0
0
mirror of https://git.openwrt.org/openwrt/openwrt.git synced 2024-11-22 13:06:14 +00:00
openwrt/target/linux/bmips/files/drivers/net/ethernet/broadcom/bcm6368-enetsw.c
Álvaro Fernández Rojas 2bf2ee7be8 bmips: enet: restore netif_napi_add weight
Switch to netif_napi_add_weight and add back weight value from <= v5.15.

Fixes: 8f6033e287ea ("bmips: enet: add compatibility with kernel 6.1")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2024-07-01 19:20:46 +02:00

1149 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* BCM6368 Ethernet Switch Controller Driver
*
* Copyright (C) 2021 Álvaro Fernández Rojas <noltari@gmail.com>
* Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
* Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/ethtool.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/of_clk.h>
#include <linux/of_net.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
/* TODO: Bigger frames may work but we do not trust that they are safe on all
* platforms so more research is needed, a max frame size of 2048 has been
* tested. We use the safe frame size 1542 which is 1532 plus DSA and VLAN
* overhead.
*/
#define ENETSW_MAX_FRAME 1542
#define ENETSW_DSA_TAG_SIZE 6
/* The MTU in Linux does not include ethernet or VLAN headers, but it DOES
* include the DSA overhead (the framework will increase the MTU to fit
* any DSA header).
*/
#define ENETSW_MAX_MTU (ENETSW_MAX_FRAME - VLAN_ETH_HLEN - \
VLAN_HLEN)
#define ENETSW_FRAG_SIZE(x) (SKB_DATA_ALIGN(NET_SKB_PAD + x + \
SKB_DATA_ALIGN(sizeof(struct skb_shared_info))))
/* default number of descriptor */
#define ENETSW_DEF_RX_DESC 64
#define ENETSW_DEF_TX_DESC 32
#define ENETSW_DEF_CPY_BREAK 128
/* maximum burst len for dma (4 bytes unit) */
#define ENETSW_DMA_MAXBURST 8
/* DMA channels */
#define DMA_CHAN_WIDTH 0x10
/* Controller Configuration Register */
#define DMA_CFG_REG 0x0
#define DMA_CFG_EN_SHIFT 0
#define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
#define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
/* Flow Control Descriptor Low Threshold register */
#define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
/* Flow Control Descriptor High Threshold register */
#define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
/* Flow Control Descriptor Buffer Alloca Threshold register */
#define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
#define DMA_BUFALLOC_FORCE_SHIFT 31
#define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
/* Channel Configuration register */
#define DMAC_CHANCFG_REG 0x0
#define DMAC_CHANCFG_EN_SHIFT 0
#define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
#define DMAC_CHANCFG_PKTHALT_SHIFT 1
#define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
#define DMAC_CHANCFG_BUFHALT_SHIFT 2
#define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
#define DMAC_CHANCFG_CHAINING_SHIFT 2
#define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
#define DMAC_CHANCFG_WRAP_EN_SHIFT 3
#define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
#define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
#define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
/* Interrupt Control/Status register */
#define DMAC_IR_REG 0x4
#define DMAC_IR_BUFDONE_MASK (1 << 0)
#define DMAC_IR_PKTDONE_MASK (1 << 1)
#define DMAC_IR_NOTOWNER_MASK (1 << 2)
/* Interrupt Mask register */
#define DMAC_IRMASK_REG 0x8
/* Maximum Burst Length */
#define DMAC_MAXBURST_REG 0xc
/* Ring Start Address register */
#define DMAS_RSTART_REG 0x0
/* State Ram Word 2 */
#define DMAS_SRAM2_REG 0x4
/* State Ram Word 3 */
#define DMAS_SRAM3_REG 0x8
/* State Ram Word 4 */
#define DMAS_SRAM4_REG 0xc
struct bcm6368_enetsw_desc {
u32 len_stat;
u32 address;
};
/* control */
#define DMADESC_LENGTH_SHIFT 16
#define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
#define DMADESC_OWNER_MASK (1 << 15)
#define DMADESC_EOP_MASK (1 << 14)
#define DMADESC_SOP_MASK (1 << 13)
#define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
#define DMADESC_WRAP_MASK (1 << 12)
#define DMADESC_USB_NOZERO_MASK (1 << 1)
#define DMADESC_USB_ZERO_MASK (1 << 0)
/* status */
#define DMADESC_UNDER_MASK (1 << 9)
#define DMADESC_APPEND_CRC (1 << 8)
#define DMADESC_OVSIZE_MASK (1 << 4)
#define DMADESC_RXER_MASK (1 << 2)
#define DMADESC_CRC_MASK (1 << 1)
#define DMADESC_OV_MASK (1 << 0)
#define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
DMADESC_OVSIZE_MASK | \
DMADESC_RXER_MASK | \
DMADESC_CRC_MASK | \
DMADESC_OV_MASK)
struct bcm6368_enetsw {
void __iomem *dma_base;
void __iomem *dma_chan;
void __iomem *dma_sram;
struct device **pm;
struct device_link **link_pm;
int num_pms;
struct clk **clock;
unsigned int num_clocks;
struct reset_control **reset;
unsigned int num_resets;
int copybreak;
int irq_rx;
int irq_tx;
/* hw view of rx & tx dma ring */
dma_addr_t rx_desc_dma;
dma_addr_t tx_desc_dma;
/* allocated size (in bytes) for rx & tx dma ring */
unsigned int rx_desc_alloc_size;
unsigned int tx_desc_alloc_size;
struct napi_struct napi;
/* dma channel id for rx */
int rx_chan;
/* number of dma desc in rx ring */
int rx_ring_size;
/* cpu view of rx dma ring */
struct bcm6368_enetsw_desc *rx_desc_cpu;
/* current number of armed descriptor given to hardware for rx */
int rx_desc_count;
/* next rx descriptor to fetch from hardware */
int rx_curr_desc;
/* next dirty rx descriptor to refill */
int rx_dirty_desc;
/* size of allocated rx buffer */
unsigned int rx_buf_size;
/* size of allocated rx frag */
unsigned int rx_frag_size;
/* list of buffer given to hw for rx */
unsigned char **rx_buf;
/* used when rx buffer allocation failed, so we defer rx queue
* refill */
struct timer_list rx_timeout;
/* lock rx_timeout against rx normal operation */
spinlock_t rx_lock;
/* dma channel id for tx */
int tx_chan;
/* number of dma desc in tx ring */
int tx_ring_size;
/* cpu view of rx dma ring */
struct bcm6368_enetsw_desc *tx_desc_cpu;
/* number of available descriptor for tx */
int tx_desc_count;
/* next tx descriptor avaiable */
int tx_curr_desc;
/* next dirty tx descriptor to reclaim */
int tx_dirty_desc;
/* list of skb given to hw for tx */
struct sk_buff **tx_skb;
/* lock used by tx reclaim and xmit */
spinlock_t tx_lock;
/* network device reference */
struct net_device *net_dev;
/* platform device reference */
struct platform_device *pdev;
};
static inline void dma_writel(struct bcm6368_enetsw *priv, u32 val, u32 off)
{
__raw_writel(val, priv->dma_base + off);
}
static inline u32 dma_readl(struct bcm6368_enetsw *priv, u32 off, int chan)
{
return __raw_readl(priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
}
static inline void dmac_writel(struct bcm6368_enetsw *priv, u32 val, u32 off,
int chan)
{
__raw_writel(val, priv->dma_chan + off + chan * DMA_CHAN_WIDTH);
}
static inline void dmas_writel(struct bcm6368_enetsw *priv, u32 val,
u32 off, int chan)
{
__raw_writel(val, priv->dma_sram + off + chan * DMA_CHAN_WIDTH);
}
/*
* refill rx queue
*/
static int bcm6368_enetsw_refill_rx(struct net_device *ndev, bool napi_mode)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
while (priv->rx_desc_count < priv->rx_ring_size) {
struct bcm6368_enetsw_desc *desc;
int desc_idx;
u32 len_stat;
desc_idx = priv->rx_dirty_desc;
desc = &priv->rx_desc_cpu[desc_idx];
if (!priv->rx_buf[desc_idx]) {
unsigned char *buf;
dma_addr_t p;
if (likely(napi_mode))
buf = napi_alloc_frag(priv->rx_frag_size);
else
buf = netdev_alloc_frag(priv->rx_frag_size);
if (unlikely(!buf))
break;
p = dma_map_single(dev, buf + NET_SKB_PAD,
priv->rx_buf_size, DMA_FROM_DEVICE);
if (unlikely(dma_mapping_error(dev, p))) {
skb_free_frag(buf);
break;
}
priv->rx_buf[desc_idx] = buf;
desc->address = p;
}
len_stat = priv->rx_buf_size << DMADESC_LENGTH_SHIFT;
len_stat |= DMADESC_OWNER_MASK;
if (priv->rx_dirty_desc == priv->rx_ring_size - 1) {
len_stat |= DMADESC_WRAP_MASK;
priv->rx_dirty_desc = 0;
} else {
priv->rx_dirty_desc++;
}
wmb();
desc->len_stat = len_stat;
priv->rx_desc_count++;
/* tell dma engine we allocated one buffer */
dma_writel(priv, 1, DMA_BUFALLOC_REG(priv->rx_chan));
}
/* If rx ring is still empty, set a timer to try allocating
* again at a later time. */
if (priv->rx_desc_count == 0 && netif_running(ndev)) {
dev_warn(dev, "unable to refill rx ring\n");
priv->rx_timeout.expires = jiffies + HZ;
add_timer(&priv->rx_timeout);
}
return 0;
}
/*
* timer callback to defer refill rx queue in case we're OOM
*/
static void bcm6368_enetsw_refill_rx_timer(struct timer_list *t)
{
struct bcm6368_enetsw *priv = from_timer(priv, t, rx_timeout);
struct net_device *ndev = priv->net_dev;
spin_lock(&priv->rx_lock);
bcm6368_enetsw_refill_rx(ndev, false);
spin_unlock(&priv->rx_lock);
}
/*
* extract packet from rx queue
*/
static int bcm6368_enetsw_receive_queue(struct net_device *ndev, int budget)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
struct list_head rx_list;
struct sk_buff *skb;
int processed = 0;
INIT_LIST_HEAD(&rx_list);
/* don't scan ring further than number of refilled
* descriptor */
if (budget > priv->rx_desc_count)
budget = priv->rx_desc_count;
do {
struct bcm6368_enetsw_desc *desc;
unsigned int frag_size;
unsigned char *buf;
int desc_idx;
u32 len_stat;
unsigned int len;
desc_idx = priv->rx_curr_desc;
desc = &priv->rx_desc_cpu[desc_idx];
/* make sure we actually read the descriptor status at
* each loop */
rmb();
len_stat = desc->len_stat;
/* break if dma ownership belongs to hw */
if (len_stat & DMADESC_OWNER_MASK)
break;
processed++;
priv->rx_curr_desc++;
if (priv->rx_curr_desc == priv->rx_ring_size)
priv->rx_curr_desc = 0;
/* if the packet does not have start of packet _and_
* end of packet flag set, then just recycle it */
if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
ndev->stats.rx_dropped++;
continue;
}
/* valid packet */
buf = priv->rx_buf[desc_idx];
len = (len_stat & DMADESC_LENGTH_MASK)
>> DMADESC_LENGTH_SHIFT;
/* don't include FCS */
len -= 4;
if (len < priv->copybreak) {
unsigned int nfrag_size = ENETSW_FRAG_SIZE(len);
unsigned char *nbuf = napi_alloc_frag(nfrag_size);
if (unlikely(!nbuf)) {
/* forget packet, just rearm desc */
ndev->stats.rx_dropped++;
continue;
}
dma_sync_single_for_cpu(dev, desc->address,
len, DMA_FROM_DEVICE);
memcpy(nbuf + NET_SKB_PAD, buf + NET_SKB_PAD, len);
dma_sync_single_for_device(dev, desc->address,
len, DMA_FROM_DEVICE);
buf = nbuf;
frag_size = nfrag_size;
} else {
dma_unmap_single(dev, desc->address,
priv->rx_buf_size, DMA_FROM_DEVICE);
priv->rx_buf[desc_idx] = NULL;
frag_size = priv->rx_frag_size;
}
skb = napi_build_skb(buf, frag_size);
if (unlikely(!skb)) {
skb_free_frag(buf);
ndev->stats.rx_dropped++;
continue;
}
skb_reserve(skb, NET_SKB_PAD);
skb_put(skb, len);
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += len;
list_add_tail(&skb->list, &rx_list);
} while (processed < budget);
list_for_each_entry(skb, &rx_list, list)
skb->protocol = eth_type_trans(skb, ndev);
netif_receive_skb_list(&rx_list);
priv->rx_desc_count -= processed;
if (processed || !priv->rx_desc_count) {
bcm6368_enetsw_refill_rx(ndev, true);
/* kick rx dma */
dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
DMAC_CHANCFG_REG, priv->rx_chan);
}
return processed;
}
/*
* try to or force reclaim of transmitted buffers
*/
static int bcm6368_enetsw_tx_reclaim(struct net_device *ndev, int force,
int budget)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
unsigned int bytes = 0;
int released = 0;
while (priv->tx_desc_count < priv->tx_ring_size) {
struct bcm6368_enetsw_desc *desc;
struct sk_buff *skb;
/* We run in a bh and fight against start_xmit, which
* is called with bh disabled */
spin_lock(&priv->tx_lock);
desc = &priv->tx_desc_cpu[priv->tx_dirty_desc];
if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
spin_unlock(&priv->tx_lock);
break;
}
/* ensure other field of the descriptor were not read
* before we checked ownership */
rmb();
skb = priv->tx_skb[priv->tx_dirty_desc];
priv->tx_skb[priv->tx_dirty_desc] = NULL;
dma_unmap_single(dev, desc->address, skb->len,
DMA_TO_DEVICE);
priv->tx_dirty_desc++;
if (priv->tx_dirty_desc == priv->tx_ring_size)
priv->tx_dirty_desc = 0;
priv->tx_desc_count++;
spin_unlock(&priv->tx_lock);
if (desc->len_stat & DMADESC_UNDER_MASK)
ndev->stats.tx_errors++;
bytes += skb->len;
napi_consume_skb(skb, budget);
released++;
}
netdev_completed_queue(ndev, released, bytes);
if (netif_queue_stopped(ndev) && released)
netif_wake_queue(ndev);
return released;
}
/*
* poll func, called by network core
*/
static int bcm6368_enetsw_poll(struct napi_struct *napi, int budget)
{
struct bcm6368_enetsw *priv = container_of(napi, struct bcm6368_enetsw, napi);
struct net_device *ndev = priv->net_dev;
int rx_work_done;
/* ack interrupts */
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->tx_chan);
/* reclaim sent skb */
bcm6368_enetsw_tx_reclaim(ndev, 0, budget);
spin_lock(&priv->rx_lock);
rx_work_done = bcm6368_enetsw_receive_queue(ndev, budget);
spin_unlock(&priv->rx_lock);
if (rx_work_done >= budget) {
/* rx queue is not yet empty/clean */
return rx_work_done;
}
/* no more packet in rx/tx queue, remove device from poll
* queue */
napi_complete_done(napi, rx_work_done);
/* restore rx/tx interrupt */
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->tx_chan);
return rx_work_done;
}
/*
* rx/tx dma interrupt handler
*/
static irqreturn_t bcm6368_enetsw_isr_dma(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct bcm6368_enetsw *priv = netdev_priv(ndev);
/* mask rx/tx interrupts */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
napi_schedule(&priv->napi);
return IRQ_HANDLED;
}
/*
* tx request callback
*/
static netdev_tx_t
bcm6368_enetsw_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
struct bcm6368_enetsw_desc *desc;
u32 len_stat;
netdev_tx_t ret;
dma_addr_t p;
/* lock against tx reclaim */
spin_lock(&priv->tx_lock);
/* make sure the tx hw queue is not full, should not happen
* since we stop queue before it's the case */
if (unlikely(!priv->tx_desc_count)) {
netif_stop_queue(ndev);
dev_err(dev, "xmit called with no tx desc available?\n");
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
/* pad small packets */
if (skb->len < (ETH_ZLEN + ETH_FCS_LEN)) {
int needed = (ETH_ZLEN + ETH_FCS_LEN) - skb->len;
char *data;
if (unlikely(skb_tailroom(skb) < needed)) {
struct sk_buff *nskb;
nskb = skb_copy_expand(skb, 0, needed, GFP_ATOMIC);
if (!nskb) {
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
dev_kfree_skb(skb);
skb = nskb;
}
data = skb_put_zero(skb, needed);
}
/* fill descriptor */
p = dma_map_single(dev, skb->data, skb->len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(dev, p))) {
dev_kfree_skb(skb);
ret = NETDEV_TX_OK;
goto out_unlock;
}
/* point to the next available desc */
desc = &priv->tx_desc_cpu[priv->tx_curr_desc];
priv->tx_skb[priv->tx_curr_desc] = skb;
desc->address = p;
len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
DMADESC_OWNER_MASK;
priv->tx_curr_desc++;
if (priv->tx_curr_desc == priv->tx_ring_size) {
priv->tx_curr_desc = 0;
len_stat |= DMADESC_WRAP_MASK;
}
priv->tx_desc_count--;
/* dma might be already polling, make sure we update desc
* fields in correct order */
wmb();
desc->len_stat = len_stat;
wmb();
netdev_sent_queue(ndev, skb->len);
/* kick tx dma */
dmac_writel(priv, DMAC_CHANCFG_EN_MASK, DMAC_CHANCFG_REG,
priv->tx_chan);
/* stop queue if no more desc available */
if (!priv->tx_desc_count)
netif_stop_queue(ndev);
ndev->stats.tx_bytes += skb->len;
ndev->stats.tx_packets++;
ret = NETDEV_TX_OK;
out_unlock:
spin_unlock(&priv->tx_lock);
return ret;
}
/*
* disable dma in given channel
*/
static void bcm6368_enetsw_disable_dma(struct bcm6368_enetsw *priv, int chan)
{
int limit = 1000;
dmac_writel(priv, 0, DMAC_CHANCFG_REG, chan);
do {
u32 val;
val = dma_readl(priv, DMAC_CHANCFG_REG, chan);
if (!(val & DMAC_CHANCFG_EN_MASK))
break;
udelay(1);
} while (limit--);
}
static int bcm6368_enetsw_open(struct net_device *ndev)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
int i, ret;
unsigned int size;
void *p;
u32 val;
/* mask all interrupts and request them */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
ret = request_irq(priv->irq_rx, bcm6368_enetsw_isr_dma,
0, ndev->name, ndev);
if (ret)
goto out_freeirq;
if (priv->irq_tx != -1) {
ret = request_irq(priv->irq_tx, bcm6368_enetsw_isr_dma,
0, ndev->name, ndev);
if (ret)
goto out_freeirq_rx;
}
/* allocate rx dma ring */
size = priv->rx_ring_size * sizeof(struct bcm6368_enetsw_desc);
p = dma_alloc_coherent(dev, size, &priv->rx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(dev, "cannot allocate rx ring %u\n", size);
ret = -ENOMEM;
goto out_freeirq_tx;
}
memset(p, 0, size);
priv->rx_desc_alloc_size = size;
priv->rx_desc_cpu = p;
/* allocate tx dma ring */
size = priv->tx_ring_size * sizeof(struct bcm6368_enetsw_desc);
p = dma_alloc_coherent(dev, size, &priv->tx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(dev, "cannot allocate tx ring\n");
ret = -ENOMEM;
goto out_free_rx_ring;
}
memset(p, 0, size);
priv->tx_desc_alloc_size = size;
priv->tx_desc_cpu = p;
priv->tx_skb = kzalloc(sizeof(struct sk_buff *) * priv->tx_ring_size,
GFP_KERNEL);
if (!priv->tx_skb) {
dev_err(dev, "cannot allocate tx skb queue\n");
ret = -ENOMEM;
goto out_free_tx_ring;
}
priv->tx_desc_count = priv->tx_ring_size;
priv->tx_dirty_desc = 0;
priv->tx_curr_desc = 0;
spin_lock_init(&priv->tx_lock);
/* init & fill rx ring with buffers */
priv->rx_buf = kzalloc(sizeof(unsigned char *) * priv->rx_ring_size,
GFP_KERNEL);
if (!priv->rx_buf) {
dev_err(dev, "cannot allocate rx buffer queue\n");
ret = -ENOMEM;
goto out_free_tx_skb;
}
priv->rx_desc_count = 0;
priv->rx_dirty_desc = 0;
priv->rx_curr_desc = 0;
/* initialize flow control buffer allocation */
dma_writel(priv, DMA_BUFALLOC_FORCE_MASK | 0,
DMA_BUFALLOC_REG(priv->rx_chan));
if (bcm6368_enetsw_refill_rx(ndev, false)) {
dev_err(dev, "cannot allocate rx buffer queue\n");
ret = -ENOMEM;
goto out;
}
/* write rx & tx ring addresses */
dmas_writel(priv, priv->rx_desc_dma,
DMAS_RSTART_REG, priv->rx_chan);
dmas_writel(priv, priv->tx_desc_dma,
DMAS_RSTART_REG, priv->tx_chan);
/* clear remaining state ram for rx & tx channel */
dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM2_REG, priv->tx_chan);
dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM3_REG, priv->tx_chan);
dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->rx_chan);
dmas_writel(priv, 0, DMAS_SRAM4_REG, priv->tx_chan);
/* set dma maximum burst len */
dmac_writel(priv, ENETSW_DMA_MAXBURST,
DMAC_MAXBURST_REG, priv->rx_chan);
dmac_writel(priv, ENETSW_DMA_MAXBURST,
DMAC_MAXBURST_REG, priv->tx_chan);
/* set flow control low/high threshold to 1/3 / 2/3 */
val = priv->rx_ring_size / 3;
dma_writel(priv, val, DMA_FLOWCL_REG(priv->rx_chan));
val = (priv->rx_ring_size * 2) / 3;
dma_writel(priv, val, DMA_FLOWCH_REG(priv->rx_chan));
/* all set, enable mac and interrupts, start dma engine and
* kick rx dma channel
*/
wmb();
dma_writel(priv, DMA_CFG_EN_MASK, DMA_CFG_REG);
dmac_writel(priv, DMAC_CHANCFG_EN_MASK,
DMAC_CHANCFG_REG, priv->rx_chan);
/* watch "packet transferred" interrupt in rx and tx */
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, priv->tx_chan);
/* make sure we enable napi before rx interrupt */
napi_enable(&priv->napi);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, priv->tx_chan);
netif_carrier_on(ndev);
netif_start_queue(ndev);
return 0;
out:
for (i = 0; i < priv->rx_ring_size; i++) {
struct bcm6368_enetsw_desc *desc;
if (!priv->rx_buf[i])
continue;
desc = &priv->rx_desc_cpu[i];
dma_unmap_single(dev, desc->address, priv->rx_buf_size,
DMA_FROM_DEVICE);
skb_free_frag(priv->rx_buf[i]);
}
kfree(priv->rx_buf);
out_free_tx_skb:
kfree(priv->tx_skb);
out_free_tx_ring:
dma_free_coherent(dev, priv->tx_desc_alloc_size,
priv->tx_desc_cpu, priv->tx_desc_dma);
out_free_rx_ring:
dma_free_coherent(dev, priv->rx_desc_alloc_size,
priv->rx_desc_cpu, priv->rx_desc_dma);
out_freeirq_tx:
if (priv->irq_tx != -1)
free_irq(priv->irq_tx, ndev);
out_freeirq_rx:
free_irq(priv->irq_rx, ndev);
out_freeirq:
return ret;
}
static int bcm6368_enetsw_stop(struct net_device *ndev)
{
struct bcm6368_enetsw *priv = netdev_priv(ndev);
struct platform_device *pdev = priv->pdev;
struct device *dev = &pdev->dev;
int i;
netif_stop_queue(ndev);
napi_disable(&priv->napi);
del_timer_sync(&priv->rx_timeout);
/* mask all interrupts */
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->rx_chan);
dmac_writel(priv, 0, DMAC_IRMASK_REG, priv->tx_chan);
/* disable dma & mac */
bcm6368_enetsw_disable_dma(priv, priv->tx_chan);
bcm6368_enetsw_disable_dma(priv, priv->rx_chan);
/* force reclaim of all tx buffers */
bcm6368_enetsw_tx_reclaim(ndev, 1, 0);
/* free the rx buffer ring */
for (i = 0; i < priv->rx_ring_size; i++) {
struct bcm6368_enetsw_desc *desc;
if (!priv->rx_buf[i])
continue;
desc = &priv->rx_desc_cpu[i];
dma_unmap_single_attrs(dev, desc->address, priv->rx_buf_size,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
skb_free_frag(priv->rx_buf[i]);
}
/* free remaining allocated memory */
kfree(priv->rx_buf);
kfree(priv->tx_skb);
dma_free_coherent(dev, priv->rx_desc_alloc_size,
priv->rx_desc_cpu, priv->rx_desc_dma);
dma_free_coherent(dev, priv->tx_desc_alloc_size,
priv->tx_desc_cpu, priv->tx_desc_dma);
if (priv->irq_tx != -1)
free_irq(priv->irq_tx, ndev);
free_irq(priv->irq_rx, ndev);
netdev_reset_queue(ndev);
return 0;
}
static const struct net_device_ops bcm6368_enetsw_ops = {
.ndo_open = bcm6368_enetsw_open,
.ndo_stop = bcm6368_enetsw_stop,
.ndo_start_xmit = bcm6368_enetsw_start_xmit,
};
static int bcm6368_enetsw_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct bcm6368_enetsw *priv;
struct net_device *ndev;
struct resource *res;
unsigned char dev_addr[ETH_ALEN];
unsigned i;
int num_resets;
int ret;
ndev = devm_alloc_etherdev(dev, sizeof(*priv));
if (!ndev)
return -ENOMEM;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, dev);
priv = netdev_priv(ndev);
priv->pdev = pdev;
priv->net_dev = ndev;
priv->num_pms = of_count_phandle_with_args(node, "power-domains",
"#power-domain-cells");
if (priv->num_pms > 1) {
priv->pm = devm_kcalloc(dev, priv->num_pms,
sizeof(struct device *), GFP_KERNEL);
if (!priv->pm)
return -ENOMEM;
priv->link_pm = devm_kcalloc(dev, priv->num_pms,
sizeof(struct device_link *),
GFP_KERNEL);
if (!priv->link_pm)
return -ENOMEM;
for (i = 0; i < priv->num_pms; i++) {
priv->pm[i] = genpd_dev_pm_attach_by_id(dev, i);
if (IS_ERR(priv->pm[i])) {
dev_err(dev, "error getting pm %d\n", i);
return -EINVAL;
}
priv->link_pm[i] = device_link_add(dev, priv->pm[i],
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
DL_FLAG_RPM_ACTIVE);
}
}
pm_runtime_enable(dev);
pm_runtime_no_callbacks(dev);
ret = pm_runtime_get_sync(dev);
if (ret < 0) {
pm_runtime_disable(dev);
dev_info(dev, "PM prober defer: ret=%d\n", ret);
return -EPROBE_DEFER;
}
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma");
priv->dma_base = devm_ioremap_resource(dev, res);
if (IS_ERR_OR_NULL(priv->dma_base))
return PTR_ERR(priv->dma_base);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
"dma-channels");
priv->dma_chan = devm_ioremap_resource(dev, res);
if (IS_ERR_OR_NULL(priv->dma_chan))
return PTR_ERR(priv->dma_chan);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dma-sram");
priv->dma_sram = devm_ioremap_resource(dev, res);
if (IS_ERR_OR_NULL(priv->dma_sram))
return PTR_ERR(priv->dma_sram);
priv->irq_rx = platform_get_irq_byname(pdev, "rx");
if (!priv->irq_rx)
return -ENODEV;
priv->irq_tx = platform_get_irq_byname(pdev, "tx");
if (!priv->irq_tx)
return -ENODEV;
else if (priv->irq_tx < 0)
priv->irq_tx = -1;
if (device_property_read_u32(dev, "dma-rx", &priv->rx_chan))
return -ENODEV;
if (device_property_read_u32(dev, "dma-tx", &priv->tx_chan))
return -ENODEV;
priv->rx_ring_size = ENETSW_DEF_RX_DESC;
priv->tx_ring_size = ENETSW_DEF_TX_DESC;
priv->copybreak = ENETSW_DEF_CPY_BREAK;
of_get_mac_address(node, dev_addr);
if (is_valid_ether_addr(dev_addr)) {
dev_addr_set(ndev, dev_addr);
dev_info(dev, "mtd mac %pM\n", dev_addr);
} else {
eth_hw_addr_random(ndev);
dev_info(dev, "random mac\n");
}
priv->rx_buf_size = ALIGN(ENETSW_MAX_FRAME,
ENETSW_DMA_MAXBURST * 4);
priv->rx_frag_size = ENETSW_FRAG_SIZE(priv->rx_buf_size);
priv->num_clocks = of_clk_get_parent_count(node);
if (priv->num_clocks) {
priv->clock = devm_kcalloc(dev, priv->num_clocks,
sizeof(struct clk *), GFP_KERNEL);
if (IS_ERR_OR_NULL(priv->clock))
return PTR_ERR(priv->clock);
}
for (i = 0; i < priv->num_clocks; i++) {
priv->clock[i] = of_clk_get(node, i);
if (IS_ERR(priv->clock[i])) {
dev_err(dev, "error getting clock %d\n", i);
return PTR_ERR(priv->clock[i]);
}
ret = clk_prepare_enable(priv->clock[i]);
if (ret) {
dev_err(dev, "error enabling clock %d\n", i);
return ret;
}
}
num_resets = of_count_phandle_with_args(node, "resets",
"#reset-cells");
if (num_resets > 0)
priv->num_resets = num_resets;
else
priv->num_resets = 0;
if (priv->num_resets) {
priv->reset = devm_kcalloc(dev, priv->num_resets,
sizeof(struct reset_control *),
GFP_KERNEL);
if (IS_ERR_OR_NULL(priv->reset))
return PTR_ERR(priv->reset);
}
for (i = 0; i < priv->num_resets; i++) {
priv->reset[i] = devm_reset_control_get_by_index(dev, i);
if (IS_ERR(priv->reset[i])) {
dev_err(dev, "error getting reset %d\n", i);
return PTR_ERR(priv->reset[i]);
}
ret = reset_control_reset(priv->reset[i]);
if (ret) {
dev_err(dev, "error performing reset %d\n", i);
return ret;
}
}
spin_lock_init(&priv->rx_lock);
timer_setup(&priv->rx_timeout, bcm6368_enetsw_refill_rx_timer, 0);
/* register netdevice */
ndev->netdev_ops = &bcm6368_enetsw_ops;
ndev->min_mtu = ETH_ZLEN;
ndev->mtu = ETH_DATA_LEN;
ndev->max_mtu = ENETSW_MAX_MTU;
netif_napi_add_weight(ndev, &priv->napi, bcm6368_enetsw_poll, 16);
ret = devm_register_netdev(dev, ndev);
if (ret) {
netif_napi_del(&priv->napi);
goto out_disable_clk;
}
netif_carrier_off(ndev);
dev_info(dev, "%s at 0x%px, IRQ %d\n", ndev->name, priv->dma_base, ndev->irq);
return 0;
out_disable_clk:
for (i = 0; i < priv->num_resets; i++)
reset_control_assert(priv->reset[i]);
for (i = 0; i < priv->num_clocks; i++)
clk_disable_unprepare(priv->clock[i]);
return ret;
}
static int bcm6368_enetsw_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct net_device *ndev = platform_get_drvdata(pdev);
struct bcm6368_enetsw *priv = netdev_priv(ndev);
unsigned int i;
pm_runtime_put_sync(dev);
for (i = 0; priv->pm && i < priv->num_pms; i++) {
dev_pm_domain_detach(priv->pm[i], true);
device_link_del(priv->link_pm[i]);
}
for (i = 0; i < priv->num_resets; i++)
reset_control_assert(priv->reset[i]);
for (i = 0; i < priv->num_clocks; i++)
clk_disable_unprepare(priv->clock[i]);
return 0;
}
static const struct of_device_id bcm6368_enetsw_of_match[] = {
{ .compatible = "brcm,bcm6318-enetsw", },
{ .compatible = "brcm,bcm6328-enetsw", },
{ .compatible = "brcm,bcm6362-enetsw", },
{ .compatible = "brcm,bcm6368-enetsw", },
{ .compatible = "brcm,bcm63268-enetsw", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm6368_enetsw_of_match);
static struct platform_driver bcm6368_enetsw_driver = {
.driver = {
.name = "bcm6368-enetsw",
.of_match_table = of_match_ptr(bcm6368_enetsw_of_match),
},
.probe = bcm6368_enetsw_probe,
.remove = bcm6368_enetsw_remove,
};
module_platform_driver(bcm6368_enetsw_driver);
MODULE_AUTHOR("Álvaro Fernández Rojas <noltari@gmail.com>");
MODULE_DESCRIPTION("BCM6368 Ethernet Switch Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:bcm6368-enetsw");