0
0
mirror of https://git.openwrt.org/openwrt/openwrt.git synced 2024-11-27 23:34:30 +00:00
openwrt/package/base-files/files/lib/functions/ipv4.sh
Philip Prindeville e906ccfc8c base-files: ipcalc.sh: Add tests for unroutable, etc
See RFC-1918, RFC-3927, and RFC-1122.

Signed-off-by: Philip Prindeville <philipp@redfish-solutions.com>
2023-12-12 12:30:35 -07:00

269 lines
5.4 KiB
Bash

uint_max=4294967295
d_10_0_0_0=167772160
d_10_255_255_255=184549375
d_172_16_0_0=2886729728
d_172_31_255_255=2887778303
d_192_168_0_0=3232235520
d_192_168_255_255=3232301055
d_169_254_0_0=2851995648
d_169_254_255_255=2852061183
d_127_0_0_0=2130706432
d_127_255_255_255=2147483647
d_224_0_0_0=3758096384
d_239_255_255_255=4026531839
# check that $1 is only base 10 digits, and that it doesn't
# exceed 2^32-1
assert_uint32() {
local __n="$1"
if [ -z "$__n" -o -n "${__n//[0-9]/}" ]; then
printf "Not a decimal integer (%s)\n" "$__n ">&2
return 1
fi
if [ "$__n" -gt $uint_max ]; then
printf "Out of range (%s)\n" "$__n" >&2
return 1
fi
if [ "$((__n + 0))" != "$__n" ]; then
printf "Not normalized notation (%s)\n" "$__n" >&2
return 1
fi
return 0
}
# return a count of the number of bits set in $1
bitcount() {
local __var="$1" __c="$2"
assert_uint32 "$__c" || return 1
__c=$((((__c >> 1) & 0x55555555) + (__c & 0x55555555)))
__c=$((((__c >> 2) & 0x33333333) + (__c & 0x33333333)))
__c=$((((__c >> 4) & 0x0f0f0f0f) + (__c & 0x0f0f0f0f)))
__c=$((((__c >> 8) & 0x00ff00ff) + (__c & 0x00ff00ff)))
__c=$((((__c >> 16) & 0x0000ffff) + (__c & 0x0000ffff)))
export -- "$__var=$__c"
}
# tedious but portable with busybox's limited shell
# we check each octet to be in the range of 0..255,
# and also make sure there's no extaneous characters.
str2ip() {
local __var="$1" __ip="$2" __n __val=0
case "$__ip" in
[0-9].*)
__n="${__ip:0:1}"
__ip="${__ip:2}"
;;
[1-9][0-9].*)
__n="${__ip:0:2}"
__ip="${__ip:3}"
;;
1[0-9][0-9].*|2[0-4][0-9].*|25[0-5].*)
__n="${__ip:0:3}"
__ip="${__ip:4}"
;;
*)
printf "Not a dotted quad (%s)\n" "$2" >&2
return 1
;;
esac
__val=$((__n << 24))
case "$__ip" in
[0-9].*)
__n="${__ip:0:1}"
__ip="${__ip:2}"
;;
[1-9][0-9].*)
__n="${__ip:0:2}"
__ip="${__ip:3}"
;;
1[0-9][0-9].*|2[0-4][0-9].*|25[0-5].*)
__n="${__ip:0:3}"
__ip="${__ip:4}"
;;
*)
printf "Not a dotted quad (%s)\n" "$2" >&2
return 1
;;
esac
__val=$((__val + (__n << 16)))
case "$__ip" in
[0-9].*)
__n="${__ip:0:1}"
__ip="${__ip:2}"
;;
[1-9][0-9].*)
__n="${__ip:0:2}"
__ip="${__ip:3}"
;;
1[0-9][0-9].*|2[0-4][0-9].*|25[0-5].*)
__n="${__ip:0:3}"
__ip="${__ip:4}"
;;
*)
printf "Not a dotted quad (%s)\n" "$2" >&2
return 1
;;
esac
__val=$((__val + (__n << 8)))
case "$__ip" in
[0-9])
__n="${__ip:0:1}"
__ip="${__ip:1}"
;;
[1-9][0-9])
__n="${__ip:0:2}"
__ip="${__ip:2}"
;;
1[0-9][0-9]|2[0-4][0-9]|25[0-5])
__n="${__ip:0:3}"
__ip="${__ip:3}"
;;
*)
printf "Not a dotted quad (%s)\n" "$2" >&2
return 1
;;
esac
__val=$((__val + __n))
if [ -n "$__ip" ]; then
printf "Not a dotted quad (%s)\n" "$2" >&2
return 1
fi
export -- "$__var=$__val"
return 0
}
# convert back from an integer to dotted-quad.
ip2str() {
local __var="$1" __n="$2"
assert_uint32 "$__n" || return 1
export -- "$__var=$((__n >> 24)).$(((__n >> 16) & 255)).$(((__n >> 8) & 255)).$((__n & 255))"
}
# convert prefix into an integer bitmask
prefix2netmask() {
local __var="$1" __n="$2"
assert_uint32 "$__n" || return 1
if [ "$__n" -gt 32 ]; then
printf "Prefix out-of-range (%s)" "$__n" >&2
return 1
fi
export -- "$__var=$(((~(uint_max >> __n)) & uint_max))"
}
_is_contiguous() {
local __x="$1" # no checking done
local __y=$((~__x & uint_max))
local __z=$(((__y + 1) & uint_max))
[ $((__z & __y)) -eq 0 ]
}
# check argument as being contiguous upper bits (and yes,
# 0 doesn't have any discontiguous bits).
is_contiguous() {
local __var="$1" __x="$2" __val=0
assert_uint32 "$__x" || return 1
local __y=$((~__x & uint_max))
local __z=$(((__y + 1) & uint_max))
[ $((__z & __y)) -eq 0 ] && __val=1
export -- "$__var=$__val"
}
# convert mask to prefix, validating that it's a conventional
# (contiguous) netmask.
netmask2prefix() {
local __var="$1" __n="$2" __cont __bits
assert_uint32 "$__n" || return 1
is_contiguous __cont "$__n" || return 1
if [ $__cont -eq 0 ]; then
printf "Not a contiguous netmask (%08x)\n" "$__n" >&2
return 1
fi
bitcount __bits "$__n" # already checked
export -- "$__var=$__bits"
}
# check the argument as being an rfc-1918 address
is_rfc1918() {
local __var="$1" __x="$2" __val=0
assert_uint32 "$__x" || return 1
if [ $d_10_0_0_0 -le $__x ] && [ $__x -le $d_10_255_255_255 ]; then
__val=1
elif [ $d_172_16_0_0 -le $__x ] && [ $__x -le $d_172_31_255_255 ]; then
__val=1
elif [ $d_192_168_0_0 -le $__x ] && [ $__x -le $d_192_168_255_255 ]; then
__val=1
fi
export -- "$__var=$__val"
}
# check the argument as being an rfc-3927 address
is_rfc3927() {
local __var="$1" __x="$2" __val=0
assert_uint32 "$__x" || return 1
if [ $d_169_254_0_0 -le $__x ] && [ $__x -le $d_169_254_255_255 ]; then
__val=1
fi
export -- "$__var=$__val"
}
# check the argument as being an rfc-1122 loopback address
is_loopback() {
local __var="$1" __x="$2" __val=0
assert_uint32 "$__x" || return 1
if [ $d_127_0_0_0 -le $__x ] && [ $__x -le $d_127_255_255_255 ]; then
__val=1
fi
export -- "$__var=$__val"
}
# check the argument as being a multicast address
is_multicast() {
local __var="$1" __x="$2" __val=0
assert_uint32 "$__x" || return 1
if [ $d_224_0_0_0 -le $__x ] && [ $__x -le $d_239_255_255_255 ]; then
__val=1
fi
export -- "$__var=$__val"
}