openwrt/package/boot/uboot-d1/patches/0083-ram-sunxi-Add-Allwinner-D1-DRAM-driver.patch
Zoltan HERPAI d41d9befb9 uboot-d1: add bootloader for upcoming d1 target
Add u-boot bootloader based on 2023.01 to support D1-based boards, currently:

 - Dongshan Nezha STU
 - LicheePi RV Dock
 - MangoPi MQ-Pro
 - Nezha D1

Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
2024-02-29 16:50:20 +01:00

1944 lines
48 KiB
Diff

From 9f612f3a1fd3d0759abca3720d488a17d159aa17 Mon Sep 17 00:00:00 2001
From: Samuel Holland <samuel@sholland.org>
Date: Sun, 30 Oct 2022 14:54:08 -0500
Subject: [PATCH 83/90] ram: sunxi: Add Allwinner D1 DRAM driver
Signed-off-by: Samuel Holland <samuel@sholland.org>
---
drivers/ram/Kconfig | 1 +
drivers/ram/Makefile | 1 +
drivers/ram/sunxi/Kconfig | 6 +
drivers/ram/sunxi/Makefile | 3 +
drivers/ram/sunxi/dram_v2.h | 65 +
drivers/ram/sunxi/mctl_hal-sun20iw1p1.c | 1771 +++++++++++++++++++++++
drivers/ram/sunxi/sdram.h | 46 +
7 files changed, 1893 insertions(+)
create mode 100644 drivers/ram/sunxi/Kconfig
create mode 100644 drivers/ram/sunxi/Makefile
create mode 100644 drivers/ram/sunxi/dram_v2.h
create mode 100644 drivers/ram/sunxi/mctl_hal-sun20iw1p1.c
create mode 100644 drivers/ram/sunxi/sdram.h
--- a/drivers/ram/Kconfig
+++ b/drivers/ram/Kconfig
@@ -101,3 +101,4 @@ source "drivers/ram/rockchip/Kconfig"
source "drivers/ram/sifive/Kconfig"
source "drivers/ram/stm32mp1/Kconfig"
source "drivers/ram/octeon/Kconfig"
+source "drivers/ram/sunxi/Kconfig"
--- a/drivers/ram/Makefile
+++ b/drivers/ram/Makefile
@@ -20,5 +20,6 @@ obj-$(CONFIG_K3_DDRSS) += k3-ddrss/
obj-$(CONFIG_IMXRT_SDRAM) += imxrt_sdram.o
obj-$(CONFIG_RAM_SIFIVE) += sifive/
+obj-$(CONFIG_RAM_SUNXI) += sunxi/
obj-$(CONFIG_ARCH_OCTEON) += octeon/
--- /dev/null
+++ b/drivers/ram/sunxi/Kconfig
@@ -0,0 +1,6 @@
+config RAM_SUNXI
+ bool "Ram drivers support for sunxi SoCs"
+ depends on RAM && BOARD_SUNXI
+ default y
+ help
+ This enables support for ram drivers of sunxi SoCs.
--- /dev/null
+++ b/drivers/ram/sunxi/Makefile
@@ -0,0 +1,3 @@
+# SPDX-License-Identifier: GPL-2.0+
+
+obj-$(CONFIG_RAM_SUNXI) += mctl_hal-sun20iw1p1.o
--- /dev/null
+++ b/drivers/ram/sunxi/dram_v2.h
@@ -0,0 +1,65 @@
+/*
+ * (C) Copyright 2007-2013
+* SPDX-License-Identifier: GPL-2.0+
+ * Allwinner Technology Co., Ltd. <www.allwinnertech.com>
+ * Jerry Wang <wangflord@allwinnertech.com>
+ *
+ * See file CREDITS for list of people who contributed to this
+ * project.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public License as
+ * published by the Free Software Foundation; either version 2 of
+ * the License, or (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston,
+ * MA 02111-1307 USA
+ */
+
+#ifndef __dram_head_h__
+#define __dram_head_h__
+
+struct dram_para_t
+{
+ //normal configuration
+ unsigned int dram_clk;
+ unsigned int dram_type; //dram_type DDR2: 2 DDR3: 3 LPDDR2: 6 LPDDR3: 7 DDR3L: 31
+ //unsigned int lpddr2_type; //LPDDR2 type S4:0 S2:1 NVM:2
+ unsigned int dram_zq; //do not need
+ unsigned int dram_odt_en;
+
+ //control configuration
+ unsigned int dram_para1;
+ unsigned int dram_para2;
+
+ //timing configuration
+ unsigned int dram_mr0;
+ unsigned int dram_mr1;
+ unsigned int dram_mr2;
+ unsigned int dram_mr3;
+ unsigned int dram_tpr0; //DRAMTMG0
+ unsigned int dram_tpr1; //DRAMTMG1
+ unsigned int dram_tpr2; //DRAMTMG2
+ unsigned int dram_tpr3; //DRAMTMG3
+ unsigned int dram_tpr4; //DRAMTMG4
+ unsigned int dram_tpr5; //DRAMTMG5
+ unsigned int dram_tpr6; //DRAMTMG8
+ //reserved for future use
+ unsigned int dram_tpr7;
+ unsigned int dram_tpr8;
+ unsigned int dram_tpr9;
+ unsigned int dram_tpr10;
+ unsigned int dram_tpr11;
+ unsigned int dram_tpr12;
+ unsigned int dram_tpr13;
+
+};
+
+#endif
--- /dev/null
+++ b/drivers/ram/sunxi/mctl_hal-sun20iw1p1.c
@@ -0,0 +1,1771 @@
+// SPDX-License-Identifier: GPL-2.0+
+
+#include <common.h>
+#include <dm.h>
+#include <ram.h>
+#include <linux/delay.h>
+
+#include "dram_v2.h"
+#include "sdram.h"
+
+#define readl rv_readl
+#define writel rv_writel
+#include <asm/io.h>
+#undef readl
+#undef writel
+
+#define readl(x) rv_readl((const volatile void __iomem *)(u64)(x))
+#define writel(x, v) rv_writel(v, (volatile void __iomem *)(u64)(x))
+
+#if defined(CONFIG_SPL_BUILD)
+
+char* memcpy_self(char* dst, char* src, int len)
+{
+ int i;
+ for(i=0; i!=len; i++) {
+ dst[i] = src[i];
+ }
+ return dst;
+}
+
+void dram_vol_set(struct dram_para_t *para)
+{
+ int reg, vol = 0;
+
+ switch( para->dram_type ) {
+ case 2: vol = 47; break;
+ case 3: vol = 25; break;
+ default: vol = 0;
+ }
+vol = 25; // XXX
+ reg = readl(0x3000150);
+ reg &= ~(0xff00);
+ reg |= vol << 8;
+ reg &= ~(0x200000);
+ writel(0x3000150, reg);
+
+ udelay(1);
+}
+
+void paraconfig(unsigned int *para, unsigned int mask, unsigned int value)
+{
+ *para &= ~(mask);
+ *para |= value;
+}
+
+
+void dram_enable_all_master(void)
+{
+ writel(0x3102020, -1);
+ writel(0x3102024, 0xff);
+ writel(0x3102028, 0xffff);
+ udelay(10);
+}
+
+
+void dram_disable_all_master(void)
+{
+ writel(0x3102020, 1);
+ writel(0x3102024, 0);
+ writel(0x3102028, 0);
+ udelay(10);
+}
+
+
+void eye_delay_compensation(struct dram_para_t *para) // s1
+{
+ unsigned int val, ptr;
+
+ // DATn0IOCR, n = 0...7
+ for (ptr = 0x3103310; ptr != 0x3103334; ptr += 4) {
+ val = readl(ptr);
+ val |= (para->dram_tpr11 << 9) & 0x1e00;
+ val |= (para->dram_tpr12 << 1) & 0x001e;
+ writel(ptr, val);
+ }
+
+ // DATn1IOCR, n = 0...7
+ for (ptr = 0x3103390; ptr != 0x31033b4; ptr += 4) {
+ val = readl(ptr);
+ val |= ((para->dram_tpr11 >> 4) << 9) & 0x1e00;
+ val |= ((para->dram_tpr12 >> 4) << 1) & 0x001e;
+ writel(ptr, val);
+ }
+
+ // PGCR0: assert AC loopback FIFO reset
+ val = readl(0x3103100);
+ val &= 0xfbffffff;
+ writel(0x3103100, val);
+
+ // ??
+ val = readl(0x3103334);
+ val |= ((para->dram_tpr11 >> 16) << 9) & 0x1e00;
+ val |= ((para->dram_tpr12 >> 16) << 1) & 0x001e;
+ writel(0x3103334, val);
+
+ val = readl(0x3103338);
+ val |= ((para->dram_tpr11 >> 16) << 9) & 0x1e00;
+ val |= ((para->dram_tpr12 >> 16) << 1) & 0x001e;
+ writel(0x3103338, val);
+
+ val = readl(0x31033b4);
+ val |= ((para->dram_tpr11 >> 20) << 9) & 0x1e00;
+ val |= ((para->dram_tpr12 >> 20) << 1) & 0x001e;
+ writel(0x31033b4, val);
+
+ val = readl(0x31033b8);
+ val |= ((para->dram_tpr11 >> 20) << 9) & 0x1e00;
+ val |= ((para->dram_tpr12 >> 20) << 1) & 0x001e;
+ writel(0x31033b8, val);
+
+ val = readl(0x310333c);
+ val |= ((para->dram_tpr11 >> 16) << 25) & 0x1e000000;
+ writel(0x310333c, val);
+
+ val = readl(0x31033bc);
+ val |= ((para->dram_tpr11 >> 20) << 25) & 0x1e000000;
+ writel(0x31033bc, val);
+
+ // PGCR0: release AC loopback FIFO reset
+ val = readl(0x3103100);
+ val |= 0x04000000;
+ writel(0x3103100, val);
+
+ udelay(1);
+
+ for (ptr = 0x3103240; ptr != 0x310327c; ptr += 4) {
+ val = readl(ptr);
+ val |= ((para->dram_tpr10 >> 4) << 8) & 0x0f00;
+ writel(ptr, val);
+ }
+
+ for (ptr = 0x3103228; ptr != 0x3103240; ptr += 4) {
+ val = readl(ptr);
+ val |= ((para->dram_tpr10 >> 4) << 8) & 0x0f00;
+ writel(ptr, val);
+ }
+
+ val = readl(0x3103218);
+ val |= (para->dram_tpr10 << 8) & 0x0f00;
+ writel(0x3103218, val);
+
+ val = readl(0x310321c);
+ val |= (para->dram_tpr10 << 8) & 0x0f00;
+ writel(0x310321c, val);
+
+ val = readl(0x3103280);
+ val |= ((para->dram_tpr10 >> 12) << 8) & 0x0f00;
+ writel(0x3103280, val);
+}
+
+
+// Not used ??
+//
+void bit_delay_compensation(void)
+{
+ const unsigned int data0[44] = {
+ 0, 1, 2, 3, 2, 3, 3, 3, 0, 0, 0,
+ 6, 6, 6, 5, 5, 5, 5, 5, 0, 0, 0,
+ 0, 2, 4, 2, 6, 5, 5, 5, 0, 0, 0,
+ 3, 3, 3, 2, 2, 1, 1, 1, 0, 0, 0,
+ };
+ const unsigned int data1[44] = {
+ 0, 1, 3, 3, 3, 3, 3, 4, 3, 3, 3,
+ 3, 3, 4, 4, 3, 3, 3, 3, 3, 3, 3,
+ 0, 3, 3, 1, 6, 6, 5, 6, 3, 3, 3,
+ 5, 5, 6, 6, 4, 5, 3, 3, 3, 3, 3,
+ };
+
+ unsigned int *start = (unsigned int *)0x3102310; // DATX0IOCR
+ unsigned int *end = (unsigned int *)0x3102510; // DATX0IOCR x + 4 * size
+ unsigned int *datxiocr;
+ unsigned int i, j, k, rval;
+
+ rval = readl(0x3102100) & 0x03ffffff;
+ writel(0x3102100, rval);
+
+ // Fill DATX0IOCR - DATX3IOCR, 11 registers per block, blocks 0x20 words apart
+ for(i = 0, datxiocr = start; datxiocr != end; i += 11, datxiocr += 0x20) {
+ for(j = 0, k = i; j != 11; j++, k++) {
+ rval = readl((unsigned int)datxiocr[j]);
+ rval += data1[k] << 8;
+ rval += data0[k];
+ writel((unsigned int)datxiocr[j], rval);
+ }
+ }
+
+ rval = readl(0x3102100) | 0x04000000;
+ writel(0x3102100, rval);
+}
+
+// Not used ??
+//
+void set_master_priority_pad(struct dram_para_t *para)
+{
+ unsigned int val;
+
+ val = readl(0x310200c) & 0xfffff000;
+ val |= (para->dram_clk >> 1) - 1;
+ writel(0x310200c, val);
+
+ writel(0x3102200, 0x00001000);
+ writel(0x3102210, 0x01000009);
+ writel(0x3102214, 0x00500100);
+ writel(0x3102230, 0x0200000d);
+ writel(0x3102234, 0x00600100);
+ writel(0x3102240, 0x01000009);
+ writel(0x3102244, 0x00500100);
+ writel(0x3102260, 0x00640209);
+ writel(0x3102264, 0x00200040);
+ writel(0x3102290, 0x01000009);
+ writel(0x3102294, 0x00400080);
+ writel(0x3102470, 0);
+ writel(0x3102474, 0);
+
+ writel(0x31031c0, 0x0f802f05);
+ writel(0x31031c8, 0x0f0000ff);
+ writel(0x31031d0, 0x3f00005f);
+}
+
+int auto_cal_timing(unsigned int time, unsigned int freq)
+{
+ unsigned int t = time*freq;
+ return t/1000 + ( ((t%1000) != 0) ? 1 : 0);
+}
+
+// Main purpose of the auto_set_timing routine seems to be to calculate all
+// timing settings for the specific type of sdram used. Read together with
+// an sdram datasheet for context on the various variables.
+//
+void auto_set_timing_para(struct dram_para_t *para) // s5
+{
+ unsigned int freq; // s4
+ unsigned int type; // s8
+ unsigned int tpr13; // 80(sp)
+ unsigned int reg_val;
+
+ unsigned char tccd; // 88(sp)
+ unsigned char trrd; // s7
+ unsigned char trcd; // s3
+ unsigned char trc; // s9
+ unsigned char tfaw; // s10
+ unsigned char tras; // s11
+ unsigned char trp; // 0(sp)
+ unsigned char twtr; // s1
+ unsigned char twr; // s6
+ unsigned char trtp; // 64(sp)
+ unsigned char txp; // a6
+ unsigned short trefi; // s2
+ unsigned short trfc; // a5 / 8(sp)
+
+ freq = para->dram_clk;
+ type = para->dram_type;
+ tpr13 = para->dram_tpr13;
+
+ //printf("type = %d\n", type);
+ //printf("tpr13 = %p\n", tpr13);
+
+ if (para->dram_tpr13 & 0x2)
+ {
+ //dram_tpr0
+ tccd = ( (para->dram_tpr0 >> 21) & 0x7 ); // [23:21]
+ tfaw = ( (para->dram_tpr0 >> 15) & 0x3f ); // [20:15]
+ trrd = ( (para->dram_tpr0 >> 11) & 0xf ); // [14:11]
+ trcd = ( (para->dram_tpr0 >> 6) & 0x1f ); // [10:6 ]
+ trc = ( (para->dram_tpr0 >> 0) & 0x3f ); // [ 5:0 ]
+ //dram_tpr1
+ txp = ( (para->dram_tpr1 >> 23) & 0x1f ); // [27:23]
+ twtr = ( (para->dram_tpr1 >> 20) & 0x7 ); // [22:20]
+ trtp = ( (para->dram_tpr1 >> 15) & 0x1f ); // [19:15]
+ twr = ( (para->dram_tpr1 >> 11) & 0xf ); // [14:11]
+ trp = ( (para->dram_tpr1 >> 6) & 0x1f ); // [10:6 ]
+ tras = ( (para->dram_tpr1 >> 0) & 0x3f ); // [ 5:0 ]
+ //dram_tpr2
+ trfc = ( (para->dram_tpr2 >> 12)& 0x1ff); // [20:12]
+ trefi = ( (para->dram_tpr2 >> 0) & 0xfff); // [11:0 ]
+ }
+ else {
+ unsigned int frq2 = freq >> 1; // s0
+
+ if (type == 3) {
+ // DDR3
+ trfc = auto_cal_timing( 350, frq2);
+ trefi = auto_cal_timing(7800, frq2) / 32 + 1; // XXX
+ twr = auto_cal_timing( 8, frq2);
+ trcd = auto_cal_timing( 15, frq2);
+ twtr = twr + 2; // + 2 ? XXX
+ if (twr < 2) twtr = 2;
+ twr = trcd;
+ if (trcd < 2) twr = 2;
+ if (freq <= 800) {
+ tfaw = auto_cal_timing(50, frq2);
+ trrd = auto_cal_timing(10, frq2);
+ if (trrd < 2) trrd = 2;
+ trc = auto_cal_timing(53, frq2);
+ tras = auto_cal_timing(38, frq2);
+ txp = trrd; // 10
+ trp = trcd; // 15
+ }
+ else {
+ tfaw = auto_cal_timing(35, frq2);
+ trrd = auto_cal_timing(10, frq2);
+ if (trrd < 2) trrd = 2;
+ trcd = auto_cal_timing(14, frq2);
+ trc = auto_cal_timing(48, frq2);
+ tras = auto_cal_timing(34, frq2);
+ txp = trrd; // 10
+ trp = trcd; // 14
+ }
+ }
+ else if (type == 2) {
+ // DDR2
+ tfaw = auto_cal_timing( 50, frq2);
+ trrd = auto_cal_timing( 10, frq2);
+ trcd = auto_cal_timing( 20, frq2);
+ trc = auto_cal_timing( 65, frq2);
+ twtr = auto_cal_timing( 8, frq2);
+ trp = auto_cal_timing( 15, frq2);
+ tras = auto_cal_timing( 45, frq2);
+ trefi = auto_cal_timing(7800, frq2) / 32;
+ trfc = auto_cal_timing( 328, frq2);
+ txp = 2;
+ twr = trp; // 15
+ }
+ else if (type == 6) {
+ // LPDDR2
+ tfaw = auto_cal_timing( 50, frq2);
+ if (tfaw < 4) tfaw = 4;
+ trrd = auto_cal_timing( 10, frq2);
+ if (trrd == 0) trrd = 1;
+ trcd = auto_cal_timing( 24, frq2);
+ if (trcd < 2) trcd = 2;
+ trc = auto_cal_timing( 70, frq2);
+ txp = auto_cal_timing( 8, frq2);
+ if (txp == 0) {
+ txp = 1;
+ twtr = 2;
+ }
+ else {
+ twtr = txp;
+ if (txp < 2) {
+ txp = 2;
+ twtr = 2;
+ }
+ }
+ twr = auto_cal_timing( 15, frq2);
+ if (twr < 2) twr = 2;
+ trp = auto_cal_timing( 17, frq2);
+ tras = auto_cal_timing( 42, frq2);
+ trefi = auto_cal_timing(3900, frq2) / 32;
+ trfc = auto_cal_timing( 210, frq2);
+ }
+ else if (type == 7) {
+ // LPDDR3
+ tfaw = auto_cal_timing( 50, frq2);
+ if (tfaw < 4) tfaw = 4;
+ trrd = auto_cal_timing( 10, frq2);
+ if (trrd == 0) trrd = 1;
+ trcd = auto_cal_timing( 24, frq2);
+ if (trcd < 2) trcd = 2;
+ trc = auto_cal_timing( 70, frq2);
+ twtr = auto_cal_timing( 8, frq2);
+ if (twtr < 2) twtr = 2;
+ twr = auto_cal_timing( 15, frq2);
+ if (twr < 2) twr = 2;
+ trp = auto_cal_timing( 17, frq2);
+ tras = auto_cal_timing( 42, frq2);
+ trefi = auto_cal_timing(3900, frq2) / 32;
+ trfc = auto_cal_timing( 210, frq2);
+ txp = twtr;
+ }
+ else {
+ // default
+ trfc = 128;
+ trp = 6;
+ trefi = 98;
+ txp = 10;
+ twr = 8;
+ twtr = 3;
+ tras = 14;
+ tfaw = 16;
+ trc = 20;
+ trcd = 6;
+ trrd = 3;
+ }
+ //assign the value back to the DRAM structure
+ tccd = 2;
+ trtp = 4; // not in .S ?
+ para->dram_tpr0 = (trc<<0) | (trcd<<6) | (trrd<<11) | (tfaw<<15) | (tccd<<21);
+ para->dram_tpr1 = (tras<<0) | (trp<<6) | (twr<<11) | (trtp<<15) | (twtr<<20) | (txp<<23);
+ para->dram_tpr2 = (trefi<<0) | (trfc<<12);
+ }
+
+ unsigned int tcksrx; // t1
+ unsigned int tckesr; // t4;
+ unsigned int trd2wr; // t6
+ unsigned int trasmax; // t3;
+ unsigned int twtp; // s6 (was twr!)
+ unsigned int tcke; // s8
+ unsigned int tmod; // t0
+ unsigned int tmrd; // t5
+ unsigned int tmrw; // a1
+ unsigned int t_rdata_en;// a4 (was tcwl!)
+ unsigned int tcl; // a0
+ unsigned int wr_latency;// a7
+ unsigned int tcwl; // first a4, then a5
+ unsigned int mr3; // s0
+ unsigned int mr2; // t2
+ unsigned int mr1; // s1
+ unsigned int mr0; // a3
+ unsigned int dmr3; // 72(sp)
+ //unsigned int trtp; // 64(sp)
+ unsigned int dmr1; // 56(sp)
+ unsigned int twr2rd; // 48(sp)
+ unsigned int tdinit3; // 40(sp)
+ unsigned int tdinit2; // 32(sp)
+ unsigned int tdinit1; // 24(sp)
+ unsigned int tdinit0; // 16(sp)
+
+ dmr1 = para->dram_mr1;
+ dmr3 = para->dram_mr3;
+
+ switch (type) {
+
+ case 2: // DDR2
+ {
+ trasmax = freq / 30;
+ if (freq < 409) {
+ tcl = 3;
+ t_rdata_en = 1;
+ mr0 = 0x06a3;
+ }
+ else {
+ t_rdata_en = 2;
+ tcl = 4;
+ mr0 = 0x0e73;
+ }
+ tmrd = 2;
+ twtp = twr + 5;
+ tcksrx = 5;
+ tckesr = 4;
+ trd2wr = 4;
+ tcke = 3;
+ tmod = 12;
+ wr_latency = 1;
+ mr3 = 0;
+ mr2 = 0;
+ tdinit0 = 200*freq + 1;
+ tdinit1 = 100*freq / 1000 + 1;
+ tdinit2 = 200*freq + 1;
+ tdinit3 = 1*freq + 1;
+ tmrw = 0;
+ twr2rd = twtr + 5;
+ tcwl = 0;
+ mr1 = dmr1;
+ break;
+ }
+
+ case 3: // DDR3
+ {
+ trasmax = freq / 30;
+ if (freq <= 800) {
+ mr0 = 0x1c70;
+ tcl = 6;
+ wr_latency = 2;
+ tcwl = 4;
+ mr2 = 24;
+ }
+ else {
+ mr0 = 0x1e14;
+ tcl = 7;
+ wr_latency = 3;
+ tcwl = 5;
+ mr2 = 32;
+ }
+
+ twtp = tcwl + 2 + twtr; // WL+BL/2+tWTR
+ trd2wr = tcwl + 2 + twr; // WL+BL/2+tWR
+ twr2rd = tcwl + twtr; // WL+tWTR
+
+ tdinit0 = 500*freq + 1; // 500 us
+ tdinit1 = 360*freq / 1000 + 1; // 360 ns
+ tdinit2 = 200*freq + 1; // 200 us
+ tdinit3 = 1*freq + 1; // 1 us
+
+ if (((tpr13>>2) & 0x03) == 0x01 || freq < 912) {
+ mr1 = dmr1;
+ t_rdata_en = tcwl; // a5 <- a4
+ tcksrx = 5;
+ tckesr = 4;
+ trd2wr = 5;
+ }
+ else {
+ mr1 = dmr1;
+ t_rdata_en = tcwl; // a5 <- a4
+ tcksrx = 5;
+ tckesr = 4;
+ trd2wr = 6;
+ }
+ tcke = 3; // not in .S ?
+ tmod = 12;
+ tmrd = 4;
+ tmrw = 0;
+ mr3 = 0;
+ break;
+ }
+
+ case 6: // LPDDR2
+ {
+ trasmax = freq / 60;
+ mr3 = dmr3;
+ twtp = twr + 5;
+ mr2 = 6;
+ mr1 = 5;
+ tcksrx = 5;
+ tckesr = 5;
+ trd2wr = 10;
+ tcke = 2;
+ tmod = 5;
+ tmrd = 5;
+ tmrw = 3;
+ tcl = 4;
+ wr_latency = 1;
+ t_rdata_en = 1;
+ tdinit0 = 200*freq + 1;
+ tdinit1 = 100*freq / 1000 + 1;
+ tdinit2 = 11*freq + 1;
+ tdinit3 = 1*freq + 1;
+ twr2rd = twtr + 5;
+ tcwl = 2;
+ mr1 = 195;
+ mr0 = 0;
+ break;
+ }
+
+ case 7: // LPDDR3
+ {
+ trasmax = freq / 60;
+ if (freq < 800) {
+ tcwl = 4;
+ wr_latency = 3;
+ t_rdata_en = 6;
+ mr2 = 12;
+ }
+ else {
+ tcwl = 3;
+ tcke = 6;
+ wr_latency = 2;
+ t_rdata_en = 5;
+ mr2 = 10;
+ }
+ twtp = tcwl + 5;
+ tcl = 7;
+ mr3 = dmr3;
+ tcksrx = 5;
+ tckesr = 5;
+ trd2wr = 13;
+ tcke = 3;
+ tmod = 12;
+ tdinit0 = 400*freq + 1;
+ tdinit1 = 500*freq / 1000 + 1;
+ tdinit2 = 11*freq + 1;
+ tdinit3 = 1*freq + 1;
+ tmrd = 5;
+ tmrw = 5;
+ twr2rd = tcwl + twtr + 5;
+ mr1 = 195;
+ mr0 = 0;
+ break;
+ }
+
+ default:
+ twr2rd = 8; // 48(sp)
+ tcksrx = 4; // t1
+ tckesr = 3; // t4
+ trd2wr = 4; // t6
+ trasmax = 27; // t3
+ twtp = 12; // s6
+ tcke = 2; // s8
+ tmod = 6; // t0
+ tmrd = 2; // t5
+ tmrw = 0; // a1
+ tcwl = 3; // a5
+ tcl = 3; // a0
+ wr_latency = 1; // a7
+ t_rdata_en = 1; // a4
+ mr3 = 0; // s0
+ mr2 = 0; // t2
+ mr1 = 0; // s1
+ mr0 = 0; // a3
+ tdinit3 = 0; // 40(sp)
+ tdinit2 = 0; // 32(sp)
+ tdinit1 = 0; // 24(sp)
+ tdinit0 = 0; // 16(sp)
+ break;
+ }
+ if (trtp < tcl - trp + 2) {
+ trtp = tcl - trp + 2;
+ }
+ trtp = 4;
+
+ // Update mode block when permitted
+ if ((para->dram_mr0 & 0xffff0000) == 0) para->dram_mr0 = mr0;
+ if ((para->dram_mr1 & 0xffff0000) == 0) para->dram_mr1 = mr1;
+ if ((para->dram_mr2 & 0xffff0000) == 0) para->dram_mr2 = mr2;
+ if ((para->dram_mr3 & 0xffff0000) == 0) para->dram_mr3 = mr3;
+
+ // Set mode registers
+ writel(0x3103030, para->dram_mr0);
+ writel(0x3103034, para->dram_mr1);
+ writel(0x3103038, para->dram_mr2);
+ writel(0x310303c, para->dram_mr3);
+ writel(0x310302c, (para->dram_odt_en >> 4) & 0x3); // ??
+
+ // Set dram timing DRAMTMG0 - DRAMTMG5
+ reg_val= (twtp<<24) | (tfaw<<16) | (trasmax<<8) | (tras<<0);
+ writel(0x3103058, reg_val);
+ reg_val= (txp<<16) | (trtp<<8) | (trc<<0);
+ writel(0x310305c, reg_val);
+ reg_val= (tcwl<<24) | (tcl<<16) | (trd2wr<<8) | (twr2rd<<0);
+ writel(0x3103060, reg_val);
+ reg_val= (tmrw<<16) | (tmrd<<12) | (tmod<<0);
+ writel(0x3103064, reg_val);
+ reg_val= (trcd<<24) | (tccd<<16) | (trrd<<8) | (trp<<0);
+ writel(0x3103068, reg_val);
+ reg_val= (tcksrx<<24) | (tcksrx<<16) | (tckesr<<8) | (tcke<<0);
+ writel(0x310306c, reg_val);
+
+ // Set two rank timing
+ reg_val = readl(0x3103078);
+ reg_val &= 0x0fff0000;
+ reg_val |= (para->dram_clk < 800) ? 0xf0006600 : 0xf0007600;
+ reg_val |= 0x10;
+ writel(0x3103078, reg_val);
+
+ // Set phy interface time PITMG0, PTR3, PTR4
+ reg_val = (0x2<<24) | (t_rdata_en<<16) | (0x1<<8) | (wr_latency<<0);
+ writel(0x3103080, reg_val);
+ writel(0x3103050, ((tdinit0<<0)|(tdinit1<<20)));
+ writel(0x3103054, ((tdinit2<<0)|(tdinit3<<20)));
+
+ // Set refresh timing and mode
+ reg_val = (trefi<<16) | (trfc<<0);
+ writel(0x3103090, reg_val);
+ reg_val = 0x0fff0000 & (trefi<<15);
+ writel(0x3103094, reg_val);
+}
+
+// Not used ?
+//
+void ccm_get_sscg(void)
+{
+ // NOTE: function is present in the assembly, but was not translated.
+}
+
+// Not used ?
+//
+void ccm_set_pll_sscg(void)
+{
+ // NOTE: function is present in the assembly, but was not translated.
+}
+
+// Purpose of this routine seems to be to initialize the PLL driving
+// the MBUS and sdram.
+//
+int ccm_set_pll_ddr_clk(int index, struct dram_para_t *para)
+{
+ unsigned int val, clk, n;
+
+ clk = (para->dram_tpr13 & (1 << 6)) ? para->dram_tpr9
+ : para->dram_clk;
+
+ // set VCO clock divider
+ n = (clk * 2) / 24;
+ val = readl(0x2001010);
+ val &= 0xfff800fc; // clear dividers
+ val |= (n - 1) << 8; // set PLL division
+ val |= 0xc0000000; // enable PLL and LDO
+ writel(0x2001010, val);
+
+ // Restart PLL locking
+ val &= 0xdfffffff; // disbable lock
+ val |= 0xc0000000; // enable PLL and LDO
+ writel(0x2001010, val);
+ val |= 0xe0000000; // re-enable lock
+ writel(0x2001010, val);
+
+ // wait for PLL to lock
+ while ((readl(0x2001010) & 0x10000000) == 0) {;}
+
+ udelay(20);
+
+ // enable PLL output
+ val = readl(0x2001000);
+ val |= 0x08000000;
+ writel(0x2001000, val);
+
+ // turn clock gate on
+ val = readl(0x2001800);
+ val &= 0xfcfffcfc; // select DDR clk source, n=1, m=1
+ val |= 0x80000000; // turn clock on
+ writel(0x2001800, val);
+
+ return n * 24;
+}
+
+// Main purpose of sys_init seems to be to initalise the clocks for
+// the sdram controller.
+//
+void mctl_sys_init(struct dram_para_t *para)
+{
+ unsigned int val;
+
+ // s1 = 0x02001000
+
+ // assert MBUS reset
+ val = readl(0x2001540);
+ val &= 0xbfffffff;
+ writel(0x2001540, val);
+
+ // turn off sdram clock gate, assert sdram reset
+ val = readl(0x200180c);
+ val &= 0xfffffffe;
+ writel(0x200180c, val);
+ val &= 0xfffefffe;
+ writel(0x200180c, val);
+
+ // turn of bit 30 [??]
+ val = readl(0x2001800);
+ writel(0x2001800, val & 0xbfffffff);
+ // and toggle dram clock gating off + trigger update
+ val &= 0x7fffffff;
+ writel(0x2001800, val);
+ val |= 0x08000000;
+ writel(0x2001800, val);
+ udelay(10);
+
+ // set ddr pll clock
+ val = ccm_set_pll_ddr_clk(0, para);
+ para->dram_clk = val >> 1;
+ udelay(100);
+ dram_disable_all_master();
+
+ // release sdram reset
+ val = readl(0x200180c);
+ val |= 0x00010000;
+ writel(0x200180c, val);
+
+ // release MBUS reset
+ val = readl(0x2001540);
+ val |= 0x40000000;
+ writel(0x2001540, val);
+
+ // turn bit 30 back on [?]
+ val = readl(0x2001800);
+ val |= 0x40000000;
+ writel(0x2001800, val);
+ udelay(5);
+
+ // turn on sdram clock gate
+ val = readl(0x200180c);
+ val |= 0x0000001; // (1<<0)
+ writel(0x200180c, val);
+
+ // turn dram clock gate on, trigger sdr clock update
+ val = readl(0x2001800);
+ val |= 0x80000000;
+ writel(0x2001800, val);
+ val |= 0x88000000;
+ writel(0x2001800, val);
+ udelay(5);
+
+ // mCTL clock enable
+ writel(0x310300c, 0x00008000);
+ udelay(10);
+}
+
+// The main purpose of this routine seems to be to copy an address configuration
+// from the dram_para1 and dram_para2 fields to the PHY configuration registers
+// (0x3102000, 0x3102004).
+//
+void mctl_com_init(struct dram_para_t *para)
+{
+ unsigned int val, end, ptr;
+ int i;
+
+ // purpose ??
+ val = readl(0x3102008) & 0xffffc0ff;
+ val |= 0x2000;
+ writel(0x3102008, val);
+
+ // Set sdram type and word width
+ val = readl(0x3102000) & 0xff000fff;
+ val |= (para->dram_type &0x7) << 16; // DRAM type
+ val |= (~para->dram_para2 & 0x1) << 12; // DQ width
+ if((para->dram_type) != 6 && (para->dram_type) != 7) {
+ val |= ((para->dram_tpr13 >> 5) & 0x1) << 19; // 2T or 1T
+ val |= 0x400000;
+ }
+ else {
+ val |= 0x480000; // type 6 and 7 must use 1T
+ }
+ writel(0x3102000, val);
+
+ // init rank / bank / row for single/dual or two different ranks
+ val = para->dram_para2;
+ end = ((val & 0x100) && (((val >> 12) & 0xf) != 1)) ? 32 : 16;
+ ptr = 0x3102000;
+
+ for (i = 0 ; i != end; i += 16) {
+
+ val = readl(ptr) & 0xfffff000;
+
+ val |= (para->dram_para2 >> 12) & 0x3; // rank
+ val |= ((para->dram_para1 >> (i + 12)) << 2) & 0x4; // bank - 2
+ val |= (((para->dram_para1 >> (i + 4)) - 1) << 4) & 0xff; // row - 1
+
+ // convert from page size to column addr width - 3
+ switch ((para->dram_para1 >> i) & 0xf) {
+ case 8: val |= 0xa00; break;
+ case 4: val |= 0x900; break;
+ case 2: val |= 0x800; break;
+ case 1: val |= 0x700; break;
+ default: val |= 0x600; break;
+ }
+ writel(ptr, val);
+ ptr += 4;
+ }
+
+ // set ODTMAP based on number of ranks in use
+ val = (readl(0x3102000) & 0x1) ? 0x303 : 0x201;
+ writel(0x3103120, val);
+
+ // set mctl reg 3c4 to zero when using half DQ
+ if (para->dram_para2 & (1 << 0)) {
+ writel(0x31033c4, 0);
+ }
+
+ // purpose ??
+ if (para->dram_tpr4) {
+ val = readl(0x3102000);
+ val |= (para->dram_tpr4 << 25) & 0x06000000;
+ writel(0x3102000, val);
+
+ val = readl(0x3102004);
+ val |= ((para->dram_tpr4 >> 2) << 12) & 0x001ff000;
+ writel(0x3102004, val);
+ }
+}
+
+// This routine seems to have several remapping tables for 22 lines.
+// It is unclear which lines are being remapped. It seems to pick
+// table cfg7 for the Nezha board.
+//
+void mctl_phy_ac_remapping(struct dram_para_t *para)
+{
+ char cfg0[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
+ static char cfg1[] = { 1, 9, 3, 7, 8, 18, 4, 13, 5, 6, 10,
+ 2, 14, 12, 0, 0, 21, 17, 20, 19, 11, 22 };
+ static char cfg2[] = { 4, 9, 3, 7, 8, 18, 1, 13, 2, 6, 10,
+ 5, 14, 12, 0, 0, 21, 17, 20, 19, 11, 22 };
+ static char cfg3[] = { 1, 7, 8, 12, 10, 18, 4, 13, 5, 6, 3,
+ 2, 9, 0, 0, 0, 21, 17, 20, 19, 11, 22 };
+ static char cfg4[] = { 4, 12, 10, 7, 8, 18, 1, 13, 2, 6, 3,
+ 5, 9, 0, 0, 0, 21, 17, 20, 19, 11, 22 };
+ static char cfg5[] = { 13, 2, 7, 9, 12, 19, 5, 1, 6, 3, 4,
+ 8, 10, 0, 0, 0, 21, 22, 18, 17, 11, 20 };
+ static char cfg6[] = { 3, 10, 7, 13, 9, 11, 1, 2, 4, 6, 8,
+ 5, 12, 0, 0, 0, 20, 1, 0, 21, 22, 17 };
+ static char cfg7[] = { 3, 2, 4, 7, 9, 1, 17, 12, 18, 14, 13,
+ 8, 15, 6, 10, 5, 19, 22, 16, 21, 20, 11 };
+
+ unsigned int fuse, val;
+
+ // read SID info @ 0x228
+ fuse = (readl(0x3002228) >> 8) & 0x4;
+ printf("ddr_efuse_type: 0x%x\n", fuse);
+
+ if ((para->dram_tpr13 >> 18) & 0x3) {
+ memcpy_self(cfg0, cfg7, 22);
+ }
+ else {
+ switch (fuse) {
+ case 8: memcpy_self(cfg0, cfg2, 22); break;
+ case 9: memcpy_self(cfg0, cfg3, 22); break;
+ case 10: memcpy_self(cfg0, cfg5, 22); break;
+ case 11: memcpy_self(cfg0, cfg4, 22); break;
+ default:
+ case 12: memcpy_self(cfg0, cfg1, 22); break;
+ case 13:
+ case 14: break;
+ }
+ }
+ if (para->dram_type == 2) {
+ if (fuse == 15) return;
+ memcpy_self(cfg0, cfg6, 22);
+ }
+ if ( para->dram_type == 2 || para->dram_type == 3) {
+
+ val = (cfg0[ 4] << 25) | (cfg0[ 3] << 20) | (cfg0[ 2] << 15) |
+ (cfg0[ 1] << 10) | (cfg0[ 0] << 5);
+ writel(0x3102500, val);
+
+ val = (cfg0[10] << 25) | (cfg0[ 9] << 20) | (cfg0[ 8] << 15) |
+ (cfg0[ 7] << 10) | (cfg0[ 6] << 5) | cfg0[ 5];
+ writel(0x3102504, val);
+
+ val = (cfg0[15] << 20) | (cfg0[14] << 15) |
+ (cfg0[13] << 10) | (cfg0[12] << 5) | cfg0[11];
+ writel(0x3102508, val);
+
+ val = (cfg0[21] << 25) | (cfg0[20] << 20) | (cfg0[19] << 15) |
+ (cfg0[18] << 10) | (cfg0[17] << 5) | cfg0[16];
+ writel(0x310250c, val);
+
+ val = (cfg0[ 4] << 25) | (cfg0 [3] << 20) | (cfg0[2] << 15) |
+ (cfg0[ 1] << 10) | (cfg0 [0] << 5) | 1;
+ writel(0x3102500, val);
+ }
+}
+
+// Init the controller channel. The key part is placing commands in the main
+// command register (PIR, 0x3103000) and checking command status (PGSR0, 0x3103010).
+//
+unsigned int mctl_channel_init(unsigned int ch_index, struct dram_para_t *para)
+{
+ unsigned int val, dqs_gating_mode;
+
+ dqs_gating_mode = (para->dram_tpr13 >> 2) & 0x3;
+
+ // set DDR clock to half of CPU clock
+ val = readl(0x310200c) & 0xfffff000;
+ val |= (para->dram_clk >> 1 ) - 1;
+ writel(0x310200c, val);
+
+ // MRCTRL0 nibble 3 undocumented
+ val = readl(0x3103108) & 0xfffff0ff;
+ val |= 0x300;
+ writel(0x3103108, val);
+
+ // DX0GCR0
+ val = readl(0x3103344) & 0xffffffcf;
+ val |= ((~para->dram_odt_en) << 5) & 0x20;
+ if (para->dram_clk > 672) {
+ val &= 0xffff09f1;
+ val |= 0x00000400;
+ }
+ else {
+ val &= 0xffff0ff1;
+ }
+ writel(0x3103344, val);
+
+ // DX1GCR0
+ val = readl(0x31033c4) & 0xffffffcf;
+ val |= ((~para->dram_odt_en) << 5) & 0x20;
+ if (para->dram_clk > 672) {
+ val &= 0xffff09f1;
+ val |= 0x00000400;
+ }
+ else {
+ val &= 0xffff0ff1;
+ }
+ writel(0x31033c4, val);
+
+ // 0x3103208 undocumented
+ val = readl(0x3103208);
+ val |= 0x2;
+ writel(0x3103208, val);
+
+ eye_delay_compensation(para);
+
+ //set PLL SSCG ?
+ //
+ val = readl(0x3103108);
+ if (dqs_gating_mode == 1) {
+
+ val &= ~(0xc0);
+ writel(0x3103108, val);
+
+ val = readl(0x31030bc);
+ val &= 0xfffffef8;
+ writel(0x31030bc, val);
+ }
+ else if (dqs_gating_mode == 2) {
+
+ val &= ~(0xc0);
+ val |= 0x80;
+ writel(0x3103108, val);
+
+ val = readl(0x31030bc);
+ val &= 0xfffffef8;
+ val |= ((para->dram_tpr13 >> 16) & 0x1f) - 2;
+ val |= 0x100;
+ writel(0x31030bc, val);
+
+ val = readl(0x310311c) & 0x7fffffff;
+ val |= 0x08000000;
+ writel(0x310311c, val);
+ }
+ else {
+ val &= ~(0x40);
+ writel(0x3103108, val);
+
+ udelay(10);
+
+ val = readl(0x3103108);
+ val |= 0xc0;
+ writel(0x3103108, val);
+ }
+
+ if (para->dram_type == 6 || para->dram_type == 7) {
+ val = readl(0x310311c);
+ if (dqs_gating_mode == 1) {
+ val &= 0xf7ffff3f;
+ val |= 0x80000000;
+ }
+ else {
+ val &= 0x88ffffff;
+ val |= 0x22000000;
+ }
+ writel(0x310311c, val);
+ }
+
+ val = readl(0x31030c0);
+ val &= 0xf0000000;
+ val |= (para->dram_para2 & (1 << 12)) ? 0x03000001 : 0x01000007; // 0x01003087 XXX
+ writel(0x31030c0, val);
+
+ if (readl(0x70005d4) & (1 << 16)) {
+ val = readl(0x7010250);
+ val &= 0xfffffffd;
+ writel(0x7010250, val);
+
+ udelay(10);
+ }
+
+ // Set ZQ config
+ val = readl(0x3103140) & 0xfc000000;
+ val |= para->dram_zq & 0x00ffffff;
+ val |= 0x02000000;
+ writel(0x3103140, val);
+
+ // Initialise DRAM controller
+ if (dqs_gating_mode == 1) {
+ writel(0x3103000, 0x52); // prep PHY reset + PLL init + z-cal
+ writel(0x3103000, 0x53); // Go
+
+ while ((readl(0x3103010) & 0x1) == 0) {;} // wait for IDONE
+ udelay(10);
+
+ // 0x520 = prep DQS gating + DRAM init + d-cal
+ val = (para->dram_type == 3) ? 0x5a0 // + DRAM reset
+ : 0x520;
+ }
+ else {
+ if ((readl(0x70005d4) & (1 << 16)) == 0) {
+ // prep DRAM init + PHY reset + d-cal + PLL init + z-cal
+ val = (para->dram_type == 3) ? 0x1f2 // + DRAM reset
+ : 0x172;
+ }
+ else {
+ // prep PHY reset + d-cal + z-cal
+ val = 0x62;
+ }
+ }
+
+ writel(0x3103000, val); // Prep
+ val |= 1;
+ writel(0x3103000, val); // Go
+
+ udelay(10);
+ while ((readl(0x3103010) & 0x1) == 0) {;} // wait for IDONE
+
+ if (readl(0x70005d4) & (1 << 16)) {
+
+ val = readl(0x310310c);
+ val &= 0xf9ffffff;
+ val |= 0x04000000;
+ writel(0x310310c, val);
+
+ udelay(10);
+
+ val = readl(0x3103004);
+ val |= 0x1;
+ writel(0x3103004, val);
+
+ while ((readl(0x3103018) & 0x7) != 0x3) {;}
+
+ val = readl(0x7010250);
+ val &= 0xfffffffe;
+ writel(0x7010250, val);
+
+ udelay(10);
+
+ val = readl(0x3103004);
+ val &= 0xfffffffe;
+ writel(0x3103004, val);
+
+ while ((readl(0x3103018) & 0x7) != 0x1) {;}
+
+ udelay(15);
+
+ if (dqs_gating_mode == 1) {
+
+ val = readl(0x3103108);
+ val &= 0xffffff3f;
+ writel(0x3103108, val);
+
+ val = readl(0x310310c);
+ val &= 0xf9ffffff;
+ val |= 0x02000000;
+ writel(0x310310c, val);
+
+ udelay(1);
+ writel(0x3103000, 0x401);
+
+ while ((readl(0x3103010) & 0x1) == 0) {;}
+ }
+ }
+
+ // Check for training error
+ val = readl(0x3103010);
+ if (((val >> 20) & 0xff) && (val & 0x100000)) {
+ printf("ZQ calibration error, check external 240 ohm resistor.\n");
+ return 0;
+ }
+
+ // STATR = Zynq STAT? Wait for status 'normal'?
+ while ((readl(0x3103018) & 0x1) == 0) {;}
+
+ val = readl(0x310308c);
+ val |= 0x80000000;
+ writel(0x310308c, val);
+
+ udelay(10);
+
+ val = readl(0x310308c);
+ val &= 0x7fffffff;
+ writel(0x310308c, val);
+
+ udelay(10);
+
+ val = readl(0x3102014);
+ val |= 0x80000000;
+ writel(0x3102014, val);
+
+ udelay(10);
+
+ val = readl(0x310310c);
+ val &= 0xf9ffffff;
+ writel(0x310310c, val);
+
+ if (dqs_gating_mode == 1) {
+ val = readl(0x310311c);
+ val &= 0xffffff3f;
+ val |= 0x00000040;
+ writel(0x310311c, val);
+ }
+ return 1;
+}
+
+// The below routine reads the dram config registers and extracts
+// the number of address bits in each rank available. It then calculates
+// total memory size in MB.
+//
+int DRAMC_get_dram_size(void)
+{
+ unsigned int rval, temp, size0, size1;
+
+ rval = readl(0x3102000); // MC_WORK_MODE0
+
+ temp = (rval>>8) & 0xf; // page size - 3
+ temp += (rval>>4) & 0xf; // row width - 1
+ temp += (rval>>2) & 0x3; // bank count - 2
+ temp -= 14; // 1MB = 20 bits, minus above 6 = 14
+ size0 = 1 << temp;
+
+ temp = rval & 0x3; // rank count = 0? -> done
+ if (temp == 0) {
+ return size0;
+ }
+
+ rval = readl(0x3102004); // MC_WORK_MODE1
+
+ temp = rval & 0x3;
+ if (temp == 0) { // two identical ranks
+ return 2 * size0;
+ }
+
+ temp = (rval>>8) & 0xf; // page size - 3
+ temp += (rval>>4) & 0xf; // row width - 1
+ temp += (rval>>2) & 0x3; // bank number - 2
+ temp -= 14; // 1MB = 20 bits, minus above 6 = 14
+ size1 = 1 << temp;
+
+ return size0 + size1; // add size of each rank
+}
+
+// The below routine reads the command status register to extract
+// DQ width and rank count. This follows the DQS training command in
+// channel_init. If error bit 22 is reset, we have two ranks and full DQ.
+// If there was an error, figure out whether it was half DQ, single rank,
+// or both. Set bit 12 and 0 in dram_para2 with the results.
+//
+int dqs_gate_detect(struct dram_para_t *para)
+{
+ unsigned int rval, dx0, dx1;
+
+ if (readl(0x3103010) & (1 << 22)) {
+
+ dx0 = (readl(0x3103348) >> 24) & 0x3;
+ dx1 = (readl(0x31033c8) >> 24) & 0x3;
+
+ if (dx0 == 2) {
+ rval = para->dram_para2;
+ rval &= 0xffff0ff0;
+ if (dx0 != dx1) {
+ rval |= 0x1;
+ para->dram_para2 = rval;
+ printf("[AUTO DEBUG] single rank and half DQ!\n");
+ return 1;
+ }
+ para->dram_para2 = rval;
+ printf("[AUTO DEBUG] single rank and full DQ!\n");
+ return 1;
+ }
+ else if (dx0 == 0) {
+ rval = para->dram_para2;
+ rval &= 0xfffffff0;
+ rval |= 0x00001001;
+ para->dram_para2 = rval;
+ printf("[AUTO DEBUG] dual rank and half DQ!\n");
+ return 1;
+ }
+ else {
+ if (para->dram_tpr13 & (1 << 29)) {
+ printf("DX0 state:%d\n", dx0);
+ printf("DX1 state:%d\n", dx1);
+ }
+ return 0;
+ }
+ }
+ else {
+ rval = para->dram_para2;
+ rval &= 0xfffffff0;
+ rval |= 0x00001000;
+ para->dram_para2 = rval;
+ printf("[AUTO DEBUG] two rank and full DQ!\n");
+ return 1;
+ }
+}
+
+
+#define SDRAM_BASE ((unsigned int *)0x40000000)
+#define uint unsigned int
+
+int dramc_simple_wr_test(uint mem_mb, int len)
+{
+ unsigned int offs = (mem_mb >> 1) << 18; // half of memory size
+ unsigned int patt1 = 0x01234567;
+ unsigned int patt2 = 0xfedcba98;
+ unsigned int *addr, v1, v2, i;
+
+ addr = SDRAM_BASE;
+ for (i = 0; i != len; i++, addr++) {
+ writel(addr, patt1 + i);
+ writel(addr + offs, patt2 + i);
+ }
+
+ addr = SDRAM_BASE;
+ for (i = 0; i != len; i++) {
+ v1 = readl(addr+i);
+ v2 = patt1 + i;
+ if (v1 != v2) {
+ printf("DRAM simple test FAIL.\n");
+ printf("%x != %x at address %p\n", v1, v2, addr+i);
+ return 1;
+ }
+ v1 = readl(addr+offs+i);
+ v2 = patt2 + i;
+ if (v1 != v2) {
+ printf("DRAM simple test FAIL.\n");
+ printf("%x != %x at address %p\n", v1, v2, addr+offs+i);
+ return 1;
+ }
+ }
+ printf("DRAM simple test OK.\n");
+ return 0;
+}
+
+// Set the Vref mode for the controller
+//
+void mctl_vrefzq_init(struct dram_para_t *para)
+{
+ unsigned int val;
+
+ if ((para->dram_tpr13 & (1 << 17)) == 0) {
+ val = readl(0x3103110) & 0x80808080; // IOCVR0
+ val |= para->dram_tpr5;
+ writel(0x3103110, val);
+
+ if ((para->dram_tpr13 & (1 << 16)) == 0) {
+ val = readl(0x3103114) & 0xffffff80; // IOCVR1
+ val |= para->dram_tpr6 & 0x7f;
+ writel(0x3103114, val);
+ }
+ }
+}
+
+// Perform an init of the controller. This is actually done 3 times. The first
+// time to establish the number of ranks and DQ width. The second time to
+// establish the actual ram size. The third time is final one, with the final
+// settings.
+//
+int mctl_core_init(struct dram_para_t *para)
+{
+ mctl_sys_init(para);
+ mctl_vrefzq_init(para);
+ mctl_com_init(para);
+ mctl_phy_ac_remapping(para);
+ auto_set_timing_para(para);
+ return mctl_channel_init(0, para);
+}
+
+
+#define RAM_BASE (0x40000000)
+
+// Autoscan sizes a dram device by cycling through address lines and figuring
+// out if it is connected to a real address line, or if the address is a mirror.
+// First the column and bank bit allocations are set to low values (2 and 9 address
+// lines. Then a maximum allocation (16 lines) is set for rows and this is tested.
+// Next the BA2 line is checked. This seems to be placed above the column, BA0-1 and
+// row addresses. Finally, the column address is allocated 13 lines and these are
+// tested. The results are placed in dram_para1 and dram_para2.
+//
+int auto_scan_dram_size(struct dram_para_t *para) // s7
+{
+ unsigned int rval, i, j, rank, maxrank, offs, mc_work_mode;
+ unsigned int chk, ptr, shft, banks;
+
+ if (mctl_core_init(para) == 0) {
+ printf("[ERROR DEBUG] DRAM initialisation error : 0!\n");
+ return 0;
+ }
+
+ maxrank = (para->dram_para2 & 0xf000) ? 2 : 1;
+ mc_work_mode = 0x3102000;
+ offs = 0;
+
+ // write test pattern
+ for (i = 0, ptr = RAM_BASE; i < 64; i++, ptr += 4) {
+ writel(ptr, (i & 1) ? ptr : ~ptr);
+ }
+
+ for (rank = 0; rank < maxrank; ) {
+
+ // Set row mode
+ rval = readl(mc_work_mode);
+ rval &= 0xfffff0f3;
+ rval |= 0x000006f0;
+ writel(mc_work_mode, rval);
+ while (readl(mc_work_mode) != rval);
+
+ // Scan per address line, until address wraps (i.e. see shadow)
+ for(i = 11; i < 17; i++) {
+ chk = RAM_BASE + (1 << (i + 11));
+ ptr = RAM_BASE;
+ for (j = 0; j < 64; j++) {
+ if (readl(chk) != ((j & 1) ? ptr : ~ptr))
+ goto out1;
+ ptr += 4;
+ chk += 4;
+ }
+ break;
+ out1: ;
+ }
+ if (i > 16) i = 16;
+ printf("[AUTO DEBUG] rank %d row = %d\n", rank, i);
+
+ // Store rows in para 1
+ shft = 4 + offs;
+ rval = para->dram_para1;
+ rval &= ~(0xff << shft);
+ rval |= i << shft;
+ para->dram_para1 = rval;
+
+ if (rank == 1) {
+ // Set bank mode for rank0
+ rval = readl(0x3102000);
+ rval &= 0xfffff003;
+ rval |= 0x000006a4;
+ writel(0x3102000, rval);
+ }
+
+ // Set bank mode for current rank
+ rval = readl(mc_work_mode);
+ rval &= 0xfffff003;
+ rval |= 0x000006a4;
+ writel(mc_work_mode, rval);
+ while (readl(mc_work_mode) != rval);
+
+ // Test if bit A23 is BA2 or mirror XXX A22?
+ chk = RAM_BASE + (1 << 22);
+ ptr = RAM_BASE;
+ for (i = 0, j = 0; i < 64; i++) {
+ if (readl(chk) != ((i & 1) ? ptr : ~ptr)) {
+ j = 1;
+ break;
+ }
+ ptr += 4;
+ chk += 4;
+ }
+ banks = (j + 1) << 2; // 4 or 8
+ printf("[AUTO DEBUG] rank %d bank = %d\n", rank, banks);
+
+ // Store banks in para 1
+ shft = 12 + offs;
+ rval = para->dram_para1;
+ rval &= ~(0xf << shft);
+ rval |= j << shft;
+ para->dram_para1 = rval;
+
+ if (rank == 1) {
+ // Set page mode for rank0
+ rval = readl(0x3102000);
+ rval &= 0xfffff003;
+ rval |= 0x00000aa0;
+ writel(0x3102000, rval);
+ }
+
+ // Set page mode for current rank
+ rval = readl(mc_work_mode);
+ rval &= 0xfffff003;
+ rval |= 0x00000aa0;
+ writel(mc_work_mode, rval);
+ while (readl(mc_work_mode) != rval);
+
+ // Scan per address line, until address wraps (i.e. see shadow)
+ for(i = 9; i < 14; i++) {
+ chk = RAM_BASE + (1 << i);
+ ptr = RAM_BASE;
+ for (j = 0; j < 64; j++) {
+ if (readl(chk) != ((j & 1) ? ptr : ~ptr))
+ goto out2;
+ ptr += 4;
+ chk += 4;
+ }
+ break;
+ out2:;
+ }
+ if (i > 13) i = 13;
+ int pgsize = (i==9) ? 0 : (1 << (i-10));
+ printf("[AUTO DEBUG] rank %d page size = %d KB\n", rank, pgsize);
+
+ // Store page size
+ shft = offs;
+ rval = para->dram_para1;
+ rval &= ~(0xf << shft);
+ rval |= pgsize << shft;
+ para->dram_para1 = rval;
+
+ // Move to next rank
+ rank++;
+ if (rank != maxrank) {
+ if (rank == 1) {
+ rval = readl(0x3202000); // MC_WORK_MODE
+ rval &= 0xfffff003;
+ rval |= 0x000006f0;
+ writel(0x3202000, rval);
+
+ rval = readl(0x3202004); // MC_WORK_MODE2
+ rval &= 0xfffff003;
+ rval |= 0x000006f0;
+ writel(0x3202004, rval);
+ }
+ offs += 16; // store rank1 config in upper half of para1
+ mc_work_mode += 4; // move to MC_WORK_MODE2
+ }
+ }
+ if (maxrank == 2) {
+ para->dram_para2 &= 0xfffff0ff;
+ // note: rval is equal to para->dram_para1 here
+ if ((rval & 0xffff) == ((rval >> 16) & 0xffff)) {
+ printf("rank1 config same as rank0\n");
+ }
+ else {
+ para->dram_para2 |= 0x00000100;
+ printf("rank1 config different from rank0\n");
+ }
+ }
+ return 1;
+}
+
+// This routine sets up parameters with dqs_gating_mode equal to 1 and two
+// ranks enabled. It then configures the core and tests for 1 or 2 ranks and
+// full or half DQ width. it then resets the parameters to the original values.
+// dram_para2 is updated with the rank & width findings.
+//
+int auto_scan_dram_rank_width(struct dram_para_t *para)
+{
+ unsigned int s1 = para->dram_tpr13;
+ unsigned int s2 = para->dram_para1;
+ unsigned int v;
+
+ para->dram_para1 = 0x00b000b0;
+ v = (para->dram_para2 & 0xfffffff0) | 0x1000;
+ para->dram_para2 = v;
+
+ v = (s1 & 0xfffffff7) | 0x5; // set DQS probe mode
+ para->dram_tpr13 = v;
+
+ mctl_core_init(para);
+ if (readl(0x3103010) & (1 << 20)) {
+ return 0;
+ }
+ if (dqs_gate_detect(para) == 0) {
+ return 0;
+ }
+
+ para->dram_tpr13 = s1;
+ para->dram_para1 = s2;
+ return 1;
+}
+
+// This routine determines the sdram topology. It first establishes the number
+// of ranks and the DQ width. Then it scans the sdram address lines to establish
+// the size of each rank. It then updates dram_tpr13 to reflect that the sizes
+// are now known: a re-init will not repeat the autoscan.
+//
+int auto_scan_dram_config(struct dram_para_t *para)
+{
+ if (((para->dram_tpr13 & (1 << 14)) == 0) &&
+ (auto_scan_dram_rank_width(para) == 0))
+ {
+ printf("[ERROR DEBUG] auto scan dram rank & width failed !\n");
+ return 0;
+ }
+ if (((para->dram_tpr13 & (1 << 0)) == 0) &&
+ (auto_scan_dram_size(para) == 0 ))
+ {
+ printf("[ERROR DEBUG] auto scan dram size failed !\n");
+ return 0;
+ }
+ if ((para->dram_tpr13 & (1 << 15)) == 0) {
+ para->dram_tpr13 |= 0x6003;
+ }
+ return 1;
+}
+
+
+signed int init_DRAM(int type, struct dram_para_t *para) // s0
+{
+ int rc, mem_size;
+
+ // Test ZQ status
+ if (para->dram_tpr13 & (1 << 16)) {
+ printf("DRAM only have internal ZQ!!\n");
+ writel(0x3000160, readl(0x3000160) | 0x100);
+ writel(0x3000168, 0);
+ udelay(10);
+ }
+ else {
+ writel(0x7010254, 0);
+ writel(0x3000160, readl(0x3000160) & ~0x003);
+ udelay(10);
+ writel(0x3000160, readl(0x3000160) & ~0x108);
+ udelay(10);
+ writel(0x3000160, readl(0x3000160) | 0x001);
+ udelay(20);
+ printf("ZQ value = 0x%x***********\n", readl(0x3000172));
+ }
+
+ // Set voltage
+ dram_vol_set(para);
+
+ // Set SDRAM controller auto config
+ if ( (para->dram_tpr13 & 0x1)==0 ) {
+ if ( auto_scan_dram_config(para)==0 ) {
+ return 0;
+ }
+ }
+
+ // Print header message (too late)
+ printf("DRAM BOOT DRIVE INFO: %s\n", "V0.24");
+ printf("DRAM CLK = %d MHz\n", para->dram_clk);
+ printf("DRAM Type = %d (2:DDR2,3:DDR3)\n", para->dram_type);
+ if ( (para->dram_odt_en & 0x1) == 0 ) {
+ printf("DRAMC read ODT off.\n");
+ }
+ else {
+ printf("DRAMC ZQ value: 0x%x\n", para->dram_zq);
+ }
+
+ // report ODT
+ rc = para->dram_mr1;
+ if ( (rc & 0x44)==0 ) {
+ printf("DRAM ODT off.\n");
+ }
+ else {
+ printf("DRAM ODT value: 0x%x.\n", rc);
+ }
+
+ // Init core, final run
+ if ( mctl_core_init(para)==0 ) {
+ printf("DRAM initialisation error : 1 !\n");
+ return 0;
+ }
+
+ // Get sdram size
+ rc = para->dram_para2;
+ if ( rc<0 ) {
+ rc = (rc & 0x7fff0000U) >> 16;
+ }
+ else {
+ rc = DRAMC_get_dram_size();
+ printf("DRAM SIZE =%d M\n", rc);
+ para->dram_para2 = (para->dram_para2 & 0xffffu) | rc << 16;
+ }
+ mem_size = rc;
+
+ // Purpose ??
+ if ( para->dram_tpr13 & (1 << 30) ) {
+ rc = readl(&para->dram_tpr8);
+ if ( rc==0 ) {
+ rc = 0x10000200;
+ }
+ writel(0x31030a0, rc);
+ writel(0x310309c, 0x40a);
+ writel(0x3103004, readl(0x3103004) | 1 );
+ printf("Enable Auto SR");
+ }
+ else {
+ writel(0x31030a0, readl(0x31030a0) & 0xffff0000);
+ writel(0x3103004, readl(0x3103004) & (~0x1) );
+ }
+
+ // Pupose ??
+ rc = readl(0x3103100) & ~(0xf000);
+ if ( (para->dram_tpr13 & 0x200)==0 ) {
+ if ( para->dram_type != 6 ) {
+ writel(0x3103100, rc);
+ }
+ }
+ else {
+ writel(0x3103100, rc | 0x5000);
+ }
+
+ writel(0x3103140, readl(0x3103140) | (1 << 31));
+ if (para->dram_tpr13 & (1 << 8)) {
+ writel(0x31030b8, readl(0x3103140) | 0x300);
+ }
+
+ rc = readl(0x3103108);
+ if (para->dram_tpr13 & (1 << 16)) {
+ rc &= 0xffffdfff;
+ }
+ else {
+ rc |= 0x00002000;
+ }
+ writel(0x3103108, rc);
+
+
+ // Purpose ??
+ if (para->dram_type == 7) {
+ rc = readl(0x310307c) & 0xfff0ffff;
+ rc |= 0x0001000;
+ writel(0x310307c, rc);
+ }
+
+ dram_enable_all_master();
+ //if (dramc_simple_wr_test(mem_size, 64)) return 0;
+ if (para->dram_tpr13 & (1 << 28)) {
+ rc = readl(0x70005d4);
+ if ( (rc & (1 << 16)) || dramc_simple_wr_test(mem_size, 4096) ) {
+ return 0;
+ }
+ }
+
+ return mem_size;
+}
+
+struct sunxi_ram_priv {
+ size_t size;
+};
+
+static struct dram_para_t dram_para = {
+ 0x00000318,
+ 0x00000003,
+ 0x007b7bfb,
+ 0x00000001,
+ 0x000010d2,
+ 0x00000000,
+ 0x00001c70,
+ 0x00000042,
+ 0x00000018,
+ 0x00000000,
+ 0x004a2195,
+ 0x02423190,
+ 0x0008b061,
+ 0xb4787896,
+ 0x00000000,
+ 0x48484848,
+ 0x00000048,
+ 0x1620121e,
+ 0x00000000,
+ 0x00000000,
+ 0x00000000,
+ 0x00870000,
+ 0x00000024,
+ 0x34050100,
+};
+
+static int sunxi_ram_probe(struct udevice *dev)
+{
+ struct sunxi_ram_priv *priv = dev_get_priv(dev);
+ int ret;
+
+ printf("%s: %s: probing\n", __func__, dev->name);
+
+ ret = init_DRAM(0, &dram_para);
+ if (ret <= 0) {
+ printf("DRAM init failed: %d\n", ret);
+ return ret;
+ }
+
+ priv->size = ret * 1024 * 1024;
+
+ return 0;
+}
+
+static int sunxi_ram_get_info(struct udevice *dev, struct ram_info *info)
+{
+ struct sunxi_ram_priv *priv = dev_get_priv(dev);
+
+ printf("%s: %s: getting info\n", __func__, dev->name);
+
+ info->base = CONFIG_SYS_SDRAM_BASE;
+ info->size = priv->size;
+
+ return 0;
+}
+
+static struct ram_ops sunxi_ram_ops = {
+ .get_info = sunxi_ram_get_info,
+};
+
+static const struct udevice_id sunxi_ram_ids[] = {
+ { .compatible = "allwinner,sun20i-d1-mbus" },
+ { }
+};
+
+U_BOOT_DRIVER(sunxi_ram) = {
+ .name = "sunxi_ram",
+ .id = UCLASS_RAM,
+ .of_match = sunxi_ram_ids,
+ .ops = &sunxi_ram_ops,
+ .probe = sunxi_ram_probe,
+ .priv_auto = sizeof(struct sunxi_ram_priv),
+};
+
+#endif
--- /dev/null
+++ b/drivers/ram/sunxi/sdram.h
@@ -0,0 +1,46 @@
+// SPDX-License-Identifier: GPL-2.0+
+
+/*
+ * dram_para1 bits:
+ * 16-19 = page size
+ * 20-27 = row count
+ * 28 = banks 4 or 8
+ *
+ * dram_para2 bits:
+ * 0 = DQ width
+ * 4 = CS1 control
+ * 8-11 = rank flags? bit 8 = ranks differ in config
+ * 12-13 = rank
+ */
+
+/* MC_WORK_MODE bits
+ * 0- 1 = ranks code
+ * 2- 3 = banks, log2 - 2 2 3 2
+ * 4- 7 = row width, log2 - 1 16 11 11
+ * 8-11 = page size, log2 - 3 9 9 13
+ * 12-15 = DQ width (or 12-14?)
+ * 16-18 = dram type (2=DDR2, 3=DDR3, 6=LPDDR2, 7=LPDDR3)
+ * 19 = 2T or 1T
+ * 23-24 = ranks code (again?)
+ */
+
+#define DRAM_MR0 ((void*)0x3103030)
+#define DRAM_MR1 ((void*)0x3103034)
+#define DRAM_MR2 ((void*)0x3103038)
+#define DRAM_MR3 ((void*)0x310303c)
+
+#define DRAMTMG0 ((void*)0x3103058)
+#define DRAMTMG1 ((void*)0x310305c)
+#define DRAMTMG2 ((void*)0x3103060)
+#define DRAMTMG3 ((void*)0x3103064)
+#define DRAMTMG4 ((void*)0x3103068)
+#define DRAMTMG5 ((void*)0x310306c)
+#define DRAMTMG6 ((void*)0x3103070)
+#define DRAMTMG7 ((void*)0x3103074)
+#define DRAMTMG8 ((void*)0x3103078)
+
+#define PITMG0 ((void*)0x3103080)
+#define PTR3 ((void*)0x3103050)
+#define PTR4 ((void*)0x3103054)
+#define RFSHTMG ((void*)0x3103090)
+#define RFSHCTL1 ((void*)0x3103094)