACFG, v | SAFE_PE_DMACFG_PEMODE);
|
|
|
|
/*
|
|
* Configure hardware to use level-triggered interrupts and
|
|
* to interrupt after each descriptor is processed.
|
|
*/
|
|
WRITE_REG(sc, SAFE_HI_CFG, SAFE_HI_CFG_LEVEL);
|
|
WRITE_REG(sc, SAFE_HI_CLR, 0xffffffff);
|
|
WRITE_REG(sc, SAFE_HI_DESC_CNT, 1);
|
|
WRITE_REG(sc, SAFE_HI_MASK, SAFE_INT_PE_DDONE | SAFE_INT_PE_ERROR);
|
|
}
|
|
|
|
|
|
/*
|
|
* Clean up after a chip crash.
|
|
* It is assumed that the caller in splimp()
|
|
*/
|
|
static void
|
|
safe_cleanchip(struct safe_softc *sc)
|
|
{
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (sc->sc_nqchip != 0) {
|
|
struct safe_ringentry *re = sc->sc_back;
|
|
|
|
while (re != sc->sc_front) {
|
|
if (re->re_desc.d_csr != 0)
|
|
safe_free_entry(sc, re);
|
|
if (++re == sc->sc_ringtop)
|
|
re = sc->sc_ring;
|
|
}
|
|
sc->sc_back = re;
|
|
sc->sc_nqchip = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* free a safe_q
|
|
* It is assumed that the caller is within splimp().
|
|
*/
|
|
static int
|
|
safe_free_entry(struct safe_softc *sc, struct safe_ringentry *re)
|
|
{
|
|
struct cryptop *crp;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
/*
|
|
* Free header MCR
|
|
*/
|
|
if ((re->re_dst_skb != NULL) && (re->re_src_skb != re->re_dst_skb))
|
|
#ifdef NOTYET
|
|
m_freem(re->re_dst_m);
|
|
#else
|
|
printk("%s,%d: SKB not supported\n", __FILE__, __LINE__);
|
|
#endif
|
|
|
|
crp = (struct cryptop *)re->re_crp;
|
|
|
|
re->re_desc.d_csr = 0;
|
|
|
|
crp->crp_etype = EFAULT;
|
|
crypto_done(crp);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Routine to reset the chip and clean up.
|
|
* It is assumed that the caller is in splimp()
|
|
*/
|
|
static void
|
|
safe_totalreset(struct safe_softc *sc)
|
|
{
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
safe_reset_board(sc);
|
|
safe_init_board(sc);
|
|
safe_cleanchip(sc);
|
|
}
|
|
|
|
/*
|
|
* Is the operand suitable aligned for direct DMA. Each
|
|
* segment must be aligned on a 32-bit boundary and all
|
|
* but the last segment must be a multiple of 4 bytes.
|
|
*/
|
|
static int
|
|
safe_dmamap_aligned(struct safe_softc *sc, const struct safe_operand *op)
|
|
{
|
|
int i;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
for (i = 0; i < op->nsegs; i++) {
|
|
if (op->segs[i].ds_addr & 3)
|
|
return (0);
|
|
if (i != (op->nsegs - 1) && (op->segs[i].ds_len & 3))
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Is the operand suitable for direct DMA as the destination
|
|
* of an operation. The hardware requires that each ``particle''
|
|
* but the last in an operation result have the same size. We
|
|
* fix that size at SAFE_MAX_DSIZE bytes. This routine returns
|
|
* 0 if some segment is not a multiple of of this size, 1 if all
|
|
* segments are exactly this size, or 2 if segments are at worst
|
|
* a multple of this size.
|
|
*/
|
|
static int
|
|
safe_dmamap_uniform(struct safe_softc *sc, const struct safe_operand *op)
|
|
{
|
|
int result = 1;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (op->nsegs > 0) {
|
|
int i;
|
|
|
|
for (i = 0; i < op->nsegs-1; i++) {
|
|
if (op->segs[i].ds_len % sc->sc_max_dsize)
|
|
return (0);
|
|
if (op->segs[i].ds_len != sc->sc_max_dsize)
|
|
result = 2;
|
|
}
|
|
}
|
|
return (result);
|
|
}
|
|
|
|
static int
|
|
safe_kprocess(device_t dev, struct cryptkop *krp, int hint)
|
|
{
|
|
struct safe_softc *sc = device_get_softc(dev);
|
|
struct safe_pkq *q;
|
|
unsigned long flags;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (sc == NULL) {
|
|
krp->krp_status = EINVAL;
|
|
goto err;
|
|
}
|
|
|
|
if (krp->krp_op != CRK_MOD_EXP) {
|
|
krp->krp_status = EOPNOTSUPP;
|
|
goto err;
|
|
}
|
|
|
|
q = (struct safe_pkq *) kmalloc(sizeof(*q), GFP_KERNEL);
|
|
if (q == NULL) {
|
|
krp->krp_status = ENOMEM;
|
|
goto err;
|
|
}
|
|
memset(q, 0, sizeof(*q));
|
|
q->pkq_krp = krp;
|
|
INIT_LIST_HEAD(&q->pkq_list);
|
|
|
|
spin_lock_irqsave(&sc->sc_pkmtx, flags);
|
|
list_add_tail(&q->pkq_list, &sc->sc_pkq);
|
|
safe_kfeed(sc);
|
|
spin_unlock_irqrestore(&sc->sc_pkmtx, flags);
|
|
return (0);
|
|
|
|
err:
|
|
crypto_kdone(krp);
|
|
return (0);
|
|
}
|
|
|
|
#define SAFE_CRK_PARAM_BASE 0
|
|
#define SAFE_CRK_PARAM_EXP 1
|
|
#define SAFE_CRK_PARAM_MOD 2
|
|
|
|
static int
|
|
safe_kstart(struct safe_softc *sc)
|
|
{
|
|
struct cryptkop *krp = sc->sc_pkq_cur->pkq_krp;
|
|
int exp_bits, mod_bits, base_bits;
|
|
u_int32_t op, a_off, b_off, c_off, d_off;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (krp->krp_iparams < 3 || krp->krp_oparams != 1) {
|
|
krp->krp_status = EINVAL;
|
|
return (1);
|
|
}
|
|
|
|
base_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_BASE]);
|
|
if (base_bits > 2048)
|
|
goto too_big;
|
|
if (base_bits <= 0) /* 5. base not zero */
|
|
goto too_small;
|
|
|
|
exp_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_EXP]);
|
|
if (exp_bits > 2048)
|
|
goto too_big;
|
|
if (exp_bits <= 0) /* 1. exponent word length > 0 */
|
|
goto too_small; /* 4. exponent not zero */
|
|
|
|
mod_bits = safe_ksigbits(sc, &krp->krp_param[SAFE_CRK_PARAM_MOD]);
|
|
if (mod_bits > 2048)
|
|
goto too_big;
|
|
if (mod_bits <= 32) /* 2. modulus word length > 1 */
|
|
goto too_small; /* 8. MSW of modulus != zero */
|
|
if (mod_bits < exp_bits) /* 3 modulus len >= exponent len */
|
|
goto too_small;
|
|
if ((krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p[0] & 1) == 0)
|
|
goto bad_domain; /* 6. modulus is odd */
|
|
if (mod_bits > krp->krp_param[krp->krp_iparams].crp_nbits)
|
|
goto too_small; /* make sure result will fit */
|
|
|
|
/* 7. modulus > base */
|
|
if (mod_bits < base_bits)
|
|
goto too_small;
|
|
if (mod_bits == base_bits) {
|
|
u_int8_t *basep, *modp;
|
|
int i;
|
|
|
|
basep = krp->krp_param[SAFE_CRK_PARAM_BASE].crp_p +
|
|
((base_bits + 7) / 8) - 1;
|
|
modp = krp->krp_param[SAFE_CRK_PARAM_MOD].crp_p +
|
|
((mod_bits + 7) / 8) - 1;
|
|
|
|
for (i = 0; i < (mod_bits + 7) / 8; i++, basep--, modp--) {
|
|
if (*modp < *basep)
|
|
goto too_small;
|
|
if (*modp > *basep)
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* And on the 9th step, he rested. */
|
|
|
|
WRITE_REG(sc, SAFE_PK_A_LEN, (exp_bits + 31) / 32);
|
|
WRITE_REG(sc, SAFE_PK_B_LEN, (mod_bits + 31) / 32);
|
|
if (mod_bits > 1024) {
|
|
op = SAFE_PK_FUNC_EXP4;
|
|
a_off = 0x000;
|
|
b_off = 0x100;
|
|
c_off = 0x200;
|
|
d_off = 0x300;
|
|
} else {
|
|
op = SAFE_PK_FUNC_EXP16;
|
|
a_off = 0x000;
|
|
b_off = 0x080;
|
|
c_off = 0x100;
|
|
d_off = 0x180;
|
|
}
|
|
sc->sc_pk_reslen = b_off - a_off;
|
|
sc->sc_pk_resoff = d_off;
|
|
|
|
/* A is exponent, B is modulus, C is base, D is result */
|
|
safe_kload_reg(sc, a_off, b_off - a_off,
|
|
&krp->krp_param[SAFE_CRK_PARAM_EXP]);
|
|
WRITE_REG(sc, SAFE_PK_A_ADDR, a_off >> 2);
|
|
safe_kload_reg(sc, b_off, b_off - a_off,
|
|
&krp->krp_param[SAFE_CRK_PARAM_MOD]);
|
|
WRITE_REG(sc, SAFE_PK_B_ADDR, b_off >> 2);
|
|
safe_kload_reg(sc, c_off, b_off - a_off,
|
|
&krp->krp_param[SAFE_CRK_PARAM_BASE]);
|
|
WRITE_REG(sc, SAFE_PK_C_ADDR, c_off >> 2);
|
|
WRITE_REG(sc, SAFE_PK_D_ADDR, d_off >> 2);
|
|
|
|
WRITE_REG(sc, SAFE_PK_FUNC, op | SAFE_PK_FUNC_RUN);
|
|
|
|
return (0);
|
|
|
|
too_big:
|
|
krp->krp_status = E2BIG;
|
|
return (1);
|
|
too_small:
|
|
krp->krp_status = ERANGE;
|
|
return (1);
|
|
bad_domain:
|
|
krp->krp_status = EDOM;
|
|
return (1);
|
|
}
|
|
|
|
static int
|
|
safe_ksigbits(struct safe_softc *sc, struct crparam *cr)
|
|
{
|
|
u_int plen = (cr->crp_nbits + 7) / 8;
|
|
int i, sig = plen * 8;
|
|
u_int8_t c, *p = cr->crp_p;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
for (i = plen - 1; i >= 0; i--) {
|
|
c = p[i];
|
|
if (c != 0) {
|
|
while ((c & 0x80) == 0) {
|
|
sig--;
|
|
c <<= 1;
|
|
}
|
|
break;
|
|
}
|
|
sig -= 8;
|
|
}
|
|
return (sig);
|
|
}
|
|
|
|
static void
|
|
safe_kfeed(struct safe_softc *sc)
|
|
{
|
|
struct safe_pkq *q, *tmp;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (list_empty(&sc->sc_pkq) && sc->sc_pkq_cur == NULL)
|
|
return;
|
|
if (sc->sc_pkq_cur != NULL)
|
|
return;
|
|
list_for_each_entry_safe(q, tmp, &sc->sc_pkq, pkq_list) {
|
|
sc->sc_pkq_cur = q;
|
|
list_del(&q->pkq_list);
|
|
if (safe_kstart(sc) != 0) {
|
|
crypto_kdone(q->pkq_krp);
|
|
kfree(q);
|
|
sc->sc_pkq_cur = NULL;
|
|
} else {
|
|
/* op started, start polling */
|
|
mod_timer(&sc->sc_pkto, jiffies + 1);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void
|
|
safe_kpoll(unsigned long arg)
|
|
{
|
|
struct safe_softc *sc = NULL;
|
|
struct safe_pkq *q;
|
|
struct crparam *res;
|
|
int i;
|
|
u_int32_t buf[64];
|
|
unsigned long flags;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (arg >= SAFE_MAX_CHIPS)
|
|
return;
|
|
sc = safe_chip_idx[arg];
|
|
if (!sc) {
|
|
DPRINTF(("%s() - bad callback\n", __FUNCTION__));
|
|
return;
|
|
}
|
|
|
|
spin_lock_irqsave(&sc->sc_pkmtx, flags);
|
|
if (sc->sc_pkq_cur == NULL)
|
|
goto out;
|
|
if (READ_REG(sc, SAFE_PK_FUNC) & SAFE_PK_FUNC_RUN) {
|
|
/* still running, check back later */
|
|
mod_timer(&sc->sc_pkto, jiffies + 1);
|
|
goto out;
|
|
}
|
|
|
|
q = sc->sc_pkq_cur;
|
|
res = &q->pkq_krp->krp_param[q->pkq_krp->krp_iparams];
|
|
bzero(buf, sizeof(buf));
|
|
bzero(res->crp_p, (res->crp_nbits + 7) / 8);
|
|
for (i = 0; i < sc->sc_pk_reslen >> 2; i++)
|
|
buf[i] = le32_to_cpu(READ_REG(sc, SAFE_PK_RAM_START +
|
|
sc->sc_pk_resoff + (i << 2)));
|
|
bcopy(buf, res->crp_p, (res->crp_nbits + 7) / 8);
|
|
/*
|
|
* reduce the bits that need copying if possible
|
|
*/
|
|
res->crp_nbits = min(res->crp_nbits,sc->sc_pk_reslen * 8);
|
|
res->crp_nbits = safe_ksigbits(sc, res);
|
|
|
|
for (i = SAFE_PK_RAM_START; i < SAFE_PK_RAM_END; i += 4)
|
|
WRITE_REG(sc, i, 0);
|
|
|
|
crypto_kdone(q->pkq_krp);
|
|
kfree(q);
|
|
sc->sc_pkq_cur = NULL;
|
|
|
|
safe_kfeed(sc);
|
|
out:
|
|
spin_unlock_irqrestore(&sc->sc_pkmtx, flags);
|
|
}
|
|
|
|
static void
|
|
safe_kload_reg(struct safe_softc *sc, u_int32_t off, u_int32_t len,
|
|
struct crparam *n)
|
|
{
|
|
u_int32_t buf[64], i;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
bzero(buf, sizeof(buf));
|
|
bcopy(n->crp_p, buf, (n->crp_nbits + 7) / 8);
|
|
|
|
for (i = 0; i < len >> 2; i++)
|
|
WRITE_REG(sc, SAFE_PK_RAM_START + off + (i << 2),
|
|
cpu_to_le32(buf[i]));
|
|
}
|
|
|
|
#ifdef SAFE_DEBUG
|
|
static void
|
|
safe_dump_dmastatus(struct safe_softc *sc, const char *tag)
|
|
{
|
|
printf("%s: ENDIAN 0x%x SRC 0x%x DST 0x%x STAT 0x%x\n"
|
|
, tag
|
|
, READ_REG(sc, SAFE_DMA_ENDIAN)
|
|
, READ_REG(sc, SAFE_DMA_SRCADDR)
|
|
, READ_REG(sc, SAFE_DMA_DSTADDR)
|
|
, READ_REG(sc, SAFE_DMA_STAT)
|
|
);
|
|
}
|
|
|
|
static void
|
|
safe_dump_intrstate(struct safe_softc *sc, const char *tag)
|
|
{
|
|
printf("%s: HI_CFG 0x%x HI_MASK 0x%x HI_DESC_CNT 0x%x HU_STAT 0x%x HM_STAT 0x%x\n"
|
|
, tag
|
|
, READ_REG(sc, SAFE_HI_CFG)
|
|
, READ_REG(sc, SAFE_HI_MASK)
|
|
, READ_REG(sc, SAFE_HI_DESC_CNT)
|
|
, READ_REG(sc, SAFE_HU_STAT)
|
|
, READ_REG(sc, SAFE_HM_STAT)
|
|
);
|
|
}
|
|
|
|
static void
|
|
safe_dump_ringstate(struct safe_softc *sc, const char *tag)
|
|
{
|
|
u_int32_t estat = READ_REG(sc, SAFE_PE_ERNGSTAT);
|
|
|
|
/* NB: assume caller has lock on ring */
|
|
printf("%s: ERNGSTAT %x (next %u) back %lu front %lu\n",
|
|
tag,
|
|
estat, (estat >> SAFE_PE_ERNGSTAT_NEXT_S),
|
|
(unsigned long)(sc->sc_back - sc->sc_ring),
|
|
(unsigned long)(sc->sc_front - sc->sc_ring));
|
|
}
|
|
|
|
static void
|
|
safe_dump_request(struct safe_softc *sc, const char* tag, struct safe_ringentry *re)
|
|
{
|
|
int ix, nsegs;
|
|
|
|
ix = re - sc->sc_ring;
|
|
printf("%s: %p (%u): csr %x src %x dst %x sa %x len %x\n"
|
|
, tag
|
|
, re, ix
|
|
, re->re_desc.d_csr
|
|
, re->re_desc.d_src
|
|
, re->re_desc.d_dst
|
|
, re->re_desc.d_sa
|
|
, re->re_desc.d_len
|
|
);
|
|
if (re->re_src.nsegs > 1) {
|
|
ix = (re->re_desc.d_src - sc->sc_spalloc.dma_paddr) /
|
|
sizeof(struct safe_pdesc);
|
|
for (nsegs = re->re_src.nsegs; nsegs; nsegs--) {
|
|
printf(" spd[%u] %p: %p size %u flags %x"
|
|
, ix, &sc->sc_spring[ix]
|
|
, (caddr_t)(uintptr_t) sc->sc_spring[ix].pd_addr
|
|
, sc->sc_spring[ix].pd_size
|
|
, sc->sc_spring[ix].pd_flags
|
|
);
|
|
if (sc->sc_spring[ix].pd_size == 0)
|
|
printf(" (zero!)");
|
|
printf("\n");
|
|
if (++ix == SAFE_TOTAL_SPART)
|
|
ix = 0;
|
|
}
|
|
}
|
|
if (re->re_dst.nsegs > 1) {
|
|
ix = (re->re_desc.d_dst - sc->sc_dpalloc.dma_paddr) /
|
|
sizeof(struct safe_pdesc);
|
|
for (nsegs = re->re_dst.nsegs; nsegs; nsegs--) {
|
|
printf(" dpd[%u] %p: %p flags %x\n"
|
|
, ix, &sc->sc_dpring[ix]
|
|
, (caddr_t)(uintptr_t) sc->sc_dpring[ix].pd_addr
|
|
, sc->sc_dpring[ix].pd_flags
|
|
);
|
|
if (++ix == SAFE_TOTAL_DPART)
|
|
ix = 0;
|
|
}
|
|
}
|
|
printf("sa: cmd0 %08x cmd1 %08x staterec %x\n",
|
|
re->re_sa.sa_cmd0, re->re_sa.sa_cmd1, re->re_sa.sa_staterec);
|
|
printf("sa: key %x %x %x %x %x %x %x %x\n"
|
|
, re->re_sa.sa_key[0]
|
|
, re->re_sa.sa_key[1]
|
|
, re->re_sa.sa_key[2]
|
|
, re->re_sa.sa_key[3]
|
|
, re->re_sa.sa_key[4]
|
|
, re->re_sa.sa_key[5]
|
|
, re->re_sa.sa_key[6]
|
|
, re->re_sa.sa_key[7]
|
|
);
|
|
printf("sa: indigest %x %x %x %x %x\n"
|
|
, re->re_sa.sa_indigest[0]
|
|
, re->re_sa.sa_indigest[1]
|
|
, re->re_sa.sa_indigest[2]
|
|
, re->re_sa.sa_indigest[3]
|
|
, re->re_sa.sa_indigest[4]
|
|
);
|
|
printf("sa: outdigest %x %x %x %x %x\n"
|
|
, re->re_sa.sa_outdigest[0]
|
|
, re->re_sa.sa_outdigest[1]
|
|
, re->re_sa.sa_outdigest[2]
|
|
, re->re_sa.sa_outdigest[3]
|
|
, re->re_sa.sa_outdigest[4]
|
|
);
|
|
printf("sr: iv %x %x %x %x\n"
|
|
, re->re_sastate.sa_saved_iv[0]
|
|
, re->re_sastate.sa_saved_iv[1]
|
|
, re->re_sastate.sa_saved_iv[2]
|
|
, re->re_sastate.sa_saved_iv[3]
|
|
);
|
|
printf("sr: hashbc %u indigest %x %x %x %x %x\n"
|
|
, re->re_sastate.sa_saved_hashbc
|
|
, re->re_sastate.sa_saved_indigest[0]
|
|
, re->re_sastate.sa_saved_indigest[1]
|
|
, re->re_sastate.sa_saved_indigest[2]
|
|
, re->re_sastate.sa_saved_indigest[3]
|
|
, re->re_sastate.sa_saved_indigest[4]
|
|
);
|
|
}
|
|
|
|
static void
|
|
safe_dump_ring(struct safe_softc *sc, const char *tag)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&sc->sc_ringmtx, flags);
|
|
printf("\nSafeNet Ring State:\n");
|
|
safe_dump_intrstate(sc, tag);
|
|
safe_dump_dmastatus(sc, tag);
|
|
safe_dump_ringstate(sc, tag);
|
|
if (sc->sc_nqchip) {
|
|
struct safe_ringentry *re = sc->sc_back;
|
|
do {
|
|
safe_dump_request(sc, tag, re);
|
|
if (++re == sc->sc_ringtop)
|
|
re = sc->sc_ring;
|
|
} while (re != sc->sc_front);
|
|
}
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
}
|
|
#endif /* SAFE_DEBUG */
|
|
|
|
|
|
static int safe_probe(struct pci_dev *dev, const struct pci_device_id *ent)
|
|
{
|
|
struct safe_softc *sc = NULL;
|
|
u32 mem_start, mem_len, cmd;
|
|
int i, rc, devinfo;
|
|
dma_addr_t raddr;
|
|
static int num_chips = 0;
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
if (pci_enable_device(dev) < 0)
|
|
return(-ENODEV);
|
|
|
|
if (!dev->irq) {
|
|
printk("safe: found device with no IRQ assigned. check BIOS settings!");
|
|
pci_disable_device(dev);
|
|
return(-ENODEV);
|
|
}
|
|
|
|
if (pci_set_mwi(dev)) {
|
|
printk("safe: pci_set_mwi failed!");
|
|
return(-ENODEV);
|
|
}
|
|
|
|
sc = (struct safe_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
|
|
if (!sc)
|
|
return(-ENOMEM);
|
|
memset(sc, 0, sizeof(*sc));
|
|
|
|
softc_device_init(sc, "safe", num_chips, safe_methods);
|
|
|
|
sc->sc_irq = -1;
|
|
sc->sc_cid = -1;
|
|
sc->sc_pcidev = dev;
|
|
if (num_chips < SAFE_MAX_CHIPS) {
|
|
safe_chip_idx[device_get_unit(sc->sc_dev)] = sc;
|
|
num_chips++;
|
|
}
|
|
|
|
INIT_LIST_HEAD(&sc->sc_pkq);
|
|
spin_lock_init(&sc->sc_pkmtx);
|
|
|
|
pci_set_drvdata(sc->sc_pcidev, sc);
|
|
|
|
/* we read its hardware registers as memory */
|
|
mem_start = pci_resource_start(sc->sc_pcidev, 0);
|
|
mem_len = pci_resource_len(sc->sc_pcidev, 0);
|
|
|
|
sc->sc_base_addr = (ocf_iomem_t) ioremap(mem_start, mem_len);
|
|
if (!sc->sc_base_addr) {
|
|
device_printf(sc->sc_dev, "failed to ioremap 0x%x-0x%x\n",
|
|
mem_start, mem_start + mem_len - 1);
|
|
goto out;
|
|
}
|
|
|
|
/* fix up the bus size */
|
|
if (pci_set_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) {
|
|
device_printf(sc->sc_dev, "No usable DMA configuration, aborting.\n");
|
|
goto out;
|
|
}
|
|
if (pci_set_consistent_dma_mask(sc->sc_pcidev, DMA_32BIT_MASK)) {
|
|
device_printf(sc->sc_dev, "No usable consistent DMA configuration, aborting.\n");
|
|
goto out;
|
|
}
|
|
|
|
pci_set_master(sc->sc_pcidev);
|
|
|
|
pci_read_config_dword(sc->sc_pcidev, PCI_COMMAND, &cmd);
|
|
|
|
if (!(cmd & PCI_COMMAND_MEMORY)) {
|
|
device_printf(sc->sc_dev, "failed to enable memory mapping\n");
|
|
goto out;
|
|
}
|
|
|
|
if (!(cmd & PCI_COMMAND_MASTER)) {
|
|
device_printf(sc->sc_dev, "failed to enable bus mastering\n");
|
|
goto out;
|
|
}
|
|
|
|
rc = request_irq(dev->irq, safe_intr, IRQF_SHARED, "safe", sc);
|
|
if (rc) {
|
|
device_printf(sc->sc_dev, "failed to hook irq %d\n", sc->sc_irq);
|
|
goto out;
|
|
}
|
|
sc->sc_irq = dev->irq;
|
|
|
|
sc->sc_chiprev = READ_REG(sc, SAFE_DEVINFO) &
|
|
(SAFE_DEVINFO_REV_MAJ | SAFE_DEVINFO_REV_MIN);
|
|
|
|
/*
|
|
* Allocate packet engine descriptors.
|
|
*/
|
|
sc->sc_ringalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
|
|
SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
|
|
&sc->sc_ringalloc.dma_paddr);
|
|
if (!sc->sc_ringalloc.dma_vaddr) {
|
|
device_printf(sc->sc_dev, "cannot allocate PE descriptor ring\n");
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Hookup the static portion of all our data structures.
|
|
*/
|
|
sc->sc_ring = (struct safe_ringentry *) sc->sc_ringalloc.dma_vaddr;
|
|
sc->sc_ringtop = sc->sc_ring + SAFE_MAX_NQUEUE;
|
|
sc->sc_front = sc->sc_ring;
|
|
sc->sc_back = sc->sc_ring;
|
|
raddr = sc->sc_ringalloc.dma_paddr;
|
|
bzero(sc->sc_ring, SAFE_MAX_NQUEUE * sizeof(struct safe_ringentry));
|
|
for (i = 0; i < SAFE_MAX_NQUEUE; i++) {
|
|
struct safe_ringentry *re = &sc->sc_ring[i];
|
|
|
|
re->re_desc.d_sa = raddr +
|
|
offsetof(struct safe_ringentry, re_sa);
|
|
re->re_sa.sa_staterec = raddr +
|
|
offsetof(struct safe_ringentry, re_sastate);
|
|
|
|
raddr += sizeof (struct safe_ringentry);
|
|
}
|
|
spin_lock_init(&sc->sc_ringmtx);
|
|
|
|
/*
|
|
* Allocate scatter and gather particle descriptors.
|
|
*/
|
|
sc->sc_spalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
|
|
SAFE_TOTAL_SPART * sizeof (struct safe_pdesc),
|
|
&sc->sc_spalloc.dma_paddr);
|
|
if (!sc->sc_spalloc.dma_vaddr) {
|
|
device_printf(sc->sc_dev, "cannot allocate source particle descriptor ring\n");
|
|
goto out;
|
|
}
|
|
sc->sc_spring = (struct safe_pdesc *) sc->sc_spalloc.dma_vaddr;
|
|
sc->sc_springtop = sc->sc_spring + SAFE_TOTAL_SPART;
|
|
sc->sc_spfree = sc->sc_spring;
|
|
bzero(sc->sc_spring, SAFE_TOTAL_SPART * sizeof(struct safe_pdesc));
|
|
|
|
sc->sc_dpalloc.dma_vaddr = pci_alloc_consistent(sc->sc_pcidev,
|
|
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
|
|
&sc->sc_dpalloc.dma_paddr);
|
|
if (!sc->sc_dpalloc.dma_vaddr) {
|
|
device_printf(sc->sc_dev, "cannot allocate destination particle descriptor ring\n");
|
|
goto out;
|
|
}
|
|
sc->sc_dpring = (struct safe_pdesc *) sc->sc_dpalloc.dma_vaddr;
|
|
sc->sc_dpringtop = sc->sc_dpring + SAFE_TOTAL_DPART;
|
|
sc->sc_dpfree = sc->sc_dpring;
|
|
bzero(sc->sc_dpring, SAFE_TOTAL_DPART * sizeof(struct safe_pdesc));
|
|
|
|
sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
|
|
if (sc->sc_cid < 0) {
|
|
device_printf(sc->sc_dev, "could not get crypto driver id\n");
|
|
goto out;
|
|
}
|
|
|
|
printf("%s:", device_get_nameunit(sc->sc_dev));
|
|
|
|
devinfo = READ_REG(sc, SAFE_DEVINFO);
|
|
if (devinfo & SAFE_DEVINFO_RNG) {
|
|
sc->sc_flags |= SAFE_FLAGS_RNG;
|
|
printf(" rng");
|
|
}
|
|
if (devinfo & SAFE_DEVINFO_PKEY) {
|
|
printf(" key");
|
|
sc->sc_flags |= SAFE_FLAGS_KEY;
|
|
crypto_kregister(sc->sc_cid, CRK_MOD_EXP, 0);
|
|
#if 0
|
|
crypto_kregister(sc->sc_cid, CRK_MOD_EXP_CRT, 0);
|
|
#endif
|
|
init_timer(&sc->sc_pkto);
|
|
sc->sc_pkto.function = safe_kpoll;
|
|
sc->sc_pkto.data = (unsigned long) device_get_unit(sc->sc_dev);
|
|
}
|
|
if (devinfo & SAFE_DEVINFO_DES) {
|
|
printf(" des/3des");
|
|
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
|
|
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
|
|
}
|
|
if (devinfo & SAFE_DEVINFO_AES) {
|
|
printf(" aes");
|
|
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
|
|
}
|
|
if (devinfo & SAFE_DEVINFO_MD5) {
|
|
printf(" md5");
|
|
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
|
|
}
|
|
if (devinfo & SAFE_DEVINFO_SHA1) {
|
|
printf(" sha1");
|
|
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
|
|
}
|
|
printf(" null");
|
|
crypto_register(sc->sc_cid, CRYPTO_NULL_CBC, 0, 0);
|
|
crypto_register(sc->sc_cid, CRYPTO_NULL_HMAC, 0, 0);
|
|
/* XXX other supported algorithms */
|
|
printf("\n");
|
|
|
|
safe_reset_board(sc); /* reset h/w */
|
|
safe_init_board(sc); /* init h/w */
|
|
|
|
#if defined(CONFIG_OCF_RANDOMHARVEST) && !defined(SAFE_NO_RNG)
|
|
if (sc->sc_flags & SAFE_FLAGS_RNG) {
|
|
safe_rng_init(sc);
|
|
crypto_rregister(sc->sc_cid, safe_read_random, sc);
|
|
}
|
|
#endif /* SAFE_NO_RNG */
|
|
|
|
return (0);
|
|
|
|
out:
|
|
if (sc->sc_cid >= 0)
|
|
crypto_unregister_all(sc->sc_cid);
|
|
if (sc->sc_irq != -1)
|
|
free_irq(sc->sc_irq, sc);
|
|
if (sc->sc_ringalloc.dma_vaddr)
|
|
pci_free_consistent(sc->sc_pcidev,
|
|
SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
|
|
sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr);
|
|
if (sc->sc_spalloc.dma_vaddr)
|
|
pci_free_consistent(sc->sc_pcidev,
|
|
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
|
|
sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr);
|
|
if (sc->sc_dpalloc.dma_vaddr)
|
|
pci_free_consistent(sc->sc_pcidev,
|
|
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
|
|
sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr);
|
|
kfree(sc);
|
|
return(-ENODEV);
|
|
}
|
|
|
|
static void safe_remove(struct pci_dev *dev)
|
|
{
|
|
struct safe_softc *sc = pci_get_drvdata(dev);
|
|
|
|
DPRINTF(("%s()\n", __FUNCTION__));
|
|
|
|
/* XXX wait/abort active ops */
|
|
|
|
WRITE_REG(sc, SAFE_HI_MASK, 0); /* disable interrupts */
|
|
|
|
del_timer_sync(&sc->sc_pkto);
|
|
|
|
crypto_unregister_all(sc->sc_cid);
|
|
|
|
safe_cleanchip(sc);
|
|
|
|
if (sc->sc_irq != -1)
|
|
free_irq(sc->sc_irq, sc);
|
|
if (sc->sc_ringalloc.dma_vaddr)
|
|
pci_free_consistent(sc->sc_pcidev,
|
|
SAFE_MAX_NQUEUE * sizeof (struct safe_ringentry),
|
|
sc->sc_ringalloc.dma_vaddr, sc->sc_ringalloc.dma_paddr);
|
|
if (sc->sc_spalloc.dma_vaddr)
|
|
pci_free_consistent(sc->sc_pcidev,
|
|
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
|
|
sc->sc_spalloc.dma_vaddr, sc->sc_spalloc.dma_paddr);
|
|
if (sc->sc_dpalloc.dma_vaddr)
|
|
pci_free_consistent(sc->sc_pcidev,
|
|
SAFE_TOTAL_DPART * sizeof (struct safe_pdesc),
|
|
sc->sc_dpalloc.dma_vaddr, sc->sc_dpalloc.dma_paddr);
|
|
sc->sc_irq = -1;
|
|
sc->sc_ringalloc.dma_vaddr = NULL;
|
|
sc->sc_spalloc.dma_vaddr = NULL;
|
|
sc->sc_dpalloc.dma_vaddr = NULL;
|
|
}
|
|
|
|
static struct pci_device_id safe_pci_tbl[] = {
|
|
{ PCI_VENDOR_SAFENET, PCI_PRODUCT_SAFEXCEL,
|
|
PCI_ANY_ID, PCI_ANY_ID, 0, 0, },
|
|
{ },
|
|
};
|
|
MODULE_DEVICE_TABLE(pci, safe_pci_tbl);
|
|
|
|
static struct pci_driver safe_driver = {
|
|
.name = "safe",
|
|
.id_table = safe_pci_tbl,
|
|
.probe = safe_probe,
|
|
.remove = safe_remove,
|
|
/* add PM stuff here one day */
|
|
};
|
|
|
|
static int __init safe_init (void)
|
|
{
|
|
struct safe_softc *sc = NULL;
|
|
int rc;
|
|
|
|
DPRINTF(("%s(%p)\n", __FUNCTION__, safe_init));
|
|
|
|
rc = pci_register_driver(&safe_driver);
|
|
pci_register_driver_compat(&safe_driver, rc);
|
|
|
|
return rc;
|
|
}
|
|
|
|
static void __exit safe_exit (void)
|
|
{
|
|
pci_unregister_driver(&safe_driver);
|
|
}
|
|
|
|
module_init(safe_init);
|
|
module_exit(safe_exit);
|
|
|
|
MODULE_LICENSE("Dual BSD/GPL");
|
|
MODULE_AUTHOR("David McCullough <david_mccullough@mcafee.com>");
|
|
MODULE_DESCRIPTION("OCF driver for safenet PCI crypto devices");
|