0
0
mirror of https://git.openwrt.org/openwrt/openwrt.git synced 2024-11-24 22:16:14 +00:00
openwrt/target/linux/mpc85xx/image/spi-loader/drivers/spi/fsl_espi.c
Matthias Schiffer a296055b82 mpc85xx: add SPI kernel loader for TP-Link TL-WDR4900 v1
Similar to the lzma-loader on our MIPS targets, the spi-loader acts as
a second-stage loader that will then load and start the actual kernel.
As the TL-WDR4900 uses SPI-NOR and the P1010 family does not have support
for memory mapping of this type of flash, this loader needs to contain a
basic driver for the FSL ESPI controller.

Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
2022-10-14 23:13:02 +02:00

233 lines
5.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* eSPI controller driver.
*
* Copyright (c) 2022 Matthias Schiffer <mschiffer@universe-factory.net>
*
* Based on U-Boot code:
*
* Copyright 2010-2011 Freescale Semiconductor, Inc.
* Copyright 2020 NXP
* Author: Mingkai Hu (Mingkai.hu@freescale.com)
* Chuanhua Han (chuanhua.han@nxp.com)
*/
#include <io.h>
#include <stdio.h>
#include <spi.h>
/* eSPI Registers */
typedef struct ccsr_espi {
uint32_t mode; /* eSPI mode */
uint32_t event; /* eSPI event */
uint32_t mask; /* eSPI mask */
uint32_t com; /* eSPI command */
uint32_t tx; /* eSPI transmit FIFO access */
uint32_t rx; /* eSPI receive FIFO access */
uint8_t res1[8]; /* reserved */
uint32_t csmode[4]; /* 0x2c: sSPI CS0/1/2/3 mode */
uint8_t res2[4048]; /* fill up to 0x1000 */
} ccsr_espi_t;
struct fsl_spi {
ccsr_espi_t *espi;
uint32_t cs;
uint32_t div16;
uint32_t pm;
uint32_t mode;
};
#define ESPI_MAX_CS_NUM 4
#define ESPI_FIFO_WIDTH_BIT 32
#define ESPI_EV_RNE BIT(9)
#define ESPI_EV_TNF BIT(8)
#define ESPI_EV_DON BIT(14)
#define ESPI_EV_TXE BIT(15)
#define ESPI_EV_RFCNT_SHIFT 24
#define ESPI_EV_RFCNT_MASK (0x3f << ESPI_EV_RFCNT_SHIFT)
#define ESPI_MODE_EN BIT(31) /* Enable interface */
#define ESPI_MODE_TXTHR(x) ((x) << 8) /* Tx FIFO threshold */
#define ESPI_MODE_RXTHR(x) ((x) << 0) /* Rx FIFO threshold */
#define ESPI_COM_CS(x) ((x) << 30)
#define ESPI_COM_TRANLEN(x) ((x) << 0)
#define ESPI_CSMODE_CI_INACTIVEHIGH BIT(31)
#define ESPI_CSMODE_CP_BEGIN_EDGCLK BIT(30)
#define ESPI_CSMODE_REV_MSB_FIRST BIT(29)
#define ESPI_CSMODE_DIV16 BIT(28)
#define ESPI_CSMODE_PM(x) ((x) << 24)
#define ESPI_CSMODE_POL_ASSERTED_LOW BIT(20)
#define ESPI_CSMODE_LEN(x) ((x) << 16)
#define ESPI_CSMODE_CSBEF(x) ((x) << 12)
#define ESPI_CSMODE_CSAFT(x) ((x) << 8)
#define ESPI_CSMODE_CSCG(x) ((x) << 3)
#define ESPI_CSMODE_INIT_VAL (ESPI_CSMODE_POL_ASSERTED_LOW | \
ESPI_CSMODE_CSBEF(0) | ESPI_CSMODE_CSAFT(0) | \
ESPI_CSMODE_CSCG(1))
#define ESPI_MAX_DATA_TRANSFER_LEN 0x10000
static int espi_xfer(struct fsl_spi *fsl, const struct spi_transfer *msg, int n)
{
ccsr_espi_t *espi = fsl->espi;
size_t len = spi_message_len(msg, n);
if (len > ESPI_MAX_DATA_TRANSFER_LEN)
return -1;
/* clear the RXCNT and TXCNT */
out_be32(&espi->mode, in_be32(&espi->mode) & (~ESPI_MODE_EN));
out_be32(&espi->mode, in_be32(&espi->mode) | ESPI_MODE_EN);
out_be32(&espi->com, ESPI_COM_CS(fsl->cs) | ESPI_COM_TRANLEN(len - 1));
int last_msg = n - 1;
int tx_msg = -1, rx_msg = -1;
size_t tx_len = 0, rx_len = 0, tx_pos = 0, rx_pos = 0;
while (true) {
if (tx_pos == tx_len && tx_msg < last_msg) {
tx_msg++;
tx_pos = 0;
tx_len = msg[tx_msg].len;
}
if (rx_pos == rx_len && rx_msg < last_msg) {
rx_msg++;
rx_pos = 0;
rx_len = msg[rx_msg].len;
}
if (rx_pos == rx_len)
break;
const uint8_t *tx_buf = msg[tx_msg].tx_buf;
uint8_t *rx_buf = msg[rx_msg].rx_buf;
uint32_t event = in_be32(&espi->event);
/* TX */
if ((event & ESPI_EV_TNF) && tx_len > 0) {
uint8_t v = 0;
if (tx_buf)
v = tx_buf[tx_pos];
out_8((uint8_t *)&espi->tx, v);
tx_pos++;
}
/* RX */
if (event & ESPI_EV_RNE) {
uint8_t v = in_8((uint8_t *)&espi->rx);
if (rx_buf)
rx_buf[rx_pos] = v;
rx_pos++;
}
}
return 0;
}
static void espi_claim_bus(struct fsl_spi *fsl)
{
ccsr_espi_t *espi = fsl->espi;
uint32_t csmode;
int i;
/* Enable eSPI interface */
out_be32(&espi->mode, ESPI_MODE_RXTHR(3)
| ESPI_MODE_TXTHR(4) | ESPI_MODE_EN);
out_be32(&espi->mask, 0x00000000); /* Mask all eSPI interrupts */
/* Init CS mode interface */
for (i = 0; i < ESPI_MAX_CS_NUM; i++)
out_be32(&espi->csmode[i], ESPI_CSMODE_INIT_VAL);
csmode = ESPI_CSMODE_INIT_VAL;
/* Set eSPI BRG clock source */
csmode |= ESPI_CSMODE_PM(fsl->pm) | fsl->div16;
/* Set eSPI mode */
if (fsl->mode & SPI_CPHA)
csmode |= ESPI_CSMODE_CP_BEGIN_EDGCLK;
if (fsl->mode & SPI_CPOL)
csmode |= ESPI_CSMODE_CI_INACTIVEHIGH;
/* Character bit order: msb first */
csmode |= ESPI_CSMODE_REV_MSB_FIRST;
/* Character length in bits, between 0x3~0xf, i.e. 4bits~16bits */
csmode |= ESPI_CSMODE_LEN(7);
out_be32(&espi->csmode[fsl->cs], csmode);
}
static void espi_release_bus(struct fsl_spi *fsl)
{
/* Disable the SPI hardware */
out_be32(&fsl->espi->mode,
in_be32(&fsl->espi->mode) & (~ESPI_MODE_EN));
}
static void espi_setup_spi(struct fsl_spi *fsl, unsigned int max_hz)
{
unsigned long spibrg;
uint32_t pm;
spibrg = CONFIG_FREQ_SYSTEMBUS / 2;
fsl->div16 = 0;
if ((spibrg / max_hz) > 32) {
fsl->div16 = ESPI_CSMODE_DIV16;
pm = spibrg / (max_hz * 16 * 2);
if (pm > 16) {
/* max_hz too low */
pm = 16;
}
} else {
pm = spibrg / (max_hz * 2);
}
if (pm)
pm--;
fsl->pm = pm;
}
static struct fsl_spi spi;
int spi_init(unsigned int cs, unsigned int max_hz, unsigned int mode)
{
if (cs >= ESPI_MAX_CS_NUM)
return -1;
spi.espi = (ccsr_espi_t *)CONFIG_SPI_FSL_ESPI_REG_BASE;
spi.cs = cs;
spi.mode = mode;
espi_setup_spi(&spi, max_hz);
return 0;
}
int spi_claim_bus(void)
{
espi_claim_bus(&spi);
return 0;
}
void spi_release_bus(void)
{
espi_release_bus(&spi);
}
int spi_xfer(const struct spi_transfer *msg, int n)
{
return espi_xfer(&spi, msg, n);
}
size_t spi_max_xfer(void)
{
return ESPI_MAX_DATA_TRANSFER_LEN;
}