0
0
mirror of https://git.openwrt.org/openwrt/openwrt.git synced 2024-11-25 22:46:15 +00:00
openwrt/target/linux/bmips/files/drivers/net/ethernet/broadcom/bcm6348-enet.c
Álvaro Fernández Rojas 2bf2ee7be8 bmips: enet: restore netif_napi_add weight
Switch to netif_napi_add_weight and add back weight value from <= v5.15.

Fixes: 8f6033e287ea ("bmips: enet: add compatibility with kernel 6.1")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2024-07-01 19:20:46 +02:00

1728 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* BCM6348 Ethernet Controller Driver
*
* Copyright (C) 2020 Álvaro Fernández Rojas <noltari@gmail.com>
* Copyright (C) 2015 Jonas Gorski <jonas.gorski@gmail.com>
* Copyright (C) 2008 Maxime Bizon <mbizon@freebox.fr>
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/err.h>
#include <linux/etherdevice.h>
#include <linux/if_vlan.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/mtd/mtd.h>
#include <linux/of_address.h>
#include <linux/of_clk.h>
#include <linux/of_irq.h>
#include <linux/of_mdio.h>
#include <linux/of_net.h>
#include <linux/of_platform.h>
#include <linux/phy.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
/* DMA channels */
#define DMA_CHAN_WIDTH 0x10
/* Controller Configuration Register */
#define DMA_CFG_REG 0x0
#define DMA_CFG_EN_SHIFT 0
#define DMA_CFG_EN_MASK (1 << DMA_CFG_EN_SHIFT)
#define DMA_CFG_FLOWCH_MASK(x) (1 << ((x >> 1) + 1))
/* Flow Control Descriptor Low Threshold register */
#define DMA_FLOWCL_REG(x) (0x4 + (x) * 6)
/* Flow Control Descriptor High Threshold register */
#define DMA_FLOWCH_REG(x) (0x8 + (x) * 6)
/* Flow Control Descriptor Buffer Alloca Threshold register */
#define DMA_BUFALLOC_REG(x) (0xc + (x) * 6)
#define DMA_BUFALLOC_FORCE_SHIFT 31
#define DMA_BUFALLOC_FORCE_MASK (1 << DMA_BUFALLOC_FORCE_SHIFT)
/* Channel Configuration register */
#define DMAC_CHANCFG_REG 0x0
#define DMAC_CHANCFG_EN_SHIFT 0
#define DMAC_CHANCFG_EN_MASK (1 << DMAC_CHANCFG_EN_SHIFT)
#define DMAC_CHANCFG_PKTHALT_SHIFT 1
#define DMAC_CHANCFG_PKTHALT_MASK (1 << DMAC_CHANCFG_PKTHALT_SHIFT)
#define DMAC_CHANCFG_BUFHALT_SHIFT 2
#define DMAC_CHANCFG_BUFHALT_MASK (1 << DMAC_CHANCFG_BUFHALT_SHIFT)
#define DMAC_CHANCFG_CHAINING_SHIFT 2
#define DMAC_CHANCFG_CHAINING_MASK (1 << DMAC_CHANCFG_CHAINING_SHIFT)
#define DMAC_CHANCFG_WRAP_EN_SHIFT 3
#define DMAC_CHANCFG_WRAP_EN_MASK (1 << DMAC_CHANCFG_WRAP_EN_SHIFT)
#define DMAC_CHANCFG_FLOWC_EN_SHIFT 4
#define DMAC_CHANCFG_FLOWC_EN_MASK (1 << DMAC_CHANCFG_FLOWC_EN_SHIFT)
/* Interrupt Control/Status register */
#define DMAC_IR_REG 0x4
#define DMAC_IR_BUFDONE_MASK (1 << 0)
#define DMAC_IR_PKTDONE_MASK (1 << 1)
#define DMAC_IR_NOTOWNER_MASK (1 << 2)
/* Interrupt Mask register */
#define DMAC_IRMASK_REG 0x8
/* Maximum Burst Length */
#define DMAC_MAXBURST_REG 0xc
/* Ring Start Address register */
#define DMAS_RSTART_REG 0x0
/* State Ram Word 2 */
#define DMAS_SRAM2_REG 0x4
/* State Ram Word 3 */
#define DMAS_SRAM3_REG 0x8
/* State Ram Word 4 */
#define DMAS_SRAM4_REG 0xc
struct bcm6348_iudma_desc {
u32 len_stat;
u32 address;
};
/* control */
#define DMADESC_LENGTH_SHIFT 16
#define DMADESC_LENGTH_MASK (0xfff << DMADESC_LENGTH_SHIFT)
#define DMADESC_OWNER_MASK (1 << 15)
#define DMADESC_EOP_MASK (1 << 14)
#define DMADESC_SOP_MASK (1 << 13)
#define DMADESC_ESOP_MASK (DMADESC_EOP_MASK | DMADESC_SOP_MASK)
#define DMADESC_WRAP_MASK (1 << 12)
/* status */
#define DMADESC_UNDER_MASK (1 << 9)
#define DMADESC_APPEND_CRC (1 << 8)
#define DMADESC_OVSIZE_MASK (1 << 4)
#define DMADESC_RXER_MASK (1 << 2)
#define DMADESC_CRC_MASK (1 << 1)
#define DMADESC_OV_MASK (1 << 0)
#define DMADESC_ERR_MASK (DMADESC_UNDER_MASK | \
DMADESC_OVSIZE_MASK | \
DMADESC_RXER_MASK | \
DMADESC_CRC_MASK | \
DMADESC_OV_MASK)
struct bcm6348_iudma {
void __iomem *dma_base;
void __iomem *dma_chan;
void __iomem *dma_sram;
spinlock_t dma_base_lock;
struct clk **clock;
unsigned int num_clocks;
struct reset_control **reset;
unsigned int num_resets;
unsigned int dma_channels;
};
int bcm6348_iudma_drivers_register(struct platform_device *pdev);
static inline u32 dma_readl(struct bcm6348_iudma *iudma, u32 off)
{
u32 val;
spin_lock(&iudma->dma_base_lock);
val = __raw_readl(iudma->dma_base + off);
spin_unlock(&iudma->dma_base_lock);
return val;
}
static inline void dma_writel(struct bcm6348_iudma *iudma, u32 val, u32 off)
{
spin_lock(&iudma->dma_base_lock);
__raw_writel(val, iudma->dma_base + off);
spin_unlock(&iudma->dma_base_lock);
}
static inline u32 dmac_readl(struct bcm6348_iudma *iudma, u32 off, int chan)
{
return __raw_readl(iudma->dma_chan + chan * DMA_CHAN_WIDTH + off);
}
static inline void dmac_writel(struct bcm6348_iudma *iudma, u32 val, u32 off,
int chan)
{
__raw_writel(val, iudma->dma_chan + chan * DMA_CHAN_WIDTH + off);
}
static inline void dmas_writel(struct bcm6348_iudma *iudma, u32 val, u32 off,
int chan)
{
__raw_writel(val, iudma->dma_sram + chan * DMA_CHAN_WIDTH + off);
}
static void bcm6348_iudma_chan_stop(struct bcm6348_iudma *iudma, int chan)
{
int limit = 1000;
dmac_writel(iudma, 0, DMAC_CHANCFG_REG, chan);
do {
u32 val;
val = dmac_readl(iudma, DMAC_CHANCFG_REG, chan);
if (!(val & DMAC_CHANCFG_EN_MASK))
break;
udelay(1);
} while (limit--);
}
static int bcm6348_iudma_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct bcm6348_iudma *iudma;
unsigned i;
int num_resets;
int ret;
iudma = devm_kzalloc(dev, sizeof(*iudma), GFP_KERNEL);
if (!iudma)
return -ENOMEM;
if (of_property_read_u32(node, "dma-channels", &iudma->dma_channels))
return -ENODEV;
iudma->dma_base = devm_platform_ioremap_resource_byname(pdev, "dma");
if (IS_ERR_OR_NULL(iudma->dma_base))
return PTR_ERR(iudma->dma_base);
iudma->dma_chan = devm_platform_ioremap_resource_byname(pdev,
"dma-channels");
if (IS_ERR_OR_NULL(iudma->dma_chan))
return PTR_ERR(iudma->dma_chan);
iudma->dma_sram = devm_platform_ioremap_resource_byname(pdev,
"dma-sram");
if (IS_ERR_OR_NULL(iudma->dma_sram))
return PTR_ERR(iudma->dma_sram);
iudma->num_clocks = of_clk_get_parent_count(node);
if (iudma->num_clocks) {
iudma->clock = devm_kcalloc(dev, iudma->num_clocks,
sizeof(struct clk *), GFP_KERNEL);
if (IS_ERR_OR_NULL(iudma->clock))
return PTR_ERR(iudma->clock);
}
for (i = 0; i < iudma->num_clocks; i++) {
iudma->clock[i] = of_clk_get(node, i);
if (IS_ERR_OR_NULL(iudma->clock[i])) {
dev_err(dev, "error getting iudma clock %d\n", i);
return PTR_ERR(iudma->clock[i]);
}
ret = clk_prepare_enable(iudma->clock[i]);
if (ret) {
dev_err(dev, "error enabling iudma clock %d\n", i);
return ret;
}
}
num_resets = of_count_phandle_with_args(node, "resets",
"#reset-cells");
if (num_resets > 0)
iudma->num_resets = num_resets;
else
iudma->num_resets = 0;
if (iudma->num_resets) {
iudma->reset = devm_kcalloc(dev, iudma->num_resets,
sizeof(struct reset_control *),
GFP_KERNEL);
if (IS_ERR_OR_NULL(iudma->reset))
return PTR_ERR(iudma->reset);
}
for (i = 0; i < iudma->num_resets; i++) {
iudma->reset[i] = devm_reset_control_get_by_index(dev, i);
if (IS_ERR_OR_NULL(iudma->reset[i])) {
dev_err(dev, "error getting iudma reset %d\n", i);
return PTR_ERR(iudma->reset[i]);
}
ret = reset_control_reset(iudma->reset[i]);
if (ret) {
dev_err(dev, "error performing iudma reset %d\n", i);
return ret;
}
}
dma_writel(iudma, 0, DMA_CFG_REG);
for (i = 0; i < iudma->dma_channels; i++)
bcm6348_iudma_chan_stop(iudma, i);
dma_writel(iudma, DMA_CFG_EN_MASK, DMA_CFG_REG);
spin_lock_init(&iudma->dma_base_lock);
dev_info(dev, "bcm6348-iudma @ 0x%px\n", iudma->dma_base);
platform_set_drvdata(pdev, iudma);
return bcm6348_iudma_drivers_register(pdev);
}
static const struct of_device_id bcm6348_iudma_of_match[] = {
{ .compatible = "brcm,bcm6338-iudma", },
{ .compatible = "brcm,bcm6348-iudma", },
{ .compatible = "brcm,bcm6358-iudma", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm6348_emac_of_match);
static struct platform_driver bcm6348_iudma_driver = {
.driver = {
.name = "bcm6348-iudma",
.of_match_table = of_match_ptr(bcm6348_iudma_of_match),
},
.probe = bcm6348_iudma_probe,
};
module_platform_driver(bcm6348_iudma_driver);
/*
* BCM6348 Eternet MACs
*/
/* MTU */
#define ENET_MAX_MTU 2046
#define ENET_TAG_SIZE 6
#define ENET_MTU_OVERHEAD (VLAN_ETH_HLEN + VLAN_HLEN + \
ENET_TAG_SIZE)
/* Default number of descriptor */
#define ENET_DEF_RX_DESC 64
#define ENET_DEF_TX_DESC 32
#define ENET_DEF_CPY_BREAK 128
/* Maximum burst len for dma (4 bytes unit) */
#define ENET_DMA_MAXBURST 8
/* Receiver Configuration register */
#define ENET_RXCFG_REG 0x0
#define ENET_RXCFG_ALLMCAST_SHIFT 1
#define ENET_RXCFG_ALLMCAST_MASK (1 << ENET_RXCFG_ALLMCAST_SHIFT)
#define ENET_RXCFG_PROMISC_SHIFT 3
#define ENET_RXCFG_PROMISC_MASK (1 << ENET_RXCFG_PROMISC_SHIFT)
#define ENET_RXCFG_LOOPBACK_SHIFT 4
#define ENET_RXCFG_LOOPBACK_MASK (1 << ENET_RXCFG_LOOPBACK_SHIFT)
#define ENET_RXCFG_ENFLOW_SHIFT 5
#define ENET_RXCFG_ENFLOW_MASK (1 << ENET_RXCFG_ENFLOW_SHIFT)
/* Receive Maximum Length register */
#define ENET_RXMAXLEN_REG 0x4
#define ENET_RXMAXLEN_SHIFT 0
#define ENET_RXMAXLEN_MASK (0x7ff << ENET_RXMAXLEN_SHIFT)
/* Transmit Maximum Length register */
#define ENET_TXMAXLEN_REG 0x8
#define ENET_TXMAXLEN_SHIFT 0
#define ENET_TXMAXLEN_MASK (0x7ff << ENET_TXMAXLEN_SHIFT)
/* MII Status/Control register */
#define ENET_MIISC_REG 0x10
#define ENET_MIISC_MDCFREQDIV_SHIFT 0
#define ENET_MIISC_MDCFREQDIV_MASK (0x7f << ENET_MIISC_MDCFREQDIV_SHIFT)
#define ENET_MIISC_PREAMBLEEN_SHIFT 7
#define ENET_MIISC_PREAMBLEEN_MASK (1 << ENET_MIISC_PREAMBLEEN_SHIFT)
/* MII Data register */
#define ENET_MIID_REG 0x14
#define ENET_MIID_DATA_SHIFT 0
#define ENET_MIID_DATA_MASK (0xffff << ENET_MIID_DATA_SHIFT)
#define ENET_MIID_TA_SHIFT 16
#define ENET_MIID_TA_MASK (0x3 << ENET_MIID_TA_SHIFT)
#define ENET_MIID_REG_SHIFT 18
#define ENET_MIID_REG_MASK (0x1f << ENET_MIID_REG_SHIFT)
#define ENET_MIID_PHY_SHIFT 23
#define ENET_MIID_PHY_MASK (0x1f << ENET_MIID_PHY_SHIFT)
#define ENET_MIID_OP_SHIFT 28
#define ENET_MIID_OP_WRITE (0x5 << ENET_MIID_OP_SHIFT)
#define ENET_MIID_OP_READ (0x6 << ENET_MIID_OP_SHIFT)
/* Ethernet Interrupt Mask register */
#define ENET_IRMASK_REG 0x18
/* Ethernet Interrupt register */
#define ENET_IR_REG 0x1c
#define ENET_IR_MII BIT(0)
#define ENET_IR_MIB BIT(1)
#define ENET_IR_FLOWC BIT(2)
/* Ethernet Control register */
#define ENET_CTL_REG 0x2c
#define ENET_CTL_ENABLE_SHIFT 0
#define ENET_CTL_ENABLE_MASK (1 << ENET_CTL_ENABLE_SHIFT)
#define ENET_CTL_DISABLE_SHIFT 1
#define ENET_CTL_DISABLE_MASK (1 << ENET_CTL_DISABLE_SHIFT)
#define ENET_CTL_SRESET_SHIFT 2
#define ENET_CTL_SRESET_MASK (1 << ENET_CTL_SRESET_SHIFT)
#define ENET_CTL_EPHYSEL_SHIFT 3
#define ENET_CTL_EPHYSEL_MASK (1 << ENET_CTL_EPHYSEL_SHIFT)
/* Transmit Control register */
#define ENET_TXCTL_REG 0x30
#define ENET_TXCTL_FD_SHIFT 0
#define ENET_TXCTL_FD_MASK (1 << ENET_TXCTL_FD_SHIFT)
/* Transmit Watermask register */
#define ENET_TXWMARK_REG 0x34
#define ENET_TXWMARK_WM_SHIFT 0
#define ENET_TXWMARK_WM_MASK (0x3f << ENET_TXWMARK_WM_SHIFT)
/* MIB Control register */
#define ENET_MIBCTL_REG 0x38
#define ENET_MIBCTL_RDCLEAR_SHIFT 0
#define ENET_MIBCTL_RDCLEAR_MASK (1 << ENET_MIBCTL_RDCLEAR_SHIFT)
/* Perfect Match Data Low register */
#define ENET_PML_REG(x) (0x58 + (x) * 8)
#define ENET_PMH_REG(x) (0x5c + (x) * 8)
#define ENET_PMH_DATAVALID_SHIFT 16
#define ENET_PMH_DATAVALID_MASK (1 << ENET_PMH_DATAVALID_SHIFT)
/* MIB register */
#define ENET_MIB_REG(x) (0x200 + (x) * 4)
#define ENET_MIB_REG_COUNT 55
/*
* TX transmit threshold (4 bytes unit), FIFO is 256 bytes, the value
* must be low enough so that a DMA transfer of above burst length can
* not overflow the fifo
*/
#define ENET_TX_FIFO_TRESH 32
struct bcm6348_emac {
struct bcm6348_iudma *iudma;
void __iomem *base;
struct clk **clock;
unsigned int num_clocks;
struct reset_control **reset;
unsigned int num_resets;
int copybreak;
int irq_rx;
int irq_tx;
/* hw view of rx & tx dma ring */
dma_addr_t rx_desc_dma;
dma_addr_t tx_desc_dma;
/* allocated size (in bytes) for rx & tx dma ring */
unsigned int rx_desc_alloc_size;
unsigned int tx_desc_alloc_size;
struct napi_struct napi;
/* dma channel id for rx */
int rx_chan;
/* number of dma desc in rx ring */
int rx_ring_size;
/* cpu view of rx dma ring */
struct bcm6348_iudma_desc *rx_desc_cpu;
/* current number of armed descriptor given to hardware for rx */
int rx_desc_count;
/* next rx descriptor to fetch from hardware */
int rx_curr_desc;
/* next dirty rx descriptor to refill */
int rx_dirty_desc;
/* size of allocated rx skbs */
unsigned int rx_skb_size;
/* list of skb given to hw for rx */
struct sk_buff **rx_skb;
/* used when rx skb allocation failed, so we defer rx queue
* refill */
struct timer_list rx_timeout;
/* lock rx_timeout against rx normal operation */
spinlock_t rx_lock;
/* dma channel id for tx */
int tx_chan;
/* number of dma desc in tx ring */
int tx_ring_size;
/* cpu view of tx dma ring */
struct bcm6348_iudma_desc *tx_desc_cpu;
/* number of available descriptor for tx */
int tx_desc_count;
/* next tx descriptor avaiable */
int tx_curr_desc;
/* next dirty tx descriptor to reclaim */
int tx_dirty_desc;
/* list of skb given to hw for tx */
struct sk_buff **tx_skb;
/* lock used by tx reclaim and xmit */
spinlock_t tx_lock;
/* network device reference */
struct net_device *net_dev;
/* platform device reference */
struct platform_device *pdev;
/* external mii bus */
bool ext_mii;
/* phy */
int old_link;
int old_duplex;
int old_pause;
};
static inline void emac_writel(struct bcm6348_emac *emac, u32 val, u32 off)
{
__raw_writel(val, emac->base + off);
}
static inline u32 emac_readl(struct bcm6348_emac *emac, u32 off)
{
return __raw_readl(emac->base + off);
}
/*
* refill rx queue
*/
static int bcm6348_emac_refill_rx(struct net_device *ndev)
{
struct bcm6348_emac *emac = netdev_priv(ndev);
struct bcm6348_iudma *iudma = emac->iudma;
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
while (emac->rx_desc_count < emac->rx_ring_size) {
struct bcm6348_iudma_desc *desc;
struct sk_buff *skb;
dma_addr_t p;
int desc_idx;
u32 len_stat;
desc_idx = emac->rx_dirty_desc;
desc = &emac->rx_desc_cpu[desc_idx];
if (!emac->rx_skb[desc_idx]) {
skb = netdev_alloc_skb(ndev, emac->rx_skb_size);
if (!skb)
break;
emac->rx_skb[desc_idx] = skb;
p = dma_map_single(dev, skb->data, emac->rx_skb_size,
DMA_FROM_DEVICE);
desc->address = p;
}
len_stat = emac->rx_skb_size << DMADESC_LENGTH_SHIFT;
len_stat |= DMADESC_OWNER_MASK;
if (emac->rx_dirty_desc == emac->rx_ring_size - 1) {
len_stat |= DMADESC_WRAP_MASK;
emac->rx_dirty_desc = 0;
} else {
emac->rx_dirty_desc++;
}
wmb();
desc->len_stat = len_stat;
emac->rx_desc_count++;
/* tell dma engine we allocated one buffer */
dma_writel(iudma, 1, DMA_BUFALLOC_REG(emac->rx_chan));
}
/* If rx ring is still empty, set a timer to try allocating
* again at a later time. */
if (emac->rx_desc_count == 0 && netif_running(ndev)) {
dev_warn(dev, "unable to refill rx ring\n");
emac->rx_timeout.expires = jiffies + HZ;
add_timer(&emac->rx_timeout);
}
return 0;
}
/*
* timer callback to defer refill rx queue in case we're OOM
*/
static void bcm6348_emac_refill_rx_timer(struct timer_list *t)
{
struct bcm6348_emac *emac = from_timer(emac, t, rx_timeout);
struct net_device *ndev = emac->net_dev;
spin_lock(&emac->rx_lock);
bcm6348_emac_refill_rx(ndev);
spin_unlock(&emac->rx_lock);
}
/*
* extract packet from rx queue
*/
static int bcm6348_emac_receive_queue(struct net_device *ndev, int budget)
{
struct bcm6348_emac *emac = netdev_priv(ndev);
struct bcm6348_iudma *iudma = emac->iudma;
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
int processed = 0;
/* don't scan ring further than number of refilled
* descriptor */
if (budget > emac->rx_desc_count)
budget = emac->rx_desc_count;
do {
struct bcm6348_iudma_desc *desc;
struct sk_buff *skb;
int desc_idx;
u32 len_stat;
unsigned int len;
desc_idx = emac->rx_curr_desc;
desc = &emac->rx_desc_cpu[desc_idx];
/* make sure we actually read the descriptor status at
* each loop */
rmb();
len_stat = desc->len_stat;
/* break if dma ownership belongs to hw */
if (len_stat & DMADESC_OWNER_MASK)
break;
processed++;
emac->rx_curr_desc++;
if (emac->rx_curr_desc == emac->rx_ring_size)
emac->rx_curr_desc = 0;
emac->rx_desc_count--;
/* if the packet does not have start of packet _and_
* end of packet flag set, then just recycle it */
if ((len_stat & DMADESC_ESOP_MASK) != DMADESC_ESOP_MASK) {
ndev->stats.rx_dropped++;
continue;
}
/* valid packet */
skb = emac->rx_skb[desc_idx];
len = (len_stat & DMADESC_LENGTH_MASK)
>> DMADESC_LENGTH_SHIFT;
/* don't include FCS */
len -= 4;
if (len < emac->copybreak) {
struct sk_buff *nskb;
nskb = napi_alloc_skb(&emac->napi, len);
if (!nskb) {
/* forget packet, just rearm desc */
ndev->stats.rx_dropped++;
continue;
}
dma_sync_single_for_cpu(dev, desc->address,
len, DMA_FROM_DEVICE);
memcpy(nskb->data, skb->data, len);
dma_sync_single_for_device(dev, desc->address,
len, DMA_FROM_DEVICE);
skb = nskb;
} else {
dma_unmap_single(dev, desc->address,
emac->rx_skb_size, DMA_FROM_DEVICE);
emac->rx_skb[desc_idx] = NULL;
}
skb_put(skb, len);
skb->protocol = eth_type_trans(skb, ndev);
ndev->stats.rx_packets++;
ndev->stats.rx_bytes += len;
netif_receive_skb(skb);
} while (--budget > 0);
if (processed || !emac->rx_desc_count) {
bcm6348_emac_refill_rx(ndev);
/* kick rx dma */
dmac_writel(iudma, DMAC_CHANCFG_EN_MASK, DMAC_CHANCFG_REG,
emac->rx_chan);
}
return processed;
}
/*
* try to or force reclaim of transmitted buffers
*/
static int bcm6348_emac_tx_reclaim(struct net_device *ndev, int force)
{
struct bcm6348_emac *emac = netdev_priv(ndev);
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
int released = 0;
while (emac->tx_desc_count < emac->tx_ring_size) {
struct bcm6348_iudma_desc *desc;
struct sk_buff *skb;
/* We run in a bh and fight against start_xmit, which
* is called with bh disabled */
spin_lock(&emac->tx_lock);
desc = &emac->tx_desc_cpu[emac->tx_dirty_desc];
if (!force && (desc->len_stat & DMADESC_OWNER_MASK)) {
spin_unlock(&emac->tx_lock);
break;
}
/* ensure other field of the descriptor were not read
* before we checked ownership */
rmb();
skb = emac->tx_skb[emac->tx_dirty_desc];
emac->tx_skb[emac->tx_dirty_desc] = NULL;
dma_unmap_single(dev, desc->address, skb->len, DMA_TO_DEVICE);
emac->tx_dirty_desc++;
if (emac->tx_dirty_desc == emac->tx_ring_size)
emac->tx_dirty_desc = 0;
emac->tx_desc_count++;
spin_unlock(&emac->tx_lock);
if (desc->len_stat & DMADESC_UNDER_MASK)
ndev->stats.tx_errors++;
dev_kfree_skb(skb);
released++;
}
if (netif_queue_stopped(ndev) && released)
netif_wake_queue(ndev);
return released;
}
static int bcm6348_emac_poll(struct napi_struct *napi, int budget)
{
struct bcm6348_emac *emac = container_of(napi, struct bcm6348_emac,
napi);
struct bcm6348_iudma *iudma = emac->iudma;
struct net_device *ndev = emac->net_dev;
int rx_work_done;
/* ack interrupts */
dmac_writel(iudma, DMAC_IR_PKTDONE_MASK, DMAC_IR_REG,
emac->rx_chan);
dmac_writel(iudma, DMAC_IR_PKTDONE_MASK, DMAC_IR_REG,
emac->tx_chan);
/* reclaim sent skb */
bcm6348_emac_tx_reclaim(ndev, 0);
spin_lock(&emac->rx_lock);
rx_work_done = bcm6348_emac_receive_queue(ndev, budget);
spin_unlock(&emac->rx_lock);
if (rx_work_done >= budget) {
/* rx queue is not yet empty/clean */
return rx_work_done;
}
/* no more packet in rx/tx queue, remove device from poll
* queue */
napi_complete_done(napi, rx_work_done);
/* restore rx/tx interrupt */
dmac_writel(iudma, DMAC_IR_PKTDONE_MASK, DMAC_IRMASK_REG,
emac->rx_chan);
dmac_writel(iudma, DMAC_IR_PKTDONE_MASK, DMAC_IRMASK_REG,
emac->tx_chan);
return rx_work_done;
}
/*
* emac interrupt handler
*/
static irqreturn_t bcm6348_emac_isr_mac(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct bcm6348_emac *emac = netdev_priv(ndev);
u32 stat;
stat = emac_readl(emac, ENET_IR_REG);
if (!(stat & ENET_IR_MIB))
return IRQ_NONE;
/* clear & mask interrupt */
emac_writel(emac, ENET_IR_MIB, ENET_IR_REG);
emac_writel(emac, 0, ENET_IRMASK_REG);
return IRQ_HANDLED;
}
/*
* rx/tx dma interrupt handler
*/
static irqreturn_t bcm6348_emac_isr_dma(int irq, void *dev_id)
{
struct net_device *ndev = dev_id;
struct bcm6348_emac *emac = netdev_priv(ndev);
struct bcm6348_iudma *iudma = emac->iudma;
/* mask rx/tx interrupts */
dmac_writel(iudma, 0, DMAC_IRMASK_REG, emac->rx_chan);
dmac_writel(iudma, 0, DMAC_IRMASK_REG, emac->tx_chan);
napi_schedule(&emac->napi);
return IRQ_HANDLED;
}
/*
* tx request callback
*/
static netdev_tx_t bcm6348_emac_start_xmit(struct sk_buff *skb,
struct net_device *ndev)
{
struct bcm6348_emac *emac = netdev_priv(ndev);
struct bcm6348_iudma *iudma = emac->iudma;
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
struct bcm6348_iudma_desc *desc;
u32 len_stat;
netdev_tx_t ret;
/* lock against tx reclaim */
spin_lock(&emac->tx_lock);
/* make sure the tx hw queue is not full, should not happen
* since we stop queue before it's the case */
if (unlikely(!emac->tx_desc_count)) {
netif_stop_queue(ndev);
dev_err(dev, "xmit called with no tx desc available?\n");
ret = NETDEV_TX_BUSY;
goto out_unlock;
}
/* point to the next available desc */
desc = &emac->tx_desc_cpu[emac->tx_curr_desc];
emac->tx_skb[emac->tx_curr_desc] = skb;
/* fill descriptor */
desc->address = dma_map_single(dev, skb->data, skb->len,
DMA_TO_DEVICE);
len_stat = (skb->len << DMADESC_LENGTH_SHIFT) & DMADESC_LENGTH_MASK;
len_stat |= DMADESC_ESOP_MASK | DMADESC_APPEND_CRC |
DMADESC_OWNER_MASK;
emac->tx_curr_desc++;
if (emac->tx_curr_desc == emac->tx_ring_size) {
emac->tx_curr_desc = 0;
len_stat |= DMADESC_WRAP_MASK;
}
emac->tx_desc_count--;
/* dma might be already polling, make sure we update desc
* fields in correct order */
wmb();
desc->len_stat = len_stat;
wmb();
/* kick tx dma */
dmac_writel(iudma, DMAC_CHANCFG_EN_MASK, DMAC_CHANCFG_REG,
emac->tx_chan);
/* stop queue if no more desc available */
if (!emac->tx_desc_count)
netif_stop_queue(ndev);
ndev->stats.tx_bytes += skb->len;
ndev->stats.tx_packets++;
ret = NETDEV_TX_OK;
out_unlock:
spin_unlock(&emac->tx_lock);
return ret;
}
/*
* Change the interface's emac address.
*/
static int bcm6348_emac_set_mac_address(struct net_device *ndev, void *p)
{
struct bcm6348_emac *emac = netdev_priv(ndev);
struct sockaddr *addr = p;
u32 val;
eth_hw_addr_set(ndev, addr->sa_data);
/* use perfect match register 0 to store my emac address */
val = (ndev->dev_addr[2] << 24) | (ndev->dev_addr[3] << 16) |
(ndev->dev_addr[4] << 8) | ndev->dev_addr[5];
emac_writel(emac, val, ENET_PML_REG(0));
val = (ndev->dev_addr[0] << 8 | ndev->dev_addr[1]);
val |= ENET_PMH_DATAVALID_MASK;
emac_writel(emac, val, ENET_PMH_REG(0));
return 0;
}
/*
* Change rx mode (promiscuous/allmulti) and update multicast list
*/
static void bcm6348_emac_set_multicast_list(struct net_device *ndev)
{
struct bcm6348_emac *emac = netdev_priv(ndev);
struct netdev_hw_addr *ha;
u32 val;
unsigned int i;
val = emac_readl(emac, ENET_RXCFG_REG);
if (ndev->flags & IFF_PROMISC)
val |= ENET_RXCFG_PROMISC_MASK;
else
val &= ~ENET_RXCFG_PROMISC_MASK;
/* only 3 perfect match registers left, first one is used for
* own mac address */
if ((ndev->flags & IFF_ALLMULTI) || netdev_mc_count(ndev) > 3)
val |= ENET_RXCFG_ALLMCAST_MASK;
else
val &= ~ENET_RXCFG_ALLMCAST_MASK;
/* no need to set perfect match registers if we catch all
* multicast */
if (val & ENET_RXCFG_ALLMCAST_MASK) {
emac_writel(emac, val, ENET_RXCFG_REG);
return;
}
i = 0;
netdev_for_each_mc_addr(ha, ndev) {
u8 *dmi_addr;
u32 tmp;
if (i == 3)
break;
/* update perfect match registers */
dmi_addr = ha->addr;
tmp = (dmi_addr[2] << 24) | (dmi_addr[3] << 16) |
(dmi_addr[4] << 8) | dmi_addr[5];
emac_writel(emac, tmp, ENET_PML_REG(i + 1));
tmp = (dmi_addr[0] << 8 | dmi_addr[1]);
tmp |= ENET_PMH_DATAVALID_MASK;
emac_writel(emac, tmp, ENET_PMH_REG(i++ + 1));
}
for (; i < 3; i++) {
emac_writel(emac, 0, ENET_PML_REG(i + 1));
emac_writel(emac, 0, ENET_PMH_REG(i + 1));
}
emac_writel(emac, val, ENET_RXCFG_REG);
}
/*
* disable emac
*/
static void bcm6348_emac_disable_mac(struct bcm6348_emac *emac)
{
int limit;
u32 val;
val = emac_readl(emac, ENET_CTL_REG);
val |= ENET_CTL_DISABLE_MASK;
emac_writel(emac, val, ENET_CTL_REG);
limit = 1000;
do {
val = emac_readl(emac, ENET_CTL_REG);
if (!(val & ENET_CTL_DISABLE_MASK))
break;
udelay(1);
} while (limit--);
}
/*
* set emac duplex parameters
*/
static void bcm6348_emac_set_duplex(struct bcm6348_emac *emac, int fullduplex)
{
u32 val;
val = emac_readl(emac, ENET_TXCTL_REG);
if (fullduplex)
val |= ENET_TXCTL_FD_MASK;
else
val &= ~ENET_TXCTL_FD_MASK;
emac_writel(emac, val, ENET_TXCTL_REG);
}
/*
* set emac flow control parameters
*/
static void bcm6348_emac_set_flow(struct bcm6348_emac *emac, bool rx_en, bool tx_en)
{
struct bcm6348_iudma *iudma = emac->iudma;
u32 val;
val = emac_readl(emac, ENET_RXCFG_REG);
if (rx_en)
val |= ENET_RXCFG_ENFLOW_MASK;
else
val &= ~ENET_RXCFG_ENFLOW_MASK;
emac_writel(emac, val, ENET_RXCFG_REG);
dmas_writel(iudma, emac->rx_desc_dma, DMAS_RSTART_REG, emac->rx_chan);
dmas_writel(iudma, emac->tx_desc_dma, DMAS_RSTART_REG, emac->tx_chan);
val = dma_readl(iudma, DMA_CFG_REG);
if (tx_en)
val |= DMA_CFG_FLOWCH_MASK(emac->rx_chan);
else
val &= ~DMA_CFG_FLOWCH_MASK(emac->rx_chan);
dma_writel(iudma, val, DMA_CFG_REG);
}
/*
* adjust emac phy
*/
static void bcm6348_emac_adjust_phy(struct net_device *ndev)
{
struct phy_device *phydev = ndev->phydev;
struct bcm6348_emac *emac = netdev_priv(ndev);
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
bool status_changed = false;
if (emac->old_link != phydev->link) {
status_changed = true;
emac->old_link = phydev->link;
}
if (phydev->link && phydev->duplex != emac->old_duplex) {
bcm6348_emac_set_duplex(emac, phydev->duplex == DUPLEX_FULL);
status_changed = true;
emac->old_duplex = phydev->duplex;
}
if (phydev->link && phydev->pause != emac->old_pause) {
bool rx_pause_en, tx_pause_en;
if (phydev->pause) {
rx_pause_en = true;
tx_pause_en = true;
} else {
rx_pause_en = false;
tx_pause_en = false;
}
bcm6348_emac_set_flow(emac, rx_pause_en, tx_pause_en);
status_changed = true;
emac->old_pause = phydev->pause;
}
if (status_changed)
dev_info(dev, "%s: phy link %s %s/%s/%s/%s\n",
ndev->name,
phydev->link ? "UP" : "DOWN",
phy_modes(phydev->interface),
phy_speed_to_str(phydev->speed),
phy_duplex_to_str(phydev->duplex),
phydev->pause ? "rx/tx" : "off");
}
static int bcm6348_emac_open(struct net_device *ndev)
{
struct bcm6348_emac *emac = netdev_priv(ndev);
struct bcm6348_iudma *iudma = emac->iudma;
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
struct sockaddr addr;
unsigned int i, size;
int ret;
void *p;
u32 val;
/* mask all interrupts and request them */
emac_writel(emac, 0, ENET_IRMASK_REG);
dmac_writel(iudma, 0, DMAC_IRMASK_REG, emac->rx_chan);
dmac_writel(iudma, 0, DMAC_IRMASK_REG, emac->tx_chan);
ret = request_irq(ndev->irq, bcm6348_emac_isr_mac, 0, ndev->name,
ndev);
if (ret)
return ret;
ret = request_irq(emac->irq_rx, bcm6348_emac_isr_dma,
0, ndev->name, ndev);
if (ret)
goto out_freeirq;
ret = request_irq(emac->irq_tx, bcm6348_emac_isr_dma,
0, ndev->name, ndev);
if (ret)
goto out_freeirq_rx;
/* initialize perfect match registers */
for (i = 0; i < 4; i++) {
emac_writel(emac, 0, ENET_PML_REG(i));
emac_writel(emac, 0, ENET_PMH_REG(i));
}
/* write device mac address */
memcpy(addr.sa_data, ndev->dev_addr, ETH_ALEN);
bcm6348_emac_set_mac_address(ndev, &addr);
/* allocate rx dma ring */
size = emac->rx_ring_size * sizeof(struct bcm6348_iudma_desc);
p = dma_alloc_coherent(dev, size, &emac->rx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(dev, "cannot allocate rx ring %u\n", size);
ret = -ENOMEM;
goto out_freeirq_tx;
}
memset(p, 0, size);
emac->rx_desc_alloc_size = size;
emac->rx_desc_cpu = p;
/* allocate tx dma ring */
size = emac->tx_ring_size * sizeof(struct bcm6348_iudma_desc);
p = dma_alloc_coherent(dev, size, &emac->tx_desc_dma, GFP_KERNEL);
if (!p) {
dev_err(dev, "cannot allocate tx ring\n");
ret = -ENOMEM;
goto out_free_rx_ring;
}
memset(p, 0, size);
emac->tx_desc_alloc_size = size;
emac->tx_desc_cpu = p;
emac->tx_skb = kzalloc(sizeof(struct sk_buff *) * emac->tx_ring_size,
GFP_KERNEL);
if (!emac->tx_skb) {
dev_err(dev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out_free_tx_ring;
}
emac->tx_desc_count = emac->tx_ring_size;
emac->tx_dirty_desc = 0;
emac->tx_curr_desc = 0;
spin_lock_init(&emac->tx_lock);
/* init & fill rx ring with skbs */
emac->rx_skb = kzalloc(sizeof(struct sk_buff *) * emac->rx_ring_size,
GFP_KERNEL);
if (!emac->rx_skb) {
dev_err(dev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out_free_tx_skb;
}
emac->rx_desc_count = 0;
emac->rx_dirty_desc = 0;
emac->rx_curr_desc = 0;
/* initialize flow control buffer allocation */
dma_writel(iudma, DMA_BUFALLOC_FORCE_MASK | 0,
DMA_BUFALLOC_REG(emac->rx_chan));
if (bcm6348_emac_refill_rx(ndev)) {
dev_err(dev, "cannot allocate rx skb queue\n");
ret = -ENOMEM;
goto out;
}
/* write rx & tx ring addresses */
dmas_writel(iudma, emac->rx_desc_dma,
DMAS_RSTART_REG, emac->rx_chan);
dmas_writel(iudma, emac->tx_desc_dma,
DMAS_RSTART_REG, emac->tx_chan);
/* clear remaining state ram for rx & tx channel */
dmas_writel(iudma, 0, DMAS_SRAM2_REG, emac->rx_chan);
dmas_writel(iudma, 0, DMAS_SRAM2_REG, emac->tx_chan);
dmas_writel(iudma, 0, DMAS_SRAM3_REG, emac->rx_chan);
dmas_writel(iudma, 0, DMAS_SRAM3_REG, emac->tx_chan);
dmas_writel(iudma, 0, DMAS_SRAM4_REG, emac->rx_chan);
dmas_writel(iudma, 0, DMAS_SRAM4_REG, emac->tx_chan);
/* set max rx/tx length */
emac_writel(emac, ndev->mtu, ENET_RXMAXLEN_REG);
emac_writel(emac, ndev->mtu, ENET_TXMAXLEN_REG);
/* set dma maximum burst len */
dmac_writel(iudma, ENET_DMA_MAXBURST,
DMAC_MAXBURST_REG, emac->rx_chan);
dmac_writel(iudma, ENET_DMA_MAXBURST,
DMAC_MAXBURST_REG, emac->tx_chan);
/* set correct transmit fifo watermark */
emac_writel(emac, ENET_TX_FIFO_TRESH, ENET_TXWMARK_REG);
/* set flow control low/high threshold to 1/3 / 2/3 */
val = emac->rx_ring_size / 3;
dma_writel(iudma, val, DMA_FLOWCL_REG(emac->rx_chan));
val = (emac->rx_ring_size * 2) / 3;
dma_writel(iudma, val, DMA_FLOWCH_REG(emac->rx_chan));
/* all set, enable emac and interrupts, start dma engine and
* kick rx dma channel
*/
wmb();
val = emac_readl(emac, ENET_CTL_REG);
val |= ENET_CTL_ENABLE_MASK;
emac_writel(emac, val, ENET_CTL_REG);
dmac_writel(iudma, DMAC_CHANCFG_EN_MASK,
DMAC_CHANCFG_REG, emac->rx_chan);
/* watch "mib counters about to overflow" interrupt */
emac_writel(emac, ENET_IR_MIB, ENET_IR_REG);
emac_writel(emac, ENET_IR_MIB, ENET_IRMASK_REG);
/* watch "packet transferred" interrupt in rx and tx */
dmac_writel(iudma, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, emac->rx_chan);
dmac_writel(iudma, DMAC_IR_PKTDONE_MASK,
DMAC_IR_REG, emac->tx_chan);
/* make sure we enable napi before rx interrupt */
napi_enable(&emac->napi);
dmac_writel(iudma, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, emac->rx_chan);
dmac_writel(iudma, DMAC_IR_PKTDONE_MASK,
DMAC_IRMASK_REG, emac->tx_chan);
if (ndev->phydev)
phy_start(ndev->phydev);
netif_carrier_on(ndev);
netif_start_queue(ndev);
return 0;
out:
for (i = 0; i < emac->rx_ring_size; i++) {
struct bcm6348_iudma_desc *desc;
if (!emac->rx_skb[i])
continue;
desc = &emac->rx_desc_cpu[i];
dma_unmap_single(dev, desc->address, emac->rx_skb_size,
DMA_FROM_DEVICE);
kfree_skb(emac->rx_skb[i]);
}
kfree(emac->rx_skb);
out_free_tx_skb:
kfree(emac->tx_skb);
out_free_tx_ring:
dma_free_coherent(dev, emac->tx_desc_alloc_size,
emac->tx_desc_cpu, emac->tx_desc_dma);
out_free_rx_ring:
dma_free_coherent(dev, emac->rx_desc_alloc_size,
emac->rx_desc_cpu, emac->rx_desc_dma);
out_freeirq_tx:
if (emac->irq_tx != -1)
free_irq(emac->irq_tx, ndev);
out_freeirq_rx:
free_irq(emac->irq_rx, ndev);
out_freeirq:
if (ndev->phydev)
phy_disconnect(ndev->phydev);
return ret;
}
static int bcm6348_emac_stop(struct net_device *ndev)
{
struct bcm6348_emac *emac = netdev_priv(ndev);
struct bcm6348_iudma *iudma = emac->iudma;
struct device *dev = &emac->pdev->dev;
unsigned int i;
netif_stop_queue(ndev);
napi_disable(&emac->napi);
if (ndev->phydev)
phy_stop(ndev->phydev);
del_timer_sync(&emac->rx_timeout);
/* mask all interrupts */
emac_writel(emac, 0, ENET_IRMASK_REG);
dmac_writel(iudma, 0, DMAC_IRMASK_REG, emac->rx_chan);
dmac_writel(iudma, 0, DMAC_IRMASK_REG, emac->tx_chan);
/* disable dma & emac */
bcm6348_iudma_chan_stop(iudma, emac->tx_chan);
bcm6348_iudma_chan_stop(iudma, emac->rx_chan);
bcm6348_emac_disable_mac(emac);
/* force reclaim of all tx buffers */
bcm6348_emac_tx_reclaim(ndev, 1);
/* free the rx skb ring */
for (i = 0; i < emac->rx_ring_size; i++) {
struct bcm6348_iudma_desc *desc;
if (!emac->rx_skb[i])
continue;
desc = &emac->rx_desc_cpu[i];
dma_unmap_single_attrs(dev, desc->address, emac->rx_skb_size,
DMA_FROM_DEVICE,
DMA_ATTR_SKIP_CPU_SYNC);
kfree_skb(emac->rx_skb[i]);
}
/* free remaining allocated memory */
kfree(emac->rx_skb);
kfree(emac->tx_skb);
dma_free_coherent(dev, emac->rx_desc_alloc_size, emac->rx_desc_cpu,
emac->rx_desc_dma);
dma_free_coherent(dev, emac->tx_desc_alloc_size, emac->tx_desc_cpu,
emac->tx_desc_dma);
free_irq(emac->irq_tx, ndev);
free_irq(emac->irq_rx, ndev);
free_irq(ndev->irq, ndev);
netdev_reset_queue(ndev);
return 0;
}
static const struct net_device_ops bcm6348_emac_ops = {
.ndo_open = bcm6348_emac_open,
.ndo_stop = bcm6348_emac_stop,
.ndo_start_xmit = bcm6348_emac_start_xmit,
.ndo_set_mac_address = bcm6348_emac_set_mac_address,
.ndo_set_rx_mode = bcm6348_emac_set_multicast_list,
};
static int bcm6348_emac_mdio_op(struct bcm6348_emac *emac, uint32_t data)
{
int limit;
/* Make sure mii interrupt status is cleared */
emac_writel(emac, ENET_IR_MII, ENET_IR_REG);
/* Issue mii op */
emac_writel(emac, data, ENET_MIID_REG);
wmb();
/* busy wait on mii interrupt bit, with timeout */
limit = 1000;
do {
if (emac_readl(emac, ENET_IR_REG) & ENET_IR_MII)
break;
udelay(1);
} while (limit-- > 0);
return (limit < 0) ? 1 : 0;
}
static int bcm6348_emac_mdio_read(struct mii_bus *bus, int phy_id, int loc)
{
struct bcm6348_emac *emac = bus->priv;
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
uint32_t reg;
reg = 0x2 << ENET_MIID_TA_SHIFT;
reg |= loc << ENET_MIID_REG_SHIFT;
reg |= phy_id << ENET_MIID_PHY_SHIFT;
reg |= ENET_MIID_OP_READ;
if (bcm6348_emac_mdio_op(emac, reg)) {
dev_err(dev, "mdio_read: phy=%d loc=%x timeout!\n",
phy_id, loc);
return -EINVAL;
}
reg = emac_readl(emac, ENET_MIID_REG);
reg = (reg >> ENET_MIID_DATA_SHIFT) & ENET_MIID_DATA_MASK;
return (int) reg;
}
static int bcm6348_emac_mdio_write(struct mii_bus *bus, int phy_id,
int loc, uint16_t val)
{
struct bcm6348_emac *emac = bus->priv;
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
uint32_t reg;
reg = (val << ENET_MIID_DATA_SHIFT) & ENET_MIID_DATA_MASK;
reg |= 0x2 << ENET_MIID_TA_SHIFT;
reg |= loc << ENET_MIID_REG_SHIFT;
reg |= phy_id << ENET_MIID_PHY_SHIFT;
reg |= ENET_MIID_OP_WRITE;
if (bcm6348_emac_mdio_op(emac, reg)) {
dev_err(dev, "mdio_write: phy=%d loc=%x timeout!\n",
phy_id, loc);
return -EINVAL;
}
bcm6348_emac_mdio_op(emac, reg);
return 0;
}
static int bcm6348_emac_mdio_init(struct bcm6348_emac *emac,
struct device_node *np)
{
struct platform_device *pdev = emac->pdev;
struct device *dev = &pdev->dev;
struct device_node *mnp;
struct mii_bus *mii_bus;
int ret;
mnp = of_get_child_by_name(np, "mdio");
if (!mnp)
return -ENODEV;
mii_bus = devm_mdiobus_alloc(dev);
if (!mii_bus) {
of_node_put(mnp);
return -ENOMEM;
}
mii_bus->priv = emac;
mii_bus->name = np->full_name;
snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s-mii", dev_name(dev));
mii_bus->parent = dev;
mii_bus->read = bcm6348_emac_mdio_read;
mii_bus->write = bcm6348_emac_mdio_write;
mii_bus->phy_mask = 0x3f;
ret = devm_of_mdiobus_register(dev, mii_bus, mnp);
of_node_put(mnp);
if (ret) {
dev_err(dev, "MDIO bus registration failed\n");
return ret;
}
dev_info(dev, "MDIO bus init\n");
return 0;
}
/*
* preinit hardware to allow mii operation while device is down
*/
static void bcm6348_emac_hw_preinit(struct bcm6348_emac *emac)
{
u32 val;
int limit;
/* make sure emac is disabled */
bcm6348_emac_disable_mac(emac);
/* soft reset emac */
val = ENET_CTL_SRESET_MASK;
emac_writel(emac, val, ENET_CTL_REG);
wmb();
limit = 1000;
do {
val = emac_readl(emac, ENET_CTL_REG);
if (!(val & ENET_CTL_SRESET_MASK))
break;
udelay(1);
} while (limit--);
/* select correct mii interface */
val = emac_readl(emac, ENET_CTL_REG);
if (emac->ext_mii)
val |= ENET_CTL_EPHYSEL_MASK;
else
val &= ~ENET_CTL_EPHYSEL_MASK;
emac_writel(emac, val, ENET_CTL_REG);
/* turn on mdc clock */
emac_writel(emac, (0x1f << ENET_MIISC_MDCFREQDIV_SHIFT) |
ENET_MIISC_PREAMBLEEN_MASK, ENET_MIISC_REG);
/* set mib counters to self-clear when read */
val = emac_readl(emac, ENET_MIBCTL_REG);
val |= ENET_MIBCTL_RDCLEAR_MASK;
emac_writel(emac, val, ENET_MIBCTL_REG);
}
static int bcm6348_emac_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
struct device_node *dma_node;
struct platform_device *dma_pdev;
struct bcm6348_emac *emac;
struct bcm6348_iudma *iudma;
struct net_device *ndev;
unsigned char dev_addr[ETH_ALEN];
unsigned i;
int num_resets;
int ret;
dma_node = of_parse_phandle(node, "brcm,iudma", 0);
if (!dma_node)
return -EINVAL;
dma_pdev = of_find_device_by_node(dma_node);
of_node_put(dma_node);
if (!dma_pdev)
return -EINVAL;
iudma = platform_get_drvdata(dma_pdev);
if (!iudma)
return -EPROBE_DEFER;
ndev = devm_alloc_etherdev(dev, sizeof(*emac));
if (!ndev)
return -ENOMEM;
platform_set_drvdata(pdev, ndev);
SET_NETDEV_DEV(ndev, dev);
emac = netdev_priv(ndev);
emac->iudma = iudma;
emac->pdev = pdev;
emac->net_dev = ndev;
emac->base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR_OR_NULL(emac->base))
return PTR_ERR(emac->base);
ndev->irq = of_irq_get_byname(node, "emac");
if (!ndev->irq)
return -ENODEV;
emac->irq_rx = of_irq_get_byname(node, "rx");
if (!emac->irq_rx)
return -ENODEV;
emac->irq_tx = of_irq_get_byname(node, "tx");
if (!emac->irq_tx)
return -ENODEV;
if (of_property_read_u32(node, "dma-rx", &emac->rx_chan))
return -ENODEV;
if (of_property_read_u32(node, "dma-tx", &emac->tx_chan))
return -ENODEV;
emac->ext_mii = of_property_read_bool(node, "brcm,external-mii");
emac->rx_ring_size = ENET_DEF_RX_DESC;
emac->tx_ring_size = ENET_DEF_TX_DESC;
emac->copybreak = ENET_DEF_CPY_BREAK;
emac->old_link = 0;
emac->old_duplex = -1;
emac->old_pause = -1;
of_get_mac_address(node, dev_addr);
if (is_valid_ether_addr(dev_addr)) {
dev_addr_set(ndev, dev_addr);
dev_info(dev, "mtd mac %pM\n", dev_addr);
} else {
eth_hw_addr_random(ndev);
dev_info(dev, "random mac\n");
}
emac->rx_skb_size = ALIGN(ndev->mtu + ENET_MTU_OVERHEAD,
ENET_DMA_MAXBURST * 4);
emac->num_clocks = of_clk_get_parent_count(node);
if (emac->num_clocks) {
emac->clock = devm_kcalloc(dev, emac->num_clocks,
sizeof(struct clk *), GFP_KERNEL);
if (IS_ERR_OR_NULL(emac->clock))
return PTR_ERR(emac->clock);
}
for (i = 0; i < emac->num_clocks; i++) {
emac->clock[i] = of_clk_get(node, i);
if (IS_ERR_OR_NULL(emac->clock[i])) {
dev_err(dev, "error getting emac clock %d\n", i);
return PTR_ERR(emac->clock[i]);
}
ret = clk_prepare_enable(emac->clock[i]);
if (ret) {
dev_err(dev, "error enabling emac clock %d\n", i);
return ret;
}
}
num_resets = of_count_phandle_with_args(node, "resets",
"#reset-cells");
if (num_resets > 0)
emac->num_resets = num_resets;
else
emac->num_resets = 0;
if (emac->num_resets) {
emac->reset = devm_kcalloc(dev, emac->num_resets,
sizeof(struct reset_control *),
GFP_KERNEL);
if (IS_ERR_OR_NULL(emac->reset))
return PTR_ERR(emac->reset);
}
for (i = 0; i < emac->num_resets; i++) {
emac->reset[i] = devm_reset_control_get_by_index(dev, i);
if (IS_ERR_OR_NULL(emac->reset[i])) {
dev_err(dev, "error getting emac reset %d\n", i);
return PTR_ERR(emac->reset[i]);
}
ret = reset_control_reset(emac->reset[i]);
if (ret) {
dev_err(dev, "error performing emac reset %d\n", i);
return ret;
}
}
/* do minimal hardware init to be able to probe mii bus */
bcm6348_emac_hw_preinit(emac);
ret = bcm6348_emac_mdio_init(emac, node);
if (ret)
return ret;
spin_lock_init(&emac->rx_lock);
timer_setup(&emac->rx_timeout, bcm6348_emac_refill_rx_timer, 0);
/* zero mib counters */
for (i = 0; i < ENET_MIB_REG_COUNT; i++)
emac_writel(emac, 0, ENET_MIB_REG(i));
/* register netdevice */
ndev->netdev_ops = &bcm6348_emac_ops;
ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
ndev->mtu = ETH_DATA_LEN - VLAN_ETH_HLEN;
ndev->max_mtu = ENET_MAX_MTU - VLAN_ETH_HLEN;
netif_napi_add_weight(ndev, &emac->napi, bcm6348_emac_poll, 16);
SET_NETDEV_DEV(ndev, dev);
ret = devm_register_netdev(dev, ndev);
if (ret)
goto out_disable_clk;
netif_carrier_off(ndev);
ndev->phydev = of_phy_get_and_connect(ndev, node,
bcm6348_emac_adjust_phy);
if (IS_ERR_OR_NULL(ndev->phydev))
dev_warn(dev, "PHY not found!\n");
dev_info(dev, "%s at 0x%px, IRQ %d\n", ndev->name, emac->base,
ndev->irq);
return 0;
out_disable_clk:
for (i = 0; i < emac->num_resets; i++)
reset_control_assert(emac->reset[i]);
for (i = 0; i < emac->num_clocks; i++)
clk_disable_unprepare(emac->clock[i]);
return ret;
}
static int bcm6348_emac_remove(struct platform_device *pdev)
{
struct net_device *ndev = platform_get_drvdata(pdev);
struct bcm6348_emac *emac = netdev_priv(ndev);
unsigned int i;
emac_writel(emac, 0, ENET_MIISC_REG);
for (i = 0; i < emac->num_resets; i++)
reset_control_assert(emac->reset[i]);
for (i = 0; i < emac->num_clocks; i++)
clk_disable_unprepare(emac->clock[i]);
return 0;
}
static const struct of_device_id bcm6348_emac_of_match[] = {
{ .compatible = "brcm,bcm6338-emac", },
{ .compatible = "brcm,bcm6348-emac", },
{ .compatible = "brcm,bcm6358-emac", },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, bcm6348_emac_of_match);
static struct platform_driver bcm6348_emac_driver = {
.driver = {
.name = "bcm6348-emac",
.of_match_table = of_match_ptr(bcm6348_emac_of_match),
},
.probe = bcm6348_emac_probe,
.remove = bcm6348_emac_remove,
};
int bcm6348_iudma_drivers_register(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
int ret;
ret = platform_driver_register(&bcm6348_emac_driver);
if (ret)
dev_err(dev, "error registering emac driver!\n");
return ret;
}
MODULE_AUTHOR("Álvaro Fernández Rojas <noltari@gmail.com>");
MODULE_DESCRIPTION("BCM6348 Ethernet Controller Driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:bcm6348-enet");