msm8916-openwrt/target/linux/realtek/files-5.15/drivers/net/dsa/rtl83xx/rtl838x.c
Kevin Jilissen 81ab9ef2d1 realtek: Change LLTP register to LLDP
These registers control the handling of Link Layer Discovery Protocol
(LLDP) packets. This seems to be a typo in the naming.

Signed-off-by: Kevin Jilissen <info@kevinjilissen.nl>
2024-05-10 16:03:51 +02:00

2037 lines
57 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include <linux/etherdevice.h>
#include <linux/iopoll.h>
#include <net/nexthop.h>
#include "rtl83xx.h"
#define RTL838X_VLAN_PORT_TAG_STS_UNTAG 0x0
#define RTL838X_VLAN_PORT_TAG_STS_TAGGED 0x1
#define RTL838X_VLAN_PORT_TAG_STS_PRIORITY_TAGGED 0x2
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE 0xA530
/* port 0-28 */
#define RTL838X_VLAN_PORT_TAG_STS_CTRL(port) \
RTL838X_VLAN_PORT_TAG_STS_CTRL_BASE + (port << 2)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_OTAG_KEEP_MASK GENMASK(11,10)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_EGR_P_ITAG_KEEP_MASK GENMASK(9,8)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_OTAG_KEEP_MASK GENMASK(7,6)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_IGR_P_ITAG_KEEP_MASK GENMASK(5,4)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK GENMASK(3,2)
#define RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK GENMASK(1,0)
extern struct mutex smi_lock;
/* see_dal_maple_acl_log2PhyTmplteField and src/app/diag_v2/src/diag_acl.c */
/* Definition of the RTL838X-specific template field IDs as used in the PIE */
enum template_field_id {
TEMPLATE_FIELD_SPMMASK = 0,
TEMPLATE_FIELD_SPM0 = 1, /* Source portmask ports 0-15 */
TEMPLATE_FIELD_SPM1 = 2, /* Source portmask ports 16-28 */
TEMPLATE_FIELD_RANGE_CHK = 3,
TEMPLATE_FIELD_DMAC0 = 4, /* Destination MAC [15:0] */
TEMPLATE_FIELD_DMAC1 = 5, /* Destination MAC [31:16] */
TEMPLATE_FIELD_DMAC2 = 6, /* Destination MAC [47:32] */
TEMPLATE_FIELD_SMAC0 = 7, /* Source MAC [15:0] */
TEMPLATE_FIELD_SMAC1 = 8, /* Source MAC [31:16] */
TEMPLATE_FIELD_SMAC2 = 9, /* Source MAC [47:32] */
TEMPLATE_FIELD_ETHERTYPE = 10, /* Ethernet typ */
TEMPLATE_FIELD_OTAG = 11, /* Outer VLAN tag */
TEMPLATE_FIELD_ITAG = 12, /* Inner VLAN tag */
TEMPLATE_FIELD_SIP0 = 13, /* IPv4 or IPv6 source IP[15:0] or ARP/RARP */
/* source protocol address in header */
TEMPLATE_FIELD_SIP1 = 14, /* IPv4 or IPv6 source IP[31:16] or ARP/RARP */
TEMPLATE_FIELD_DIP0 = 15, /* IPv4 or IPv6 destination IP[15:0] */
TEMPLATE_FIELD_DIP1 = 16, /* IPv4 or IPv6 destination IP[31:16] */
TEMPLATE_FIELD_IP_TOS_PROTO = 17, /* IPv4 TOS/IPv6 traffic class and */
/* IPv4 proto/IPv6 next header fields */
TEMPLATE_FIELD_L34_HEADER = 18, /* packet with extra tag and IPv6 with auth, dest, */
/* frag, route, hop-by-hop option header, */
/* IGMP type, TCP flag */
TEMPLATE_FIELD_L4_SPORT = 19, /* TCP/UDP source port */
TEMPLATE_FIELD_L4_DPORT = 20, /* TCP/UDP destination port */
TEMPLATE_FIELD_ICMP_IGMP = 21,
TEMPLATE_FIELD_IP_RANGE = 22,
TEMPLATE_FIELD_FIELD_SELECTOR_VALID = 23, /* Field selector mask */
TEMPLATE_FIELD_FIELD_SELECTOR_0 = 24,
TEMPLATE_FIELD_FIELD_SELECTOR_1 = 25,
TEMPLATE_FIELD_FIELD_SELECTOR_2 = 26,
TEMPLATE_FIELD_FIELD_SELECTOR_3 = 27,
TEMPLATE_FIELD_SIP2 = 28, /* IPv6 source IP[47:32] */
TEMPLATE_FIELD_SIP3 = 29, /* IPv6 source IP[63:48] */
TEMPLATE_FIELD_SIP4 = 30, /* IPv6 source IP[79:64] */
TEMPLATE_FIELD_SIP5 = 31, /* IPv6 source IP[95:80] */
TEMPLATE_FIELD_SIP6 = 32, /* IPv6 source IP[111:96] */
TEMPLATE_FIELD_SIP7 = 33, /* IPv6 source IP[127:112] */
TEMPLATE_FIELD_DIP2 = 34, /* IPv6 destination IP[47:32] */
TEMPLATE_FIELD_DIP3 = 35, /* IPv6 destination IP[63:48] */
TEMPLATE_FIELD_DIP4 = 36, /* IPv6 destination IP[79:64] */
TEMPLATE_FIELD_DIP5 = 37, /* IPv6 destination IP[95:80] */
TEMPLATE_FIELD_DIP6 = 38, /* IPv6 destination IP[111:96] */
TEMPLATE_FIELD_DIP7 = 39, /* IPv6 destination IP[127:112] */
TEMPLATE_FIELD_FWD_VID = 40, /* Forwarding VLAN-ID */
TEMPLATE_FIELD_FLOW_LABEL = 41,
};
/* The RTL838X SoCs use 5 fixed templates with definitions for which data fields are to
* be copied from the Ethernet Frame header into the 12 User-definable fields of the Packet
* Inspection Engine's buffer. The following defines the field contents for each of the fixed
* templates. Additionally, 3 user-definable templates can be set up via the definitions
* in RTL838X_ACL_TMPLTE_CTRL control registers.
* TODO: See all src/app/diag_v2/src/diag_pie.c
*/
#define N_FIXED_TEMPLATES 5
static enum template_field_id fixed_templates[N_FIXED_TEMPLATES][N_FIXED_FIELDS] =
{
{
TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1, TEMPLATE_FIELD_OTAG,
TEMPLATE_FIELD_SMAC0, TEMPLATE_FIELD_SMAC1, TEMPLATE_FIELD_SMAC2,
TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_RANGE_CHK
}, {
TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0,
TEMPLATE_FIELD_DIP1,TEMPLATE_FIELD_IP_TOS_PROTO, TEMPLATE_FIELD_L4_SPORT,
TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_ITAG,
TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
}, {
TEMPLATE_FIELD_DMAC0, TEMPLATE_FIELD_DMAC1, TEMPLATE_FIELD_DMAC2,
TEMPLATE_FIELD_ITAG, TEMPLATE_FIELD_ETHERTYPE, TEMPLATE_FIELD_IP_TOS_PROTO,
TEMPLATE_FIELD_L4_DPORT, TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_SIP0,
TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1
}, {
TEMPLATE_FIELD_DIP0, TEMPLATE_FIELD_DIP1, TEMPLATE_FIELD_DIP2,
TEMPLATE_FIELD_DIP3, TEMPLATE_FIELD_DIP4, TEMPLATE_FIELD_DIP5,
TEMPLATE_FIELD_DIP6, TEMPLATE_FIELD_DIP7, TEMPLATE_FIELD_L4_DPORT,
TEMPLATE_FIELD_L4_SPORT, TEMPLATE_FIELD_ICMP_IGMP, TEMPLATE_FIELD_IP_TOS_PROTO
}, {
TEMPLATE_FIELD_SIP0, TEMPLATE_FIELD_SIP1, TEMPLATE_FIELD_SIP2,
TEMPLATE_FIELD_SIP3, TEMPLATE_FIELD_SIP4, TEMPLATE_FIELD_SIP5,
TEMPLATE_FIELD_SIP6, TEMPLATE_FIELD_SIP7, TEMPLATE_FIELD_ITAG,
TEMPLATE_FIELD_RANGE_CHK, TEMPLATE_FIELD_SPM0, TEMPLATE_FIELD_SPM1
},
};
void rtl838x_print_matrix(void)
{
unsigned volatile int *ptr8;
ptr8 = RTL838X_SW_BASE + RTL838X_PORT_ISO_CTRL(0);
for (int i = 0; i < 28; i += 8)
pr_debug("> %8x %8x %8x %8x %8x %8x %8x %8x\n",
ptr8[i + 0], ptr8[i + 1], ptr8[i + 2], ptr8[i + 3],
ptr8[i + 4], ptr8[i + 5], ptr8[i + 6], ptr8[i + 7]);
pr_debug("CPU_PORT> %8x\n", ptr8[28]);
}
static inline int rtl838x_port_iso_ctrl(int p)
{
return RTL838X_PORT_ISO_CTRL(p);
}
static inline void rtl838x_exec_tbl0_cmd(u32 cmd)
{
sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_0);
do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_0) & BIT(15));
}
static inline void rtl838x_exec_tbl1_cmd(u32 cmd)
{
sw_w32(cmd, RTL838X_TBL_ACCESS_CTRL_1);
do { } while (sw_r32(RTL838X_TBL_ACCESS_CTRL_1) & BIT(15));
}
static inline int rtl838x_tbl_access_data_0(int i)
{
return RTL838X_TBL_ACCESS_DATA_0(i);
}
static void rtl838x_vlan_tables_read(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 v;
/* Read VLAN table (0) via register 0 */
struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
rtl_table_read(r, vlan);
info->tagged_ports = sw_r32(rtl_table_data(r, 0));
v = sw_r32(rtl_table_data(r, 1));
pr_debug("VLAN_READ %d: %016llx %08x\n", vlan, info->tagged_ports, v);
rtl_table_release(r);
info->profile_id = v & 0x7;
info->hash_mc_fid = !!(v & 0x8);
info->hash_uc_fid = !!(v & 0x10);
info->fid = (v >> 5) & 0x3f;
/* Read UNTAG table (0) via table register 1 */
r = rtl_table_get(RTL8380_TBL_1, 0);
rtl_table_read(r, vlan);
info->untagged_ports = sw_r32(rtl_table_data(r, 0));
rtl_table_release(r);
}
static void rtl838x_vlan_set_tagged(u32 vlan, struct rtl838x_vlan_info *info)
{
u32 v;
/* Access VLAN table (0) via register 0 */
struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 0);
sw_w32(info->tagged_ports, rtl_table_data(r, 0));
v = info->profile_id;
v |= info->hash_mc_fid ? 0x8 : 0;
v |= info->hash_uc_fid ? 0x10 : 0;
v |= ((u32)info->fid) << 5;
sw_w32(v, rtl_table_data(r, 1));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
static void rtl838x_vlan_set_untagged(u32 vlan, u64 portmask)
{
/* Access UNTAG table (0) via register 1 */
struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 0);
sw_w32(portmask & 0x1fffffff, rtl_table_data(r, 0));
rtl_table_write(r, vlan);
rtl_table_release(r);
}
/* Sets the L2 forwarding to be based on either the inner VLAN tag or the outer
*/
static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
{
if (is_set)
sw_w32_mask(BIT(port), 0, RTL838X_VLAN_PORT_FWD);
else
sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
}
static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
{
return mac << 12 | vid;
}
/* Applies the same hash algorithm as the one used currently by the ASIC to the seed
* and returns a key into the L2 hash table
*/
static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h3, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
h3 = (seed >> 44) & 0x7ff;
h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
} else {
h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff) ^
((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff) ^
((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
}
return h;
}
static inline int rtl838x_mac_force_mode_ctrl(int p)
{
return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
}
static inline int rtl838x_mac_port_ctrl(int p)
{
return RTL838X_MAC_PORT_CTRL(p);
}
static inline int rtl838x_l2_port_new_salrn(int p)
{
return RTL838X_L2_PORT_NEW_SALRN(p);
}
static inline int rtl838x_l2_port_new_sa_fwd(int p)
{
return RTL838X_L2_PORT_NEW_SA_FWD(p);
}
static inline int rtl838x_mac_link_spd_sts(int p)
{
return RTL838X_MAC_LINK_SPD_STS(p);
}
inline static int rtl838x_trk_mbr_ctr(int group)
{
return RTL838X_TRK_MBR_CTR + (group << 2);
}
/* Fills an L2 entry structure from the SoC registers */
static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
/* Table contains different entry types, we need to identify the right one:
* Check for MC entries, first
* In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
* identify valid entries
*/
e->is_ip_mc = !!(r[0] & BIT(22));
e->is_ipv6_mc = !!(r[0] & BIT(21));
e->type = L2_INVALID;
if (!e->is_ip_mc && !e->is_ipv6_mc) {
e->mac[0] = (r[1] >> 20);
e->mac[1] = (r[1] >> 12);
e->mac[2] = (r[1] >> 4);
e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
e->mac[4] = (r[2] >> 20);
e->mac[5] = (r[2] >> 12);
e->rvid = r[2] & 0xfff;
e->vid = r[0] & 0xfff;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->is_static = !!((r[0] >> 19) & 1);
e->port = (r[0] >> 12) & 0x1f;
e->block_da = !!(r[1] & BIT(30));
e->block_sa = !!(r[1] & BIT(31));
e->suspended = !!(r[1] & BIT(29));
e->next_hop = !!(r[1] & BIT(28));
if (e->next_hop) {
pr_debug("Found next hop entry, need to read extra data\n");
e->nh_vlan_target = !!(r[0] & BIT(9));
e->nh_route_id = r[0] & 0x1ff;
e->vid = e->rvid;
}
e->age = (r[0] >> 17) & 0x3;
e->valid = true;
/* A valid entry has one of mutli-cast, aging, sa/da-blocking,
* next-hop or static entry bit set
*/
if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
e->valid = false;
else
e->type = L2_UNICAST;
} else { /* L2 multicast */
pr_debug("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
}
} else { /* IPv4 and IPv6 multicast */
e->valid = true;
e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
e->mc_gip = (r[1] << 20) | (r[2] >> 12);
e->rvid = r[2] & 0xfff;
}
if (e->is_ip_mc)
e->type = IP4_MULTICAST;
if (e->is_ipv6_mc)
e->type = IP6_MULTICAST;
}
/* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry */
static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
u64 mac = ether_addr_to_u64(e->mac);
if (!e->valid) {
r[0] = r[1] = r[2] = 0;
return;
}
r[0] = e->is_ip_mc ? BIT(22) : 0;
r[0] |= e->is_ipv6_mc ? BIT(21) : 0;
if (!e->is_ip_mc && !e->is_ipv6_mc) {
r[1] = mac >> 20;
r[2] = (mac & 0xfffff) << 12;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
r[0] |= e->is_static ? BIT(19) : 0;
r[0] |= (e->port & 0x3f) << 12;
r[0] |= e->vid;
r[1] |= e->block_da ? BIT(30) : 0;
r[1] |= e->block_sa ? BIT(31) : 0;
r[1] |= e->suspended ? BIT(29) : 0;
r[2] |= e->rvid & 0xfff;
if (e->next_hop) {
r[1] |= BIT(28);
r[0] |= e->nh_vlan_target ? BIT(9) : 0;
r[0] |= e->nh_route_id & 0x1ff;
}
r[0] |= (e->age & 0x3) << 17;
} else { /* L2 Multicast */
r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
r[2] |= e->rvid & 0xfff;
r[0] |= e->vid & 0xfff;
pr_debug("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
}
} else { /* IPv4 and IPv6 multicast */
r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
r[1] = e->mc_gip >> 20;
r[2] = e->mc_gip << 12;
r[2] |= e->rvid;
}
}
/* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
* hash is the id of the bucket and pos is the position of the entry in that bucket
* The data read from the SoC is filled into rtl838x_l2_entry
*/
static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); /* Access L2 Table 0 */
u32 idx = (0 << 14) | (hash << 2) | pos; /* Search SRAM, with hash and at pos in bucket */
rtl_table_read(q, idx);
for (int i = 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl838x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
return (((u64) r[1]) << 32) | (r[2]); /* mac and vid concatenated as hash seed */
}
static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
u32 idx = (0 << 14) | (hash << 2) | pos; /* Access SRAM, with hash and at pos in bucket */
rtl838x_fill_l2_row(r, e);
for (int i = 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); /* Access L2 Table 1 */
rtl_table_read(q, idx);
for (int i = 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl838x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
/* Return MAC with concatenated VID ac concatenated ID */
return (((u64) r[1]) << 32) | r[2];
}
static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); /* Access L2 Table 1 */
rtl838x_fill_l2_row(r, e);
for (int i = 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl838x_read_mcast_pmask(int idx)
{
u32 portmask;
/* Read MC_PMSK (2) via register RTL8380_TBL_L2 */
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
rtl_table_read(q, idx);
portmask = sw_r32(rtl_table_data(q, 0));
rtl_table_release(q);
return portmask;
}
static void rtl838x_write_mcast_pmask(int idx, u64 portmask)
{
/* Access MC_PMSK (2) via register RTL8380_TBL_L2 */
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 2);
sw_w32(((u32)portmask) & 0x1fffffff, rtl_table_data(q, 0));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static void rtl838x_vlan_profile_setup(int profile)
{
u32 pmask_id = UNKNOWN_MC_PMASK;
/* Enable L2 Learning BIT 0, portmask UNKNOWN_MC_PMASK for unknown MC traffic flooding */
u32 p = 1 | pmask_id << 1 | pmask_id << 10 | pmask_id << 19;
sw_w32(p, RTL838X_VLAN_PROFILE(profile));
/* RTL8380 and RTL8390 use an index into the portmask table to set the
* unknown multicast portmask, setup a default at a safe location
* On RTL93XX, the portmask is directly set in the profile,
* see e.g. rtl9300_vlan_profile_setup
*/
rtl838x_write_mcast_pmask(UNKNOWN_MC_PMASK, 0x1fffffff);
}
static void rtl838x_l2_learning_setup(void)
{
/* Set portmask for broadcast traffic and unknown unicast address flooding
* to the reserved entry in the portmask table used also for
* multicast flooding */
sw_w32(UNKNOWN_MC_PMASK << 12 | UNKNOWN_MC_PMASK, RTL838X_L2_FLD_PMSK);
/* Enable learning constraint system-wide (bit 0), per-port (bit 1)
* and per vlan (bit 2) */
sw_w32(0x7, RTL838X_L2_LRN_CONSTRT_EN);
/* Limit learning to maximum: 16k entries, after that just flood (bits 0-1) */
sw_w32((0x3fff << 2) | 0, RTL838X_L2_LRN_CONSTRT);
/* Do not trap ARP packets to CPU_PORT */
sw_w32(0, RTL838X_SPCL_TRAP_ARP_CTRL);
}
static void rtl838x_enable_learning(int port, bool enable)
{
/* Limit learning to maximum: 16k entries */
sw_w32_mask(0x3fff << 2, enable ? (0x3fff << 2) : 0,
RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
}
static void rtl838x_enable_flood(int port, bool enable)
{
/* 0: Forward
* 1: Disable
* 2: to CPU
* 3: Copy to CPU
*/
sw_w32_mask(0x3, enable ? 0 : 1,
RTL838X_L2_PORT_LRN_CONSTRT + (port << 2));
}
static void rtl838x_enable_mcast_flood(int port, bool enable)
{
}
static void rtl838x_enable_bcast_flood(int port, bool enable)
{
}
static void rtl838x_set_static_move_action(int port, bool forward)
{
int shift = MV_ACT_PORT_SHIFT(port);
u32 val = forward ? MV_ACT_FORWARD : MV_ACT_DROP;
sw_w32_mask(MV_ACT_MASK << shift, val << shift,
RTL838X_L2_PORT_STATIC_MV_ACT(port));
}
static void rtl838x_stp_get(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
u32 cmd = 1 << 15 | /* Execute cmd */
1 << 14 | /* Read */
2 << 12 | /* Table type 0b10 */
(msti & 0xfff);
priv->r->exec_tbl0_cmd(cmd);
for (int i = 0; i < 2; i++)
port_state[i] = sw_r32(priv->r->tbl_access_data_0(i));
}
static void rtl838x_stp_set(struct rtl838x_switch_priv *priv, u16 msti, u32 port_state[])
{
u32 cmd = 1 << 15 | /* Execute cmd */
0 << 14 | /* Write */
2 << 12 | /* Table type 0b10 */
(msti & 0xfff);
for (int i = 0; i < 2; i++)
sw_w32(port_state[i], priv->r->tbl_access_data_0(i));
priv->r->exec_tbl0_cmd(cmd);
}
u64 rtl838x_traffic_get(int source)
{
return rtl838x_get_port_reg(rtl838x_port_iso_ctrl(source));
}
void rtl838x_traffic_set(int source, u64 dest_matrix)
{
rtl838x_set_port_reg(dest_matrix, rtl838x_port_iso_ctrl(source));
}
void rtl838x_traffic_enable(int source, int dest)
{
rtl838x_mask_port_reg(0, BIT(dest), rtl838x_port_iso_ctrl(source));
}
void rtl838x_traffic_disable(int source, int dest)
{
rtl838x_mask_port_reg(BIT(dest), 0, rtl838x_port_iso_ctrl(source));
}
/* Enables or disables the EEE/EEEP capability of a port */
static void rtl838x_port_eee_set(struct rtl838x_switch_priv *priv, int port, bool enable)
{
u32 v;
/* This works only for Ethernet ports, and on the RTL838X, ports from 24 are SFP */
if (port >= 24)
return;
pr_debug("In %s: setting port %d to %d\n", __func__, port, enable);
v = enable ? 0x3 : 0x0;
/* Set EEE state for 100 (bit 9) & 1000MBit (bit 10) */
sw_w32_mask(0x3 << 9, v << 9, priv->r->mac_force_mode_ctrl(port));
/* Set TX/RX EEE state */
if (enable) {
sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_TX_EN);
sw_w32_mask(0, BIT(port), RTL838X_EEE_PORT_RX_EN);
} else {
sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_TX_EN);
sw_w32_mask(BIT(port), 0, RTL838X_EEE_PORT_RX_EN);
}
priv->ports[port].eee_enabled = enable;
}
/* Get EEE own capabilities and negotiation result */
static int rtl838x_eee_port_ability(struct rtl838x_switch_priv *priv,
struct ethtool_eee *e, int port)
{
u64 link;
if (port >= 24)
return 0;
link = rtl839x_get_port_reg_le(RTL838X_MAC_LINK_STS);
if (!(link & BIT(port)))
return 0;
if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(9))
e->advertised |= ADVERTISED_100baseT_Full;
if (sw_r32(rtl838x_mac_force_mode_ctrl(port)) & BIT(10))
e->advertised |= ADVERTISED_1000baseT_Full;
if (sw_r32(RTL838X_MAC_EEE_ABLTY) & BIT(port)) {
e->lp_advertised = ADVERTISED_100baseT_Full;
e->lp_advertised |= ADVERTISED_1000baseT_Full;
return 1;
}
return 0;
}
static void rtl838x_init_eee(struct rtl838x_switch_priv *priv, bool enable)
{
pr_info("Setting up EEE, state: %d\n", enable);
sw_w32_mask(0x4, 0, RTL838X_SMI_GLB_CTRL);
/* Set timers for EEE */
sw_w32(0x5001411, RTL838X_EEE_TX_TIMER_GIGA_CTRL);
sw_w32(0x5001417, RTL838X_EEE_TX_TIMER_GELITE_CTRL);
/* Enable EEE MAC support on ports */
for (int i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy)
rtl838x_port_eee_set(priv, i, enable);
}
priv->eee_enabled = enable;
}
static void rtl838x_pie_lookup_enable(struct rtl838x_switch_priv *priv, int index)
{
int block = index / PIE_BLOCK_SIZE;
u32 block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
/* Make sure rule-lookup is enabled in the block */
if (!(block_state & BIT(block)))
sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
}
static void rtl838x_pie_rule_del(struct rtl838x_switch_priv *priv, int index_from, int index_to)
{
int block_from = index_from / PIE_BLOCK_SIZE;
int block_to = index_to / PIE_BLOCK_SIZE;
u32 v = (index_from << 1)| (index_to << 12 ) | BIT(0);
u32 block_state;
pr_debug("%s: from %d to %d\n", __func__, index_from, index_to);
mutex_lock(&priv->reg_mutex);
/* Remember currently active blocks */
block_state = sw_r32(RTL838X_ACL_BLK_LOOKUP_CTRL);
/* Make sure rule-lookup is disabled in the relevant blocks */
for (int block = block_from; block <= block_to; block++) {
if (block_state & BIT(block))
sw_w32(block_state & (~BIT(block)), RTL838X_ACL_BLK_LOOKUP_CTRL);
}
/* Write from-to and execute bit into control register */
sw_w32(v, RTL838X_ACL_CLR_CTRL);
/* Wait until command has completed */
do {
} while (sw_r32(RTL838X_ACL_CLR_CTRL) & BIT(0));
/* Re-enable rule lookup */
for (int block = block_from; block <= block_to; block++) {
if (!(block_state & BIT(block)))
sw_w32(block_state | BIT(block), RTL838X_ACL_BLK_LOOKUP_CTRL);
}
mutex_unlock(&priv->reg_mutex);
}
/* Reads the intermediate representation of the templated match-fields of the
* PIE rule in the pie_rule structure and fills in the raw data fields in the
* raw register space r[].
* The register space configuration size is identical for the RTL8380/90 and RTL9300,
* however the RTL9310 has 2 more registers / fields and the physical field-ids
* are specific to every platform.
*/
static void rtl838x_write_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
{
for (int i = 0; i < N_FIXED_FIELDS; i++) {
enum template_field_id field_type = t[i];
u16 data = 0, data_m = 0;
switch (field_type) {
case TEMPLATE_FIELD_SPM0:
data = pr->spm;
data_m = pr->spm_m;
break;
case TEMPLATE_FIELD_SPM1:
data = pr->spm >> 16;
data_m = pr->spm_m >> 16;
break;
case TEMPLATE_FIELD_OTAG:
data = pr->otag;
data_m = pr->otag_m;
break;
case TEMPLATE_FIELD_SMAC0:
data = pr->smac[4];
data = (data << 8) | pr->smac[5];
data_m = pr->smac_m[4];
data_m = (data_m << 8) | pr->smac_m[5];
break;
case TEMPLATE_FIELD_SMAC1:
data = pr->smac[2];
data = (data << 8) | pr->smac[3];
data_m = pr->smac_m[2];
data_m = (data_m << 8) | pr->smac_m[3];
break;
case TEMPLATE_FIELD_SMAC2:
data = pr->smac[0];
data = (data << 8) | pr->smac[1];
data_m = pr->smac_m[0];
data_m = (data_m << 8) | pr->smac_m[1];
break;
case TEMPLATE_FIELD_DMAC0:
data = pr->dmac[4];
data = (data << 8) | pr->dmac[5];
data_m = pr->dmac_m[4];
data_m = (data_m << 8) | pr->dmac_m[5];
break;
case TEMPLATE_FIELD_DMAC1:
data = pr->dmac[2];
data = (data << 8) | pr->dmac[3];
data_m = pr->dmac_m[2];
data_m = (data_m << 8) | pr->dmac_m[3];
break;
case TEMPLATE_FIELD_DMAC2:
data = pr->dmac[0];
data = (data << 8) | pr->dmac[1];
data_m = pr->dmac_m[0];
data_m = (data_m << 8) | pr->dmac_m[1];
break;
case TEMPLATE_FIELD_ETHERTYPE:
data = pr->ethertype;
data_m = pr->ethertype_m;
break;
case TEMPLATE_FIELD_ITAG:
data = pr->itag;
data_m = pr->itag_m;
break;
case TEMPLATE_FIELD_RANGE_CHK:
data = pr->field_range_check;
data_m = pr->field_range_check_m;
break;
case TEMPLATE_FIELD_SIP0:
if (pr->is_ipv6) {
data = pr->sip6.s6_addr16[7];
data_m = pr->sip6_m.s6_addr16[7];
} else {
data = pr->sip;
data_m = pr->sip_m;
}
break;
case TEMPLATE_FIELD_SIP1:
if (pr->is_ipv6) {
data = pr->sip6.s6_addr16[6];
data_m = pr->sip6_m.s6_addr16[6];
} else {
data = pr->sip >> 16;
data_m = pr->sip_m >> 16;
}
break;
case TEMPLATE_FIELD_SIP2:
case TEMPLATE_FIELD_SIP3:
case TEMPLATE_FIELD_SIP4:
case TEMPLATE_FIELD_SIP5:
case TEMPLATE_FIELD_SIP6:
case TEMPLATE_FIELD_SIP7:
data = pr->sip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
data_m = pr->sip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_SIP2)];
break;
case TEMPLATE_FIELD_DIP0:
if (pr->is_ipv6) {
data = pr->dip6.s6_addr16[7];
data_m = pr->dip6_m.s6_addr16[7];
} else {
data = pr->dip;
data_m = pr->dip_m;
}
break;
case TEMPLATE_FIELD_DIP1:
if (pr->is_ipv6) {
data = pr->dip6.s6_addr16[6];
data_m = pr->dip6_m.s6_addr16[6];
} else {
data = pr->dip >> 16;
data_m = pr->dip_m >> 16;
}
break;
case TEMPLATE_FIELD_DIP2:
case TEMPLATE_FIELD_DIP3:
case TEMPLATE_FIELD_DIP4:
case TEMPLATE_FIELD_DIP5:
case TEMPLATE_FIELD_DIP6:
case TEMPLATE_FIELD_DIP7:
data = pr->dip6.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
data_m = pr->dip6_m.s6_addr16[5 - (field_type - TEMPLATE_FIELD_DIP2)];
break;
case TEMPLATE_FIELD_IP_TOS_PROTO:
data = pr->tos_proto;
data_m = pr->tos_proto_m;
break;
case TEMPLATE_FIELD_L4_SPORT:
data = pr->sport;
data_m = pr->sport_m;
break;
case TEMPLATE_FIELD_L4_DPORT:
data = pr->dport;
data_m = pr->dport_m;
break;
case TEMPLATE_FIELD_ICMP_IGMP:
data = pr->icmp_igmp;
data_m = pr->icmp_igmp_m;
break;
default:
pr_info("%s: unknown field %d\n", __func__, field_type);
continue;
}
if (!(i % 2)) {
r[5 - i / 2] = data;
r[12 - i / 2] = data_m;
} else {
r[5 - i / 2] |= ((u32)data) << 16;
r[12 - i / 2] |= ((u32)data_m) << 16;
}
}
}
/* Creates the intermediate representation of the templated match-fields of the
* PIE rule in the pie_rule structure by reading the raw data fields in the
* raw register space r[].
* The register space configuration size is identical for the RTL8380/90 and RTL9300,
* however the RTL9310 has 2 more registers / fields and the physical field-ids
*/
static void rtl838x_read_pie_templated(u32 r[], struct pie_rule *pr, enum template_field_id t[])
{
for (int i = 0; i < N_FIXED_FIELDS; i++) {
enum template_field_id field_type = t[i];
u16 data, data_m;
field_type = t[i];
if (!(i % 2)) {
data = r[5 - i / 2];
data_m = r[12 - i / 2];
} else {
data = r[5 - i / 2] >> 16;
data_m = r[12 - i / 2] >> 16;
}
switch (field_type) {
case TEMPLATE_FIELD_SPM0:
pr->spm = (pr->spn << 16) | data;
pr->spm_m = (pr->spn << 16) | data_m;
break;
case TEMPLATE_FIELD_SPM1:
pr->spm = data;
pr->spm_m = data_m;
break;
case TEMPLATE_FIELD_OTAG:
pr->otag = data;
pr->otag_m = data_m;
break;
case TEMPLATE_FIELD_SMAC0:
pr->smac[4] = data >> 8;
pr->smac[5] = data;
pr->smac_m[4] = data >> 8;
pr->smac_m[5] = data;
break;
case TEMPLATE_FIELD_SMAC1:
pr->smac[2] = data >> 8;
pr->smac[3] = data;
pr->smac_m[2] = data >> 8;
pr->smac_m[3] = data;
break;
case TEMPLATE_FIELD_SMAC2:
pr->smac[0] = data >> 8;
pr->smac[1] = data;
pr->smac_m[0] = data >> 8;
pr->smac_m[1] = data;
break;
case TEMPLATE_FIELD_DMAC0:
pr->dmac[4] = data >> 8;
pr->dmac[5] = data;
pr->dmac_m[4] = data >> 8;
pr->dmac_m[5] = data;
break;
case TEMPLATE_FIELD_DMAC1:
pr->dmac[2] = data >> 8;
pr->dmac[3] = data;
pr->dmac_m[2] = data >> 8;
pr->dmac_m[3] = data;
break;
case TEMPLATE_FIELD_DMAC2:
pr->dmac[0] = data >> 8;
pr->dmac[1] = data;
pr->dmac_m[0] = data >> 8;
pr->dmac_m[1] = data;
break;
case TEMPLATE_FIELD_ETHERTYPE:
pr->ethertype = data;
pr->ethertype_m = data_m;
break;
case TEMPLATE_FIELD_ITAG:
pr->itag = data;
pr->itag_m = data_m;
break;
case TEMPLATE_FIELD_RANGE_CHK:
pr->field_range_check = data;
pr->field_range_check_m = data_m;
break;
case TEMPLATE_FIELD_SIP0:
pr->sip = data;
pr->sip_m = data_m;
break;
case TEMPLATE_FIELD_SIP1:
pr->sip = (pr->sip << 16) | data;
pr->sip_m = (pr->sip << 16) | data_m;
break;
case TEMPLATE_FIELD_SIP2:
pr->is_ipv6 = true;
/* Make use of limitiations on the position of the match values */
ipv6_addr_set(&pr->sip6, pr->sip, r[5 - i / 2],
r[4 - i / 2], r[3 - i / 2]);
ipv6_addr_set(&pr->sip6_m, pr->sip_m, r[5 - i / 2],
r[4 - i / 2], r[3 - i / 2]);
case TEMPLATE_FIELD_SIP3:
case TEMPLATE_FIELD_SIP4:
case TEMPLATE_FIELD_SIP5:
case TEMPLATE_FIELD_SIP6:
case TEMPLATE_FIELD_SIP7:
break;
case TEMPLATE_FIELD_DIP0:
pr->dip = data;
pr->dip_m = data_m;
break;
case TEMPLATE_FIELD_DIP1:
pr->dip = (pr->dip << 16) | data;
pr->dip_m = (pr->dip << 16) | data_m;
break;
case TEMPLATE_FIELD_DIP2:
pr->is_ipv6 = true;
ipv6_addr_set(&pr->dip6, pr->dip, r[5 - i / 2],
r[4 - i / 2], r[3 - i / 2]);
ipv6_addr_set(&pr->dip6_m, pr->dip_m, r[5 - i / 2],
r[4 - i / 2], r[3 - i / 2]);
case TEMPLATE_FIELD_DIP3:
case TEMPLATE_FIELD_DIP4:
case TEMPLATE_FIELD_DIP5:
case TEMPLATE_FIELD_DIP6:
case TEMPLATE_FIELD_DIP7:
break;
case TEMPLATE_FIELD_IP_TOS_PROTO:
pr->tos_proto = data;
pr->tos_proto_m = data_m;
break;
case TEMPLATE_FIELD_L4_SPORT:
pr->sport = data;
pr->sport_m = data_m;
break;
case TEMPLATE_FIELD_L4_DPORT:
pr->dport = data;
pr->dport_m = data_m;
break;
case TEMPLATE_FIELD_ICMP_IGMP:
pr->icmp_igmp = data;
pr->icmp_igmp_m = data_m;
break;
default:
pr_info("%s: unknown field %d\n", __func__, field_type);
}
}
}
static void rtl838x_read_pie_fixed_fields(u32 r[], struct pie_rule *pr)
{
pr->spmmask_fix = (r[6] >> 22) & 0x3;
pr->spn = (r[6] >> 16) & 0x3f;
pr->mgnt_vlan = (r[6] >> 15) & 1;
pr->dmac_hit_sw = (r[6] >> 14) & 1;
pr->not_first_frag = (r[6] >> 13) & 1;
pr->frame_type_l4 = (r[6] >> 10) & 7;
pr->frame_type = (r[6] >> 8) & 3;
pr->otag_fmt = (r[6] >> 7) & 1;
pr->itag_fmt = (r[6] >> 6) & 1;
pr->otag_exist = (r[6] >> 5) & 1;
pr->itag_exist = (r[6] >> 4) & 1;
pr->frame_type_l2 = (r[6] >> 2) & 3;
pr->tid = r[6] & 3;
pr->spmmask_fix_m = (r[13] >> 22) & 0x3;
pr->spn_m = (r[13] >> 16) & 0x3f;
pr->mgnt_vlan_m = (r[13] >> 15) & 1;
pr->dmac_hit_sw_m = (r[13] >> 14) & 1;
pr->not_first_frag_m = (r[13] >> 13) & 1;
pr->frame_type_l4_m = (r[13] >> 10) & 7;
pr->frame_type_m = (r[13] >> 8) & 3;
pr->otag_fmt_m = (r[13] >> 7) & 1;
pr->itag_fmt_m = (r[13] >> 6) & 1;
pr->otag_exist_m = (r[13] >> 5) & 1;
pr->itag_exist_m = (r[13] >> 4) & 1;
pr->frame_type_l2_m = (r[13] >> 2) & 3;
pr->tid_m = r[13] & 3;
pr->valid = r[14] & BIT(31);
pr->cond_not = r[14] & BIT(30);
pr->cond_and1 = r[14] & BIT(29);
pr->cond_and2 = r[14] & BIT(28);
pr->ivalid = r[14] & BIT(27);
pr->drop = (r[17] >> 14) & 3;
pr->fwd_sel = r[17] & BIT(13);
pr->ovid_sel = r[17] & BIT(12);
pr->ivid_sel = r[17] & BIT(11);
pr->flt_sel = r[17] & BIT(10);
pr->log_sel = r[17] & BIT(9);
pr->rmk_sel = r[17] & BIT(8);
pr->meter_sel = r[17] & BIT(7);
pr->tagst_sel = r[17] & BIT(6);
pr->mir_sel = r[17] & BIT(5);
pr->nopri_sel = r[17] & BIT(4);
pr->cpupri_sel = r[17] & BIT(3);
pr->otpid_sel = r[17] & BIT(2);
pr->itpid_sel = r[17] & BIT(1);
pr->shaper_sel = r[17] & BIT(0);
}
static void rtl838x_write_pie_fixed_fields(u32 r[], struct pie_rule *pr)
{
r[6] = ((u32) (pr->spmmask_fix & 0x3)) << 22;
r[6] |= ((u32) (pr->spn & 0x3f)) << 16;
r[6] |= pr->mgnt_vlan ? BIT(15) : 0;
r[6] |= pr->dmac_hit_sw ? BIT(14) : 0;
r[6] |= pr->not_first_frag ? BIT(13) : 0;
r[6] |= ((u32) (pr->frame_type_l4 & 0x7)) << 10;
r[6] |= ((u32) (pr->frame_type & 0x3)) << 8;
r[6] |= pr->otag_fmt ? BIT(7) : 0;
r[6] |= pr->itag_fmt ? BIT(6) : 0;
r[6] |= pr->otag_exist ? BIT(5) : 0;
r[6] |= pr->itag_exist ? BIT(4) : 0;
r[6] |= ((u32) (pr->frame_type_l2 & 0x3)) << 2;
r[6] |= ((u32) (pr->tid & 0x3));
r[13] = ((u32) (pr->spmmask_fix_m & 0x3)) << 22;
r[13] |= ((u32) (pr->spn_m & 0x3f)) << 16;
r[13] |= pr->mgnt_vlan_m ? BIT(15) : 0;
r[13] |= pr->dmac_hit_sw_m ? BIT(14) : 0;
r[13] |= pr->not_first_frag_m ? BIT(13) : 0;
r[13] |= ((u32) (pr->frame_type_l4_m & 0x7)) << 10;
r[13] |= ((u32) (pr->frame_type_m & 0x3)) << 8;
r[13] |= pr->otag_fmt_m ? BIT(7) : 0;
r[13] |= pr->itag_fmt_m ? BIT(6) : 0;
r[13] |= pr->otag_exist_m ? BIT(5) : 0;
r[13] |= pr->itag_exist_m ? BIT(4) : 0;
r[13] |= ((u32) (pr->frame_type_l2_m & 0x3)) << 2;
r[13] |= ((u32) (pr->tid_m & 0x3));
r[14] = pr->valid ? BIT(31) : 0;
r[14] |= pr->cond_not ? BIT(30) : 0;
r[14] |= pr->cond_and1 ? BIT(29) : 0;
r[14] |= pr->cond_and2 ? BIT(28) : 0;
r[14] |= pr->ivalid ? BIT(27) : 0;
if (pr->drop)
r[17] = 0x1 << 14; /* Standard drop action */
else
r[17] = 0;
r[17] |= pr->fwd_sel ? BIT(13) : 0;
r[17] |= pr->ovid_sel ? BIT(12) : 0;
r[17] |= pr->ivid_sel ? BIT(11) : 0;
r[17] |= pr->flt_sel ? BIT(10) : 0;
r[17] |= pr->log_sel ? BIT(9) : 0;
r[17] |= pr->rmk_sel ? BIT(8) : 0;
r[17] |= pr->meter_sel ? BIT(7) : 0;
r[17] |= pr->tagst_sel ? BIT(6) : 0;
r[17] |= pr->mir_sel ? BIT(5) : 0;
r[17] |= pr->nopri_sel ? BIT(4) : 0;
r[17] |= pr->cpupri_sel ? BIT(3) : 0;
r[17] |= pr->otpid_sel ? BIT(2) : 0;
r[17] |= pr->itpid_sel ? BIT(1) : 0;
r[17] |= pr->shaper_sel ? BIT(0) : 0;
}
static int rtl838x_write_pie_action(u32 r[], struct pie_rule *pr)
{
u16 *aif = (u16 *)&r[17];
u16 data;
int fields_used = 0;
aif--;
pr_debug("%s, at %08x\n", __func__, (u32)aif);
/* Multiple actions can be linked to a match of a PIE rule,
* they have different precedence depending on their type and this precedence
* defines which Action Information Field (0-4) in the IACL table stores
* the additional data of the action (like e.g. the port number a packet is
* forwarded to) */
/* TODO: count bits in selectors to limit to a maximum number of actions */
if (pr->fwd_sel) { /* Forwarding action */
data = pr->fwd_act << 13;
data |= pr->fwd_data;
data |= pr->bypass_all ? BIT(12) : 0;
data |= pr->bypass_ibc_sc ? BIT(11) : 0;
data |= pr->bypass_igr_stp ? BIT(10) : 0;
*aif-- = data;
fields_used++;
}
if (pr->ovid_sel) { /* Outer VID action */
data = (pr->ovid_act & 0x3) << 12;
data |= pr->ovid_data;
*aif-- = data;
fields_used++;
}
if (pr->ivid_sel) { /* Inner VID action */
data = (pr->ivid_act & 0x3) << 12;
data |= pr->ivid_data;
*aif-- = data;
fields_used++;
}
if (pr->flt_sel) { /* Filter action */
*aif-- = pr->flt_data;
fields_used++;
}
if (pr->log_sel) { /* Log action */
if (fields_used >= 4)
return -1;
*aif-- = pr->log_data;
fields_used++;
}
if (pr->rmk_sel) { /* Remark action */
if (fields_used >= 4)
return -1;
*aif-- = pr->rmk_data;
fields_used++;
}
if (pr->meter_sel) { /* Meter action */
if (fields_used >= 4)
return -1;
*aif-- = pr->meter_data;
fields_used++;
}
if (pr->tagst_sel) { /* Egress Tag Status action */
if (fields_used >= 4)
return -1;
*aif-- = pr->tagst_data;
fields_used++;
}
if (pr->mir_sel) { /* Mirror action */
if (fields_used >= 4)
return -1;
*aif-- = pr->mir_data;
fields_used++;
}
if (pr->nopri_sel) { /* Normal Priority action */
if (fields_used >= 4)
return -1;
*aif-- = pr->nopri_data;
fields_used++;
}
if (pr->cpupri_sel) { /* CPU Priority action */
if (fields_used >= 4)
return -1;
*aif-- = pr->nopri_data;
fields_used++;
}
if (pr->otpid_sel) { /* OTPID action */
if (fields_used >= 4)
return -1;
*aif-- = pr->otpid_data;
fields_used++;
}
if (pr->itpid_sel) { /* ITPID action */
if (fields_used >= 4)
return -1;
*aif-- = pr->itpid_data;
fields_used++;
}
if (pr->shaper_sel) { /* Traffic shaper action */
if (fields_used >= 4)
return -1;
*aif-- = pr->shaper_data;
fields_used++;
}
return 0;
}
static void rtl838x_read_pie_action(u32 r[], struct pie_rule *pr)
{
u16 *aif = (u16 *)&r[17];
aif--;
pr_debug("%s, at %08x\n", __func__, (u32)aif);
if (pr->drop)
pr_debug("%s: Action Drop: %d", __func__, pr->drop);
if (pr->fwd_sel){ /* Forwarding action */
pr->fwd_act = *aif >> 13;
pr->fwd_data = *aif--;
pr->bypass_all = pr->fwd_data & BIT(12);
pr->bypass_ibc_sc = pr->fwd_data & BIT(11);
pr->bypass_igr_stp = pr->fwd_data & BIT(10);
if (pr->bypass_all || pr->bypass_ibc_sc || pr->bypass_igr_stp)
pr->bypass_sel = true;
}
if (pr->ovid_sel) /* Outer VID action */
pr->ovid_data = *aif--;
if (pr->ivid_sel) /* Inner VID action */
pr->ivid_data = *aif--;
if (pr->flt_sel) /* Filter action */
pr->flt_data = *aif--;
if (pr->log_sel) /* Log action */
pr->log_data = *aif--;
if (pr->rmk_sel) /* Remark action */
pr->rmk_data = *aif--;
if (pr->meter_sel) /* Meter action */
pr->meter_data = *aif--;
if (pr->tagst_sel) /* Egress Tag Status action */
pr->tagst_data = *aif--;
if (pr->mir_sel) /* Mirror action */
pr->mir_data = *aif--;
if (pr->nopri_sel) /* Normal Priority action */
pr->nopri_data = *aif--;
if (pr->cpupri_sel) /* CPU Priority action */
pr->nopri_data = *aif--;
if (pr->otpid_sel) /* OTPID action */
pr->otpid_data = *aif--;
if (pr->itpid_sel) /* ITPID action */
pr->itpid_data = *aif--;
if (pr->shaper_sel) /* Traffic shaper action */
pr->shaper_data = *aif--;
}
static void rtl838x_pie_rule_dump_raw(u32 r[])
{
pr_info("Raw IACL table entry:\n");
pr_info("Match : %08x %08x %08x %08x %08x %08x\n", r[0], r[1], r[2], r[3], r[4], r[5]);
pr_info("Fixed : %08x\n", r[6]);
pr_info("Match M: %08x %08x %08x %08x %08x %08x\n", r[7], r[8], r[9], r[10], r[11], r[12]);
pr_info("Fixed M: %08x\n", r[13]);
pr_info("AIF : %08x %08x %08x\n", r[14], r[15], r[16]);
pr_info("Sel : %08x\n", r[17]);
}
// Currently not used
// static void rtl838x_pie_rule_dump(struct pie_rule *pr)
// {
// pr_info("Drop: %d, fwd: %d, ovid: %d, ivid: %d, flt: %d, log: %d, rmk: %d, meter: %d tagst: %d, mir: %d, nopri: %d, cpupri: %d, otpid: %d, itpid: %d, shape: %d\n",
// pr->drop, pr->fwd_sel, pr->ovid_sel, pr->ivid_sel, pr->flt_sel, pr->log_sel, pr->rmk_sel, pr->log_sel, pr->tagst_sel, pr->mir_sel, pr->nopri_sel,
// pr->cpupri_sel, pr->otpid_sel, pr->itpid_sel, pr->shaper_sel);
// if (pr->fwd_sel)
// pr_info("FWD: %08x\n", pr->fwd_data);
// pr_info("TID: %x, %x\n", pr->tid, pr->tid_m);
// }
static int rtl838x_pie_rule_read(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
{
/* Read IACL table (1) via register 0 */
struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
u32 r[18];
int block = idx / PIE_BLOCK_SIZE;
u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
memset(pr, 0, sizeof(*pr));
rtl_table_read(q, idx);
for (int i = 0; i < 18; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl838x_read_pie_fixed_fields(r, pr);
if (!pr->valid)
return 0;
pr_info("%s: template_selectors %08x, tid: %d\n", __func__, t_select, pr->tid);
rtl838x_pie_rule_dump_raw(r);
rtl838x_read_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
rtl838x_read_pie_action(r, pr);
return 0;
}
static int rtl838x_pie_rule_write(struct rtl838x_switch_priv *priv, int idx, struct pie_rule *pr)
{
/* Access IACL table (1) via register 0 */
struct table_reg *q = rtl_table_get(RTL8380_TBL_0, 1);
u32 r[18];
int err;
int block = idx / PIE_BLOCK_SIZE;
u32 t_select = sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block));
pr_debug("%s: %d, t_select: %08x\n", __func__, idx, t_select);
for (int i = 0; i < 18; i++)
r[i] = 0;
if (!pr->valid) {
err = -EINVAL;
pr_err("Rule invalid\n");
goto errout;
}
rtl838x_write_pie_fixed_fields(r, pr);
pr_debug("%s: template %d\n", __func__, (t_select >> (pr->tid * 3)) & 0x7);
rtl838x_write_pie_templated(r, pr, fixed_templates[(t_select >> (pr->tid * 3)) & 0x7]);
err = rtl838x_write_pie_action(r, pr);
if (err) {
pr_err("Rule actions too complex\n");
goto errout;
}
/* rtl838x_pie_rule_dump_raw(r); */
for (int i = 0; i < 18; i++)
sw_w32(r[i], rtl_table_data(q, i));
errout:
rtl_table_write(q, idx);
rtl_table_release(q);
return err;
}
static bool rtl838x_pie_templ_has(int t, enum template_field_id field_type)
{
enum template_field_id ft;
for (int i = 0; i < N_FIXED_FIELDS; i++) {
ft = fixed_templates[t][i];
if (field_type == ft)
return true;
}
return false;
}
static int rtl838x_pie_verify_template(struct rtl838x_switch_priv *priv,
struct pie_rule *pr, int t, int block)
{
int i;
if (!pr->is_ipv6 && pr->sip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP0))
return -1;
if (!pr->is_ipv6 && pr->dip_m && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP0))
return -1;
if (pr->is_ipv6) {
if ((pr->sip6_m.s6_addr32[0] ||
pr->sip6_m.s6_addr32[1] ||
pr->sip6_m.s6_addr32[2] ||
pr->sip6_m.s6_addr32[3]) &&
!rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SIP2))
return -1;
if ((pr->dip6_m.s6_addr32[0] ||
pr->dip6_m.s6_addr32[1] ||
pr->dip6_m.s6_addr32[2] ||
pr->dip6_m.s6_addr32[3]) &&
!rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DIP2))
return -1;
}
if (ether_addr_to_u64(pr->smac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_SMAC0))
return -1;
if (ether_addr_to_u64(pr->dmac) && !rtl838x_pie_templ_has(t, TEMPLATE_FIELD_DMAC0))
return -1;
/* TODO: Check more */
i = find_first_zero_bit(&priv->pie_use_bm[block * 4], PIE_BLOCK_SIZE);
if (i >= PIE_BLOCK_SIZE)
return -1;
return i + PIE_BLOCK_SIZE * block;
}
static int rtl838x_pie_rule_add(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
int idx, block, j;
pr_debug("In %s\n", __func__);
mutex_lock(&priv->pie_mutex);
for (block = 0; block < priv->n_pie_blocks; block++) {
for (j = 0; j < 3; j++) {
int t = (sw_r32(RTL838X_ACL_BLK_TMPLTE_CTRL(block)) >> (j * 3)) & 0x7;
pr_debug("Testing block %d, template %d, template id %d\n", block, j, t);
idx = rtl838x_pie_verify_template(priv, pr, t, block);
if (idx >= 0)
break;
}
if (j < 3)
break;
}
if (block >= priv->n_pie_blocks) {
mutex_unlock(&priv->pie_mutex);
return -EOPNOTSUPP;
}
pr_debug("Using block: %d, index %d, template-id %d\n", block, idx, j);
set_bit(idx, priv->pie_use_bm);
pr->valid = true;
pr->tid = j; /* Mapped to template number */
pr->tid_m = 0x3;
pr->id = idx;
rtl838x_pie_lookup_enable(priv, idx);
rtl838x_pie_rule_write(priv, idx, pr);
mutex_unlock(&priv->pie_mutex);
return 0;
}
static void rtl838x_pie_rule_rm(struct rtl838x_switch_priv *priv, struct pie_rule *pr)
{
int idx = pr->id;
rtl838x_pie_rule_del(priv, idx, idx);
clear_bit(idx, priv->pie_use_bm);
}
/* Initializes the Packet Inspection Engine:
* powers it up, enables default matching templates for all blocks
* and clears all rules possibly installed by u-boot
*/
static void rtl838x_pie_init(struct rtl838x_switch_priv *priv)
{
u32 template_selectors;
mutex_init(&priv->pie_mutex);
/* Enable ACL lookup on all ports, including CPU_PORT */
for (int i = 0; i <= priv->cpu_port; i++)
sw_w32(1, RTL838X_ACL_PORT_LOOKUP_CTRL(i));
/* Power on all PIE blocks */
for (int i = 0; i < priv->n_pie_blocks; i++)
sw_w32_mask(0, BIT(i), RTL838X_ACL_BLK_PWR_CTRL);
/* Include IPG in metering */
sw_w32(1, RTL838X_METER_GLB_CTRL);
/* Delete all present rules */
rtl838x_pie_rule_del(priv, 0, priv->n_pie_blocks * PIE_BLOCK_SIZE - 1);
/* Routing bypasses source port filter: disable write-protection, first */
sw_w32_mask(0, 3, RTL838X_INT_RW_CTRL);
sw_w32_mask(0, 1, RTL838X_DMY_REG27);
sw_w32_mask(3, 0, RTL838X_INT_RW_CTRL);
/* Enable predefined templates 0, 1 and 2 for even blocks */
template_selectors = 0 | (1 << 3) | (2 << 6);
for (int i = 0; i < 6; i += 2)
sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
/* Enable predefined templates 0, 3 and 4 (IPv6 support) for odd blocks */
template_selectors = 0 | (3 << 3) | (4 << 6);
for (int i = 1; i < priv->n_pie_blocks; i += 2)
sw_w32(template_selectors, RTL838X_ACL_BLK_TMPLTE_CTRL(i));
/* Group each pair of physical blocks together to a logical block */
sw_w32(0b10101010101, RTL838X_ACL_BLK_GROUP_CTRL);
}
static u32 rtl838x_packet_cntr_read(int counter)
{
u32 v;
/* Read LOG table (3) via register RTL8380_TBL_0 */
struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
pr_debug("In %s, id %d\n", __func__, counter);
rtl_table_read(r, counter / 2);
pr_debug("Registers: %08x %08x\n",
sw_r32(rtl_table_data(r, 0)), sw_r32(rtl_table_data(r, 1)));
/* The table has a size of 2 registers */
if (counter % 2)
v = sw_r32(rtl_table_data(r, 0));
else
v = sw_r32(rtl_table_data(r, 1));
rtl_table_release(r);
return v;
}
static void rtl838x_packet_cntr_clear(int counter)
{
/* Access LOG table (3) via register RTL8380_TBL_0 */
struct table_reg *r = rtl_table_get(RTL8380_TBL_0, 3);
pr_debug("In %s, id %d\n", __func__, counter);
/* The table has a size of 2 registers */
if (counter % 2)
sw_w32(0, rtl_table_data(r, 0));
else
sw_w32(0, rtl_table_data(r, 1));
rtl_table_write(r, counter / 2);
rtl_table_release(r);
}
static void rtl838x_route_read(int idx, struct rtl83xx_route *rt)
{
/* Read ROUTING table (2) via register RTL8380_TBL_1 */
struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
pr_debug("In %s, id %d\n", __func__, idx);
rtl_table_read(r, idx);
/* The table has a size of 2 registers */
rt->nh.gw = sw_r32(rtl_table_data(r, 0));
rt->nh.gw <<= 32;
rt->nh.gw |= sw_r32(rtl_table_data(r, 1));
rtl_table_release(r);
}
static void rtl838x_route_write(int idx, struct rtl83xx_route *rt)
{
/* Access ROUTING table (2) via register RTL8380_TBL_1 */
struct table_reg *r = rtl_table_get(RTL8380_TBL_1, 2);
pr_debug("In %s, id %d, gw: %016llx\n", __func__, idx, rt->nh.gw);
sw_w32(rt->nh.gw >> 32, rtl_table_data(r, 0));
sw_w32(rt->nh.gw, rtl_table_data(r, 1));
rtl_table_write(r, idx);
rtl_table_release(r);
}
static int rtl838x_l3_setup(struct rtl838x_switch_priv *priv)
{
/* Nothing to be done */
return 0;
}
void rtl838x_vlan_port_keep_tag_set(int port, bool keep_outer, bool keep_inner)
{
sw_w32(FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_OTAG_STS_MASK,
keep_outer ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG) |
FIELD_PREP(RTL838X_VLAN_PORT_TAG_STS_CTRL_ITAG_STS_MASK,
keep_inner ? RTL838X_VLAN_PORT_TAG_STS_TAGGED : RTL838X_VLAN_PORT_TAG_STS_UNTAG),
RTL838X_VLAN_PORT_TAG_STS_CTRL(port));
}
void rtl838x_vlan_port_pvidmode_set(int port, enum pbvlan_type type, enum pbvlan_mode mode)
{
if (type == PBVLAN_TYPE_INNER)
sw_w32_mask(0x3, mode, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
else
sw_w32_mask(0x3 << 14, mode << 14, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
}
void rtl838x_vlan_port_pvid_set(int port, enum pbvlan_type type, int pvid)
{
if (type == PBVLAN_TYPE_INNER)
sw_w32_mask(0xfff << 2, pvid << 2, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
else
sw_w32_mask(0xfff << 16, pvid << 16, RTL838X_VLAN_PORT_PB_VLAN + (port << 2));
}
static int rtl838x_set_ageing_time(unsigned long msec)
{
int t = sw_r32(RTL838X_L2_CTRL_1);
t &= 0x7FFFFF;
t = t * 128 / 625; /* Aging time in seconds. 0: L2 aging disabled */
pr_debug("L2 AGING time: %d sec\n", t);
t = (msec * 625 + 127000) / 128000;
t = t > 0x7FFFFF ? 0x7FFFFF : t;
sw_w32_mask(0x7FFFFF, t, RTL838X_L2_CTRL_1);
pr_debug("Dynamic aging for ports: %x\n", sw_r32(RTL838X_L2_PORT_AGING_OUT));
return 0;
}
static void rtl838x_set_igr_filter(int port, enum igr_filter state)
{
sw_w32_mask(0x3 << ((port & 0xf)<<1), state << ((port & 0xf)<<1),
RTL838X_VLAN_PORT_IGR_FLTR + (((port >> 4) << 2)));
}
static void rtl838x_set_egr_filter(int port, enum egr_filter state)
{
sw_w32_mask(0x1 << (port % 0x1d), state << (port % 0x1d),
RTL838X_VLAN_PORT_EGR_FLTR + (((port / 29) << 2)));
}
void rtl838x_set_distribution_algorithm(int group, int algoidx, u32 algomsk)
{
algoidx &= 1; /* RTL838X only supports 2 concurrent algorithms */
sw_w32_mask(1 << (group % 8), algoidx << (group % 8),
RTL838X_TRK_HASH_IDX_CTRL + ((group >> 3) << 2));
sw_w32(algomsk, RTL838X_TRK_HASH_CTRL + (algoidx << 2));
}
void rtl838x_set_receive_management_action(int port, rma_ctrl_t type, action_type_t action)
{
switch(type) {
case BPDU:
sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
RTL838X_RMA_BPDU_CTRL + ((port >> 4) << 2));
break;
case PTP:
sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
RTL838X_RMA_PTP_CTRL + ((port >> 4) << 2));
break;
case LLDP:
sw_w32_mask(3 << ((port & 0xf) << 1), (action & 0x3) << ((port & 0xf) << 1),
RTL838X_RMA_LLDP_CTRL + ((port >> 4) << 2));
break;
default:
break;
}
}
const struct rtl838x_reg rtl838x_reg = {
.mask_port_reg_be = rtl838x_mask_port_reg,
.set_port_reg_be = rtl838x_set_port_reg,
.get_port_reg_be = rtl838x_get_port_reg,
.mask_port_reg_le = rtl838x_mask_port_reg,
.set_port_reg_le = rtl838x_set_port_reg,
.get_port_reg_le = rtl838x_get_port_reg,
.stat_port_rst = RTL838X_STAT_PORT_RST,
.stat_rst = RTL838X_STAT_RST,
.stat_port_std_mib = RTL838X_STAT_PORT_STD_MIB,
.port_iso_ctrl = rtl838x_port_iso_ctrl,
.traffic_enable = rtl838x_traffic_enable,
.traffic_disable = rtl838x_traffic_disable,
.traffic_get = rtl838x_traffic_get,
.traffic_set = rtl838x_traffic_set,
.l2_ctrl_0 = RTL838X_L2_CTRL_0,
.l2_ctrl_1 = RTL838X_L2_CTRL_1,
.l2_port_aging_out = RTL838X_L2_PORT_AGING_OUT,
.set_ageing_time = rtl838x_set_ageing_time,
.smi_poll_ctrl = RTL838X_SMI_POLL_CTRL,
.l2_tbl_flush_ctrl = RTL838X_L2_TBL_FLUSH_CTRL,
.exec_tbl0_cmd = rtl838x_exec_tbl0_cmd,
.exec_tbl1_cmd = rtl838x_exec_tbl1_cmd,
.tbl_access_data_0 = rtl838x_tbl_access_data_0,
.isr_glb_src = RTL838X_ISR_GLB_SRC,
.isr_port_link_sts_chg = RTL838X_ISR_PORT_LINK_STS_CHG,
.imr_port_link_sts_chg = RTL838X_IMR_PORT_LINK_STS_CHG,
.imr_glb = RTL838X_IMR_GLB,
.vlan_tables_read = rtl838x_vlan_tables_read,
.vlan_set_tagged = rtl838x_vlan_set_tagged,
.vlan_set_untagged = rtl838x_vlan_set_untagged,
.mac_force_mode_ctrl = rtl838x_mac_force_mode_ctrl,
.vlan_profile_dump = rtl838x_vlan_profile_dump,
.vlan_profile_setup = rtl838x_vlan_profile_setup,
.vlan_fwd_on_inner = rtl838x_vlan_fwd_on_inner,
.set_vlan_igr_filter = rtl838x_set_igr_filter,
.set_vlan_egr_filter = rtl838x_set_egr_filter,
.enable_learning = rtl838x_enable_learning,
.enable_flood = rtl838x_enable_flood,
.enable_mcast_flood = rtl838x_enable_mcast_flood,
.enable_bcast_flood = rtl838x_enable_bcast_flood,
.set_static_move_action = rtl838x_set_static_move_action,
.stp_get = rtl838x_stp_get,
.stp_set = rtl838x_stp_set,
.mac_port_ctrl = rtl838x_mac_port_ctrl,
.l2_port_new_salrn = rtl838x_l2_port_new_salrn,
.l2_port_new_sa_fwd = rtl838x_l2_port_new_sa_fwd,
.mir_ctrl = RTL838X_MIR_CTRL,
.mir_dpm = RTL838X_MIR_DPM_CTRL,
.mir_spm = RTL838X_MIR_SPM_CTRL,
.mac_link_sts = RTL838X_MAC_LINK_STS,
.mac_link_dup_sts = RTL838X_MAC_LINK_DUP_STS,
.mac_link_spd_sts = rtl838x_mac_link_spd_sts,
.mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
.write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
.read_cam = rtl838x_read_cam,
.write_cam = rtl838x_write_cam,
.vlan_port_keep_tag_set = rtl838x_vlan_port_keep_tag_set,
.vlan_port_pvidmode_set = rtl838x_vlan_port_pvidmode_set,
.vlan_port_pvid_set = rtl838x_vlan_port_pvid_set,
.trk_mbr_ctr = rtl838x_trk_mbr_ctr,
.rma_bpdu_fld_pmask = RTL838X_RMA_BPDU_FLD_PMSK,
.spcl_trap_eapol_ctrl = RTL838X_SPCL_TRAP_EAPOL_CTRL,
.init_eee = rtl838x_init_eee,
.port_eee_set = rtl838x_port_eee_set,
.eee_port_ability = rtl838x_eee_port_ability,
.l2_hash_seed = rtl838x_l2_hash_seed,
.l2_hash_key = rtl838x_l2_hash_key,
.read_mcast_pmask = rtl838x_read_mcast_pmask,
.write_mcast_pmask = rtl838x_write_mcast_pmask,
.pie_init = rtl838x_pie_init,
.pie_rule_read = rtl838x_pie_rule_read,
.pie_rule_write = rtl838x_pie_rule_write,
.pie_rule_add = rtl838x_pie_rule_add,
.pie_rule_rm = rtl838x_pie_rule_rm,
.l2_learning_setup = rtl838x_l2_learning_setup,
.packet_cntr_read = rtl838x_packet_cntr_read,
.packet_cntr_clear = rtl838x_packet_cntr_clear,
.route_read = rtl838x_route_read,
.route_write = rtl838x_route_write,
.l3_setup = rtl838x_l3_setup,
.set_distribution_algorithm = rtl838x_set_distribution_algorithm,
.set_receive_management_action = rtl838x_set_receive_management_action,
};
irqreturn_t rtl838x_switch_irq(int irq, void *dev_id)
{
struct dsa_switch *ds = dev_id;
u32 status = sw_r32(RTL838X_ISR_GLB_SRC);
u32 ports = sw_r32(RTL838X_ISR_PORT_LINK_STS_CHG);
u32 link;
/* Clear status */
sw_w32(ports, RTL838X_ISR_PORT_LINK_STS_CHG);
pr_info("RTL8380 Link change: status: %x, ports %x\n", status, ports);
for (int i = 0; i < 28; i++) {
if (ports & BIT(i)) {
link = sw_r32(RTL838X_MAC_LINK_STS);
if (link & BIT(i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
}
}
return IRQ_HANDLED;
}
int rtl838x_smi_wait_op(int timeout)
{
int ret = 0;
u32 val;
ret = readx_poll_timeout(sw_r32, RTL838X_SMI_ACCESS_PHY_CTRL_1,
val, !(val & 0x1), 20, timeout);
if (ret)
pr_err("%s: timeout\n", __func__);
return ret;
}
/* Reads a register in a page from the PHY */
int rtl838x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
int err;
u32 v;
u32 park_page;
if (port > 31) {
*val = 0xffff;
return 0;
}
if (page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
err = rtl838x_smi_wait_op(100000);
if (err)
goto errout;
sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
v = reg << 20 | page << 3;
sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
err = rtl838x_smi_wait_op(100000);
if (err)
goto errout;
*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
err = 0;
errout:
mutex_unlock(&smi_lock);
return err;
}
/* Write to a register in a page of the PHY */
int rtl838x_write_phy(u32 port, u32 page, u32 reg, u32 val)
{
int err;
u32 v;
u32 park_page;
val &= 0xffff;
if (port > 31 || page > 4095 || reg > 31)
return -ENOTSUPP;
mutex_lock(&smi_lock);
err = rtl838x_smi_wait_op(100000);
if (err)
goto errout;
sw_w32(BIT(port), RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
park_page = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_1) & ((0x1f << 15) | 0x2);
v = reg << 20 | page << 3 | 0x4;
sw_w32(v | park_page, RTL838X_SMI_ACCESS_PHY_CTRL_1);
sw_w32_mask(0, 1, RTL838X_SMI_ACCESS_PHY_CTRL_1);
err = rtl838x_smi_wait_op(100000);
if (err)
goto errout;
err = 0;
errout:
mutex_unlock(&smi_lock);
return err;
}
/* Read an mmd register of a PHY */
int rtl838x_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val)
{
int err;
u32 v;
mutex_lock(&smi_lock);
err = rtl838x_smi_wait_op(100000);
if (err)
goto errout;
sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
v = addr << 16 | reg;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3);
/* mmd-access | read | cmd-start */
v = 1 << 1 | 0 << 2 | 1;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
err = rtl838x_smi_wait_op(100000);
if (err)
goto errout;
*val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff;
err = 0;
errout:
mutex_unlock(&smi_lock);
return err;
}
/* Write to an mmd register of a PHY */
int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val)
{
int err;
u32 v;
pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val);
val &= 0xffff;
mutex_lock(&smi_lock);
err = rtl838x_smi_wait_op(100000);
if (err)
goto errout;
sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0);
mdelay(10);
sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2);
sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3);
sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3);
/* mmd-access | write | cmd-start */
v = 1 << 1 | 1 << 2 | 1;
sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1);
err = rtl838x_smi_wait_op(100000);
if (err)
goto errout;
err = 0;
errout:
mutex_unlock(&smi_lock);
return err;
}
void rtl8380_get_version(struct rtl838x_switch_priv *priv)
{
u32 rw_save, info_save;
u32 info;
rw_save = sw_r32(RTL838X_INT_RW_CTRL);
sw_w32(rw_save | 0x3, RTL838X_INT_RW_CTRL);
info_save = sw_r32(RTL838X_CHIP_INFO);
sw_w32(info_save | 0xA0000000, RTL838X_CHIP_INFO);
info = sw_r32(RTL838X_CHIP_INFO);
sw_w32(info_save, RTL838X_CHIP_INFO);
sw_w32(rw_save, RTL838X_INT_RW_CTRL);
if ((info & 0xFFFF) == 0x6275) {
if (((info >> 16) & 0x1F) == 0x1)
priv->version = RTL8380_VERSION_A;
else if (((info >> 16) & 0x1F) == 0x2)
priv->version = RTL8380_VERSION_B;
else
priv->version = RTL8380_VERSION_B;
} else {
priv->version = '-';
}
}
void rtl838x_vlan_profile_dump(int profile)
{
u32 p;
if (profile < 0 || profile > 7)
return;
p = sw_r32(RTL838X_VLAN_PROFILE(profile));
pr_info("VLAN profile %d: L2 learning: %d, UNKN L2MC FLD PMSK %d, \
UNKN IPMC FLD PMSK %d, UNKN IPv6MC FLD PMSK: %d",
profile, p & 1, (p >> 1) & 0x1ff, (p >> 10) & 0x1ff, (p >> 19) & 0x1ff);
}
void rtl8380_sds_rst(int mac)
{
u32 offset = (mac == 24) ? 0 : 0x100;
sw_w32_mask(1 << 11, 0, RTL838X_SDS4_FIB_REG0 + offset);
sw_w32_mask(0x3, 0, RTL838X_SDS4_REG28 + offset);
sw_w32_mask(0x3, 0x3, RTL838X_SDS4_REG28 + offset);
sw_w32_mask(0, 0x1 << 6, RTL838X_SDS4_DUMMY0 + offset);
sw_w32_mask(0x1 << 6, 0, RTL838X_SDS4_DUMMY0 + offset);
pr_debug("SERDES reset: %d\n", mac);
}
int rtl8380_sds_power(int mac, int val)
{
u32 mode = (val == 1) ? 0x4 : 0x9;
u32 offset = (mac == 24) ? 5 : 0;
if ((mac != 24) && (mac != 26)) {
pr_err("%s: not a fibre port: %d\n", __func__, mac);
return -1;
}
sw_w32_mask(0x1f << offset, mode << offset, RTL838X_SDS_MODE_SEL);
rtl8380_sds_rst(mac);
return 0;
}