1
0
Files
kernel-49/fs/btrfs/ordered-data.c
Greg Kroah-Hartman 14cea4ffd7 Merge 4.9.215 into android-4.9-q
Changes in 4.9.215
	x86/vdso: Use RDPID in preference to LSL when available
	KVM: x86: emulate RDPID
	ALSA: hda: Use scnprintf() for printing texts for sysfs/procfs
	ecryptfs: fix a memory leak bug in parse_tag_1_packet()
	ecryptfs: fix a memory leak bug in ecryptfs_init_messaging()
	ALSA: usb-audio: Apply sample rate quirk for Audioengine D1
	ext4: don't assume that mmp_nodename/bdevname have NUL
	ext4: fix checksum errors with indexed dirs
	ext4: improve explanation of a mount failure caused by a misconfigured kernel
	Btrfs: fix race between using extent maps and merging them
	btrfs: log message when rw remount is attempted with unclean tree-log
	perf/x86/amd: Add missing L2 misses event spec to AMD Family 17h's event map
	padata: Remove broken queue flushing
	s390/time: Fix clk type in get_tod_clock
	perf/x86/intel: Fix inaccurate period in context switch for auto-reload
	hwmon: (pmbus/ltc2978) Fix PMBus polling of MFR_COMMON definitions.
	jbd2: move the clearing of b_modified flag to the journal_unmap_buffer()
	jbd2: do not clear the BH_Mapped flag when forgetting a metadata buffer
	btrfs: print message when tree-log replay starts
	scsi: qla2xxx: fix a potential NULL pointer dereference
	Revert "KVM: VMX: Add non-canonical check on writes to RTIT address MSRs"
	drm/gma500: Fixup fbdev stolen size usage evaluation
	cpu/hotplug, stop_machine: Fix stop_machine vs hotplug order
	brcmfmac: Fix use after free in brcmf_sdio_readframes()
	gianfar: Fix TX timestamping with a stacked DSA driver
	pinctrl: sh-pfc: sh7264: Fix CAN function GPIOs
	pxa168fb: Fix the function used to release some memory in an error handling path
	media: i2c: mt9v032: fix enum mbus codes and frame sizes
	powerpc/powernv/iov: Ensure the pdn for VFs always contains a valid PE number
	gpio: gpio-grgpio: fix possible sleep-in-atomic-context bugs in grgpio_irq_map/unmap()
	media: sti: bdisp: fix a possible sleep-in-atomic-context bug in bdisp_device_run()
	pinctrl: baytrail: Do not clear IRQ flags on direct-irq enabled pins
	efi/x86: Map the entire EFI vendor string before copying it
	MIPS: Loongson: Fix potential NULL dereference in loongson3_platform_init()
	sparc: Add .exit.data section.
	uio: fix a sleep-in-atomic-context bug in uio_dmem_genirq_irqcontrol()
	usb: gadget: udc: fix possible sleep-in-atomic-context bugs in gr_probe()
	jbd2: clear JBD2_ABORT flag before journal_reset to update log tail info when load journal
	x86/sysfb: Fix check for bad VRAM size
	tracing: Fix tracing_stat return values in error handling paths
	tracing: Fix very unlikely race of registering two stat tracers
	ext4, jbd2: ensure panic when aborting with zero errno
	kconfig: fix broken dependency in randconfig-generated .config
	clk: qcom: rcg2: Don't crash if our parent can't be found; return an error
	drm/amdgpu: remove 4 set but not used variable in amdgpu_atombios_get_connector_info_from_object_table
	regulator: rk808: Lower log level on optional GPIOs being not available
	net/wan/fsl_ucc_hdlc: reject muram offsets above 64K
	PCI/IOV: Fix memory leak in pci_iov_add_virtfn()
	NFC: port100: Convert cpu_to_le16(le16_to_cpu(E1) + E2) to use le16_add_cpu().
	media: v4l2-device.h: Explicitly compare grp{id,mask} to zero in v4l2_device macros
	reiserfs: Fix spurious unlock in reiserfs_fill_super() error handling
	ALSA: usx2y: Adjust indentation in snd_usX2Y_hwdep_dsp_status
	b43legacy: Fix -Wcast-function-type
	ipw2x00: Fix -Wcast-function-type
	iwlegacy: Fix -Wcast-function-type
	rtlwifi: rtl_pci: Fix -Wcast-function-type
	orinoco: avoid assertion in case of NULL pointer
	ACPICA: Disassembler: create buffer fields in ACPI_PARSE_LOAD_PASS1
	scsi: aic7xxx: Adjust indentation in ahc_find_syncrate
	drm/mediatek: handle events when enabling/disabling crtc
	ARM: dts: r8a7779: Add device node for ARM global timer
	x86/vdso: Provide missing include file
	PM / devfreq: rk3399_dmc: Add COMPILE_TEST and HAVE_ARM_SMCCC dependency
	pinctrl: sh-pfc: sh7269: Fix CAN function GPIOs
	RDMA/rxe: Fix error type of mmap_offset
	ALSA: sh: Fix compile warning wrt const
	tools lib api fs: Fix gcc9 stringop-truncation compilation error
	usbip: Fix unsafe unaligned pointer usage
	udf: Fix free space reporting for metadata and virtual partitions
	soc/tegra: fuse: Correct straps' address for older Tegra124 device trees
	rcu: Use WRITE_ONCE() for assignments to ->pprev for hlist_nulls
	Input: edt-ft5x06 - work around first register access error
	wan: ixp4xx_hss: fix compile-testing on 64-bit
	ASoC: atmel: fix build error with CONFIG_SND_ATMEL_SOC_DMA=m
	tty: synclinkmp: Adjust indentation in several functions
	tty: synclink_gt: Adjust indentation in several functions
	driver core: platform: Prevent resouce overflow from causing infinite loops
	driver core: Print device when resources present in really_probe()
	vme: bridges: reduce stack usage
	drm/nouveau/gr/gk20a,gm200-: add terminators to method lists read from fw
	drm/nouveau: Fix copy-paste error in nouveau_fence_wait_uevent_handler
	drm/vmwgfx: prevent memory leak in vmw_cmdbuf_res_add
	usb: musb: omap2430: Get rid of musb .set_vbus for omap2430 glue
	iommu/arm-smmu-v3: Use WRITE_ONCE() when changing validity of an STE
	scsi: iscsi: Don't destroy session if there are outstanding connections
	arm64: fix alternatives with LLVM's integrated assembler
	pwm: omap-dmtimer: Remove PWM chip in .remove before making it unfunctional
	cmd64x: potential buffer overflow in cmd64x_program_timings()
	ide: serverworks: potential overflow in svwks_set_pio_mode()
	remoteproc: Initialize rproc_class before use
	x86/decoder: Add TEST opcode to Group3-2
	s390/ftrace: generate traced function stack frame
	driver core: platform: fix u32 greater or equal to zero comparison
	ALSA: hda - Add docking station support for Lenovo Thinkpad T420s
	powerpc/sriov: Remove VF eeh_dev state when disabling SR-IOV
	jbd2: switch to use jbd2_journal_abort() when failed to submit the commit record
	ARM: 8951/1: Fix Kexec compilation issue.
	hostap: Adjust indentation in prism2_hostapd_add_sta
	iwlegacy: ensure loop counter addr does not wrap and cause an infinite loop
	cifs: fix NULL dereference in match_prepath
	irqchip/gic-v3: Only provision redistributors that are enabled in ACPI
	drm/nouveau/disp/nv50-: prevent oops when no channel method map provided
	ftrace: fpid_next() should increase position index
	trigger_next should increase position index
	radeon: insert 10ms sleep in dce5_crtc_load_lut
	ocfs2: fix a NULL pointer dereference when call ocfs2_update_inode_fsync_trans()
	lib/scatterlist.c: adjust indentation in __sg_alloc_table
	reiserfs: prevent NULL pointer dereference in reiserfs_insert_item()
	bcache: explicity type cast in bset_bkey_last()
	irqchip/gic-v3-its: Reference to its_invall_cmd descriptor when building INVALL
	iwlwifi: mvm: Fix thermal zone registration
	microblaze: Prevent the overflow of the start
	brd: check and limit max_part par
	help_next should increase position index
	selinux: ensure we cleanup the internal AVC counters on error in avc_update()
	enic: prevent waking up stopped tx queues over watchdog reset
	net/sched: matchall: add missing validation of TCA_MATCHALL_FLAGS
	net/sched: flower: add missing validation of TCA_FLOWER_FLAGS
	floppy: check FDC index for errors before assigning it
	vt: selection, handle pending signals in paste_selection
	staging: android: ashmem: Disallow ashmem memory from being remapped
	staging: vt6656: fix sign of rx_dbm to bb_pre_ed_rssi.
	xhci: Force Maximum Packet size for Full-speed bulk devices to valid range.
	usb: uas: fix a plug & unplug racing
	USB: Fix novation SourceControl XL after suspend
	USB: hub: Don't record a connect-change event during reset-resume
	staging: rtl8188eu: Fix potential security hole
	staging: rtl8188eu: Fix potential overuse of kernel memory
	x86/mce/amd: Publish the bank pointer only after setup has succeeded
	x86/mce/amd: Fix kobject lifetime
	tty/serial: atmel: manage shutdown in case of RS485 or ISO7816 mode
	tty: serial: imx: setup the correct sg entry for tx dma
	Revert "ipc,sem: remove uneeded sem_undo_list lock usage in exit_sem()"
	xhci: apply XHCI_PME_STUCK_QUIRK to Intel Comet Lake platforms
	KVM: x86: don't notify userspace IOAPIC on edge-triggered interrupt EOI
	VT_RESIZEX: get rid of field-by-field copyin
	vt: vt_ioctl: fix race in VT_RESIZEX
	lib/stackdepot.c: fix global out-of-bounds in stack_slabs
	KVM: nVMX: Don't emulate instructions in guest mode
	netfilter: xt_bpf: add overflow checks
	ext4: fix a data race in EXT4_I(inode)->i_disksize
	ext4: add cond_resched() to __ext4_find_entry()
	ext4: fix mount failure with quota configured as module
	ext4: rename s_journal_flag_rwsem to s_writepages_rwsem
	ext4: fix race between writepages and enabling EXT4_EXTENTS_FL
	KVM: nVMX: Refactor IO bitmap checks into helper function
	KVM: nVMX: Check IO instruction VM-exit conditions
	KVM: apic: avoid calculating pending eoi from an uninitialized val
	Btrfs: fix btrfs_wait_ordered_range() so that it waits for all ordered extents
	scsi: Revert "RDMA/isert: Fix a recently introduced regression related to logout"
	scsi: Revert "target: iscsi: Wait for all commands to finish before freeing a session"
	usb: gadget: composite: Fix bMaxPower for SuperSpeedPlus
	staging: greybus: use after free in gb_audio_manager_remove_all()
	ecryptfs: replace BUG_ON with error handling code
	ALSA: rawmidi: Avoid bit fields for state flags
	ALSA: seq: Avoid concurrent access to queue flags
	ALSA: seq: Fix concurrent access to queue current tick/time
	netfilter: xt_hashlimit: limit the max size of hashtable
	ata: ahci: Add shutdown to freeze hardware resources of ahci
	xen: Enable interrupts when calling _cond_resched()
	s390/mm: Explicitly compare PAGE_DEFAULT_KEY against zero in storage_key_init_range
	Linux 4.9.215

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
Change-Id: I4c663321dde48cd2a324e59acb70c99f75f9344e
2020-03-02 17:01:42 +03:00

1142 lines
31 KiB
C

/*
* Copyright (C) 2007 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include "ctree.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "extent_io.h"
#include "disk-io.h"
#include "compression.h"
static struct kmem_cache *btrfs_ordered_extent_cache;
static u64 entry_end(struct btrfs_ordered_extent *entry)
{
if (entry->file_offset + entry->len < entry->file_offset)
return (u64)-1;
return entry->file_offset + entry->len;
}
/* returns NULL if the insertion worked, or it returns the node it did find
* in the tree
*/
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
struct rb_node *node)
{
struct rb_node **p = &root->rb_node;
struct rb_node *parent = NULL;
struct btrfs_ordered_extent *entry;
while (*p) {
parent = *p;
entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
if (file_offset < entry->file_offset)
p = &(*p)->rb_left;
else if (file_offset >= entry_end(entry))
p = &(*p)->rb_right;
else
return parent;
}
rb_link_node(node, parent, p);
rb_insert_color(node, root);
return NULL;
}
static void ordered_data_tree_panic(struct inode *inode, int errno,
u64 offset)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
btrfs_panic(fs_info, errno,
"Inconsistency in ordered tree at offset %llu", offset);
}
/*
* look for a given offset in the tree, and if it can't be found return the
* first lesser offset
*/
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
struct rb_node **prev_ret)
{
struct rb_node *n = root->rb_node;
struct rb_node *prev = NULL;
struct rb_node *test;
struct btrfs_ordered_extent *entry;
struct btrfs_ordered_extent *prev_entry = NULL;
while (n) {
entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
prev = n;
prev_entry = entry;
if (file_offset < entry->file_offset)
n = n->rb_left;
else if (file_offset >= entry_end(entry))
n = n->rb_right;
else
return n;
}
if (!prev_ret)
return NULL;
while (prev && file_offset >= entry_end(prev_entry)) {
test = rb_next(prev);
if (!test)
break;
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
rb_node);
if (file_offset < entry_end(prev_entry))
break;
prev = test;
}
if (prev)
prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
rb_node);
while (prev && file_offset < entry_end(prev_entry)) {
test = rb_prev(prev);
if (!test)
break;
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
rb_node);
prev = test;
}
*prev_ret = prev;
return NULL;
}
/*
* helper to check if a given offset is inside a given entry
*/
static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
{
if (file_offset < entry->file_offset ||
entry->file_offset + entry->len <= file_offset)
return 0;
return 1;
}
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
u64 len)
{
if (file_offset + len <= entry->file_offset ||
entry->file_offset + entry->len <= file_offset)
return 0;
return 1;
}
/*
* look find the first ordered struct that has this offset, otherwise
* the first one less than this offset
*/
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
u64 file_offset)
{
struct rb_root *root = &tree->tree;
struct rb_node *prev = NULL;
struct rb_node *ret;
struct btrfs_ordered_extent *entry;
if (tree->last) {
entry = rb_entry(tree->last, struct btrfs_ordered_extent,
rb_node);
if (offset_in_entry(entry, file_offset))
return tree->last;
}
ret = __tree_search(root, file_offset, &prev);
if (!ret)
ret = prev;
if (ret)
tree->last = ret;
return ret;
}
/* allocate and add a new ordered_extent into the per-inode tree.
* file_offset is the logical offset in the file
*
* start is the disk block number of an extent already reserved in the
* extent allocation tree
*
* len is the length of the extent
*
* The tree is given a single reference on the ordered extent that was
* inserted.
*/
static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
u64 start, u64 len, u64 disk_len,
int type, int dio, int compress_type)
{
struct btrfs_root *root = BTRFS_I(inode)->root;
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry;
tree = &BTRFS_I(inode)->ordered_tree;
entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
if (!entry)
return -ENOMEM;
entry->file_offset = file_offset;
entry->start = start;
entry->len = len;
entry->disk_len = disk_len;
entry->bytes_left = len;
entry->inode = igrab(inode);
entry->compress_type = compress_type;
entry->truncated_len = (u64)-1;
if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
set_bit(type, &entry->flags);
if (dio)
set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
/* one ref for the tree */
atomic_set(&entry->refs, 1);
init_waitqueue_head(&entry->wait);
INIT_LIST_HEAD(&entry->list);
INIT_LIST_HEAD(&entry->root_extent_list);
INIT_LIST_HEAD(&entry->work_list);
init_completion(&entry->completion);
INIT_LIST_HEAD(&entry->log_list);
INIT_LIST_HEAD(&entry->trans_list);
trace_btrfs_ordered_extent_add(inode, entry);
spin_lock_irq(&tree->lock);
node = tree_insert(&tree->tree, file_offset,
&entry->rb_node);
if (node)
ordered_data_tree_panic(inode, -EEXIST, file_offset);
spin_unlock_irq(&tree->lock);
spin_lock(&root->ordered_extent_lock);
list_add_tail(&entry->root_extent_list,
&root->ordered_extents);
root->nr_ordered_extents++;
if (root->nr_ordered_extents == 1) {
spin_lock(&root->fs_info->ordered_root_lock);
BUG_ON(!list_empty(&root->ordered_root));
list_add_tail(&root->ordered_root,
&root->fs_info->ordered_roots);
spin_unlock(&root->fs_info->ordered_root_lock);
}
spin_unlock(&root->ordered_extent_lock);
return 0;
}
int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
u64 start, u64 len, u64 disk_len, int type)
{
return __btrfs_add_ordered_extent(inode, file_offset, start, len,
disk_len, type, 0,
BTRFS_COMPRESS_NONE);
}
int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
u64 start, u64 len, u64 disk_len, int type)
{
return __btrfs_add_ordered_extent(inode, file_offset, start, len,
disk_len, type, 1,
BTRFS_COMPRESS_NONE);
}
int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
u64 start, u64 len, u64 disk_len,
int type, int compress_type)
{
return __btrfs_add_ordered_extent(inode, file_offset, start, len,
disk_len, type, 0,
compress_type);
}
/*
* Add a struct btrfs_ordered_sum into the list of checksums to be inserted
* when an ordered extent is finished. If the list covers more than one
* ordered extent, it is split across multiples.
*/
void btrfs_add_ordered_sum(struct inode *inode,
struct btrfs_ordered_extent *entry,
struct btrfs_ordered_sum *sum)
{
struct btrfs_ordered_inode_tree *tree;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irq(&tree->lock);
list_add_tail(&sum->list, &entry->list);
spin_unlock_irq(&tree->lock);
}
/*
* this is used to account for finished IO across a given range
* of the file. The IO may span ordered extents. If
* a given ordered_extent is completely done, 1 is returned, otherwise
* 0.
*
* test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
* to make sure this function only returns 1 once for a given ordered extent.
*
* file_offset is updated to one byte past the range that is recorded as
* complete. This allows you to walk forward in the file.
*/
int btrfs_dec_test_first_ordered_pending(struct inode *inode,
struct btrfs_ordered_extent **cached,
u64 *file_offset, u64 io_size, int uptodate)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry = NULL;
int ret;
unsigned long flags;
u64 dec_end;
u64 dec_start;
u64 to_dec;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irqsave(&tree->lock, flags);
node = tree_search(tree, *file_offset);
if (!node) {
ret = 1;
goto out;
}
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
if (!offset_in_entry(entry, *file_offset)) {
ret = 1;
goto out;
}
dec_start = max(*file_offset, entry->file_offset);
dec_end = min(*file_offset + io_size, entry->file_offset +
entry->len);
*file_offset = dec_end;
if (dec_start > dec_end) {
btrfs_crit(BTRFS_I(inode)->root->fs_info,
"bad ordering dec_start %llu end %llu", dec_start, dec_end);
}
to_dec = dec_end - dec_start;
if (to_dec > entry->bytes_left) {
btrfs_crit(BTRFS_I(inode)->root->fs_info,
"bad ordered accounting left %llu size %llu",
entry->bytes_left, to_dec);
}
entry->bytes_left -= to_dec;
if (!uptodate)
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
if (entry->bytes_left == 0) {
ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
/*
* Implicit memory barrier after test_and_set_bit
*/
if (waitqueue_active(&entry->wait))
wake_up(&entry->wait);
} else {
ret = 1;
}
out:
if (!ret && cached && entry) {
*cached = entry;
atomic_inc(&entry->refs);
}
spin_unlock_irqrestore(&tree->lock, flags);
return ret == 0;
}
/*
* this is used to account for finished IO across a given range
* of the file. The IO should not span ordered extents. If
* a given ordered_extent is completely done, 1 is returned, otherwise
* 0.
*
* test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
* to make sure this function only returns 1 once for a given ordered extent.
*/
int btrfs_dec_test_ordered_pending(struct inode *inode,
struct btrfs_ordered_extent **cached,
u64 file_offset, u64 io_size, int uptodate)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry = NULL;
unsigned long flags;
int ret;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irqsave(&tree->lock, flags);
if (cached && *cached) {
entry = *cached;
goto have_entry;
}
node = tree_search(tree, file_offset);
if (!node) {
ret = 1;
goto out;
}
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
have_entry:
if (!offset_in_entry(entry, file_offset)) {
ret = 1;
goto out;
}
if (io_size > entry->bytes_left) {
btrfs_crit(BTRFS_I(inode)->root->fs_info,
"bad ordered accounting left %llu size %llu",
entry->bytes_left, io_size);
}
entry->bytes_left -= io_size;
if (!uptodate)
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
if (entry->bytes_left == 0) {
ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
/*
* Implicit memory barrier after test_and_set_bit
*/
if (waitqueue_active(&entry->wait))
wake_up(&entry->wait);
} else {
ret = 1;
}
out:
if (!ret && cached && entry) {
*cached = entry;
atomic_inc(&entry->refs);
}
spin_unlock_irqrestore(&tree->lock, flags);
return ret == 0;
}
/* Needs to either be called under a log transaction or the log_mutex */
void btrfs_get_logged_extents(struct inode *inode,
struct list_head *logged_list,
const loff_t start,
const loff_t end)
{
struct btrfs_ordered_inode_tree *tree;
struct btrfs_ordered_extent *ordered;
struct rb_node *n;
struct rb_node *prev;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irq(&tree->lock);
n = __tree_search(&tree->tree, end, &prev);
if (!n)
n = prev;
for (; n; n = rb_prev(n)) {
ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
if (ordered->file_offset > end)
continue;
if (entry_end(ordered) <= start)
break;
if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
continue;
list_add(&ordered->log_list, logged_list);
atomic_inc(&ordered->refs);
}
spin_unlock_irq(&tree->lock);
}
void btrfs_put_logged_extents(struct list_head *logged_list)
{
struct btrfs_ordered_extent *ordered;
while (!list_empty(logged_list)) {
ordered = list_first_entry(logged_list,
struct btrfs_ordered_extent,
log_list);
list_del_init(&ordered->log_list);
btrfs_put_ordered_extent(ordered);
}
}
void btrfs_submit_logged_extents(struct list_head *logged_list,
struct btrfs_root *log)
{
int index = log->log_transid % 2;
spin_lock_irq(&log->log_extents_lock[index]);
list_splice_tail(logged_list, &log->logged_list[index]);
spin_unlock_irq(&log->log_extents_lock[index]);
}
void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *log, u64 transid)
{
struct btrfs_ordered_extent *ordered;
int index = transid % 2;
spin_lock_irq(&log->log_extents_lock[index]);
while (!list_empty(&log->logged_list[index])) {
struct inode *inode;
ordered = list_first_entry(&log->logged_list[index],
struct btrfs_ordered_extent,
log_list);
list_del_init(&ordered->log_list);
inode = ordered->inode;
spin_unlock_irq(&log->log_extents_lock[index]);
if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
!test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
u64 start = ordered->file_offset;
u64 end = ordered->file_offset + ordered->len - 1;
WARN_ON(!inode);
filemap_fdatawrite_range(inode->i_mapping, start, end);
}
wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
&ordered->flags));
/*
* In order to keep us from losing our ordered extent
* information when committing the transaction we have to make
* sure that any logged extents are completed when we go to
* commit the transaction. To do this we simply increase the
* current transactions pending_ordered counter and decrement it
* when the ordered extent completes.
*/
if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
struct btrfs_ordered_inode_tree *tree;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irq(&tree->lock);
if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
atomic_inc(&trans->transaction->pending_ordered);
}
spin_unlock_irq(&tree->lock);
}
btrfs_put_ordered_extent(ordered);
spin_lock_irq(&log->log_extents_lock[index]);
}
spin_unlock_irq(&log->log_extents_lock[index]);
}
void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
{
struct btrfs_ordered_extent *ordered;
int index = transid % 2;
spin_lock_irq(&log->log_extents_lock[index]);
while (!list_empty(&log->logged_list[index])) {
ordered = list_first_entry(&log->logged_list[index],
struct btrfs_ordered_extent,
log_list);
list_del_init(&ordered->log_list);
spin_unlock_irq(&log->log_extents_lock[index]);
btrfs_put_ordered_extent(ordered);
spin_lock_irq(&log->log_extents_lock[index]);
}
spin_unlock_irq(&log->log_extents_lock[index]);
}
/*
* used to drop a reference on an ordered extent. This will free
* the extent if the last reference is dropped
*/
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
{
struct list_head *cur;
struct btrfs_ordered_sum *sum;
trace_btrfs_ordered_extent_put(entry->inode, entry);
if (atomic_dec_and_test(&entry->refs)) {
ASSERT(list_empty(&entry->log_list));
ASSERT(list_empty(&entry->trans_list));
ASSERT(list_empty(&entry->root_extent_list));
ASSERT(RB_EMPTY_NODE(&entry->rb_node));
if (entry->inode)
btrfs_add_delayed_iput(entry->inode);
while (!list_empty(&entry->list)) {
cur = entry->list.next;
sum = list_entry(cur, struct btrfs_ordered_sum, list);
list_del(&sum->list);
kfree(sum);
}
kmem_cache_free(btrfs_ordered_extent_cache, entry);
}
}
/*
* remove an ordered extent from the tree. No references are dropped
* and waiters are woken up.
*/
void btrfs_remove_ordered_extent(struct inode *inode,
struct btrfs_ordered_extent *entry)
{
struct btrfs_ordered_inode_tree *tree;
struct btrfs_root *root = BTRFS_I(inode)->root;
struct rb_node *node;
bool dec_pending_ordered = false;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irq(&tree->lock);
node = &entry->rb_node;
rb_erase(node, &tree->tree);
RB_CLEAR_NODE(node);
if (tree->last == node)
tree->last = NULL;
set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
dec_pending_ordered = true;
spin_unlock_irq(&tree->lock);
/*
* The current running transaction is waiting on us, we need to let it
* know that we're complete and wake it up.
*/
if (dec_pending_ordered) {
struct btrfs_transaction *trans;
/*
* The checks for trans are just a formality, it should be set,
* but if it isn't we don't want to deref/assert under the spin
* lock, so be nice and check if trans is set, but ASSERT() so
* if it isn't set a developer will notice.
*/
spin_lock(&root->fs_info->trans_lock);
trans = root->fs_info->running_transaction;
if (trans)
atomic_inc(&trans->use_count);
spin_unlock(&root->fs_info->trans_lock);
ASSERT(trans);
if (trans) {
if (atomic_dec_and_test(&trans->pending_ordered))
wake_up(&trans->pending_wait);
btrfs_put_transaction(trans);
}
}
spin_lock(&root->ordered_extent_lock);
list_del_init(&entry->root_extent_list);
root->nr_ordered_extents--;
trace_btrfs_ordered_extent_remove(inode, entry);
if (!root->nr_ordered_extents) {
spin_lock(&root->fs_info->ordered_root_lock);
BUG_ON(list_empty(&root->ordered_root));
list_del_init(&root->ordered_root);
spin_unlock(&root->fs_info->ordered_root_lock);
}
spin_unlock(&root->ordered_extent_lock);
wake_up(&entry->wait);
}
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
{
struct btrfs_ordered_extent *ordered;
ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
btrfs_start_ordered_extent(ordered->inode, ordered, 1);
complete(&ordered->completion);
}
/*
* wait for all the ordered extents in a root. This is done when balancing
* space between drives.
*/
int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr,
const u64 range_start, const u64 range_len)
{
LIST_HEAD(splice);
LIST_HEAD(skipped);
LIST_HEAD(works);
struct btrfs_ordered_extent *ordered, *next;
int count = 0;
const u64 range_end = range_start + range_len;
mutex_lock(&root->ordered_extent_mutex);
spin_lock(&root->ordered_extent_lock);
list_splice_init(&root->ordered_extents, &splice);
while (!list_empty(&splice) && nr) {
ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
root_extent_list);
if (range_end <= ordered->start ||
ordered->start + ordered->disk_len <= range_start) {
list_move_tail(&ordered->root_extent_list, &skipped);
cond_resched_lock(&root->ordered_extent_lock);
continue;
}
list_move_tail(&ordered->root_extent_list,
&root->ordered_extents);
atomic_inc(&ordered->refs);
spin_unlock(&root->ordered_extent_lock);
btrfs_init_work(&ordered->flush_work,
btrfs_flush_delalloc_helper,
btrfs_run_ordered_extent_work, NULL, NULL);
list_add_tail(&ordered->work_list, &works);
btrfs_queue_work(root->fs_info->flush_workers,
&ordered->flush_work);
cond_resched();
spin_lock(&root->ordered_extent_lock);
if (nr != -1)
nr--;
count++;
}
list_splice_tail(&skipped, &root->ordered_extents);
list_splice_tail(&splice, &root->ordered_extents);
spin_unlock(&root->ordered_extent_lock);
list_for_each_entry_safe(ordered, next, &works, work_list) {
list_del_init(&ordered->work_list);
wait_for_completion(&ordered->completion);
btrfs_put_ordered_extent(ordered);
cond_resched();
}
mutex_unlock(&root->ordered_extent_mutex);
return count;
}
int btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr,
const u64 range_start, const u64 range_len)
{
struct btrfs_root *root;
struct list_head splice;
int done;
int total_done = 0;
INIT_LIST_HEAD(&splice);
mutex_lock(&fs_info->ordered_operations_mutex);
spin_lock(&fs_info->ordered_root_lock);
list_splice_init(&fs_info->ordered_roots, &splice);
while (!list_empty(&splice) && nr) {
root = list_first_entry(&splice, struct btrfs_root,
ordered_root);
root = btrfs_grab_fs_root(root);
BUG_ON(!root);
list_move_tail(&root->ordered_root,
&fs_info->ordered_roots);
spin_unlock(&fs_info->ordered_root_lock);
done = btrfs_wait_ordered_extents(root, nr,
range_start, range_len);
btrfs_put_fs_root(root);
total_done += done;
spin_lock(&fs_info->ordered_root_lock);
if (nr != -1) {
nr -= done;
WARN_ON(nr < 0);
}
}
list_splice_tail(&splice, &fs_info->ordered_roots);
spin_unlock(&fs_info->ordered_root_lock);
mutex_unlock(&fs_info->ordered_operations_mutex);
return total_done;
}
/*
* Used to start IO or wait for a given ordered extent to finish.
*
* If wait is one, this effectively waits on page writeback for all the pages
* in the extent, and it waits on the io completion code to insert
* metadata into the btree corresponding to the extent
*/
void btrfs_start_ordered_extent(struct inode *inode,
struct btrfs_ordered_extent *entry,
int wait)
{
u64 start = entry->file_offset;
u64 end = start + entry->len - 1;
trace_btrfs_ordered_extent_start(inode, entry);
/*
* pages in the range can be dirty, clean or writeback. We
* start IO on any dirty ones so the wait doesn't stall waiting
* for the flusher thread to find them
*/
if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
filemap_fdatawrite_range(inode->i_mapping, start, end);
if (wait) {
wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
&entry->flags));
}
}
/*
* Used to wait on ordered extents across a large range of bytes.
*/
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
{
int ret = 0;
int ret_wb = 0;
u64 end;
u64 orig_end;
struct btrfs_ordered_extent *ordered;
if (start + len < start) {
orig_end = INT_LIMIT(loff_t);
} else {
orig_end = start + len - 1;
if (orig_end > INT_LIMIT(loff_t))
orig_end = INT_LIMIT(loff_t);
}
/* start IO across the range first to instantiate any delalloc
* extents
*/
ret = btrfs_fdatawrite_range(inode, start, orig_end);
if (ret)
return ret;
/*
* If we have a writeback error don't return immediately. Wait first
* for any ordered extents that haven't completed yet. This is to make
* sure no one can dirty the same page ranges and call writepages()
* before the ordered extents complete - to avoid failures (-EEXIST)
* when adding the new ordered extents to the ordered tree.
*/
ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
end = orig_end;
while (1) {
ordered = btrfs_lookup_first_ordered_extent(inode, end);
if (!ordered)
break;
if (ordered->file_offset > orig_end) {
btrfs_put_ordered_extent(ordered);
break;
}
if (ordered->file_offset + ordered->len <= start) {
btrfs_put_ordered_extent(ordered);
break;
}
btrfs_start_ordered_extent(inode, ordered, 1);
end = ordered->file_offset;
/*
* If the ordered extent had an error save the error but don't
* exit without waiting first for all other ordered extents in
* the range to complete.
*/
if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
ret = -EIO;
btrfs_put_ordered_extent(ordered);
if (end == 0 || end == start)
break;
end--;
}
return ret_wb ? ret_wb : ret;
}
/*
* find an ordered extent corresponding to file_offset. return NULL if
* nothing is found, otherwise take a reference on the extent and return it
*/
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
u64 file_offset)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry = NULL;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irq(&tree->lock);
node = tree_search(tree, file_offset);
if (!node)
goto out;
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
if (!offset_in_entry(entry, file_offset))
entry = NULL;
if (entry)
atomic_inc(&entry->refs);
out:
spin_unlock_irq(&tree->lock);
return entry;
}
/* Since the DIO code tries to lock a wide area we need to look for any ordered
* extents that exist in the range, rather than just the start of the range.
*/
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
u64 file_offset,
u64 len)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry = NULL;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irq(&tree->lock);
node = tree_search(tree, file_offset);
if (!node) {
node = tree_search(tree, file_offset + len);
if (!node)
goto out;
}
while (1) {
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
if (range_overlaps(entry, file_offset, len))
break;
if (entry->file_offset >= file_offset + len) {
entry = NULL;
break;
}
entry = NULL;
node = rb_next(node);
if (!node)
break;
}
out:
if (entry)
atomic_inc(&entry->refs);
spin_unlock_irq(&tree->lock);
return entry;
}
bool btrfs_have_ordered_extents_in_range(struct inode *inode,
u64 file_offset,
u64 len)
{
struct btrfs_ordered_extent *oe;
oe = btrfs_lookup_ordered_range(inode, file_offset, len);
if (oe) {
btrfs_put_ordered_extent(oe);
return true;
}
return false;
}
/*
* lookup and return any extent before 'file_offset'. NULL is returned
* if none is found
*/
struct btrfs_ordered_extent *
btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
{
struct btrfs_ordered_inode_tree *tree;
struct rb_node *node;
struct btrfs_ordered_extent *entry = NULL;
tree = &BTRFS_I(inode)->ordered_tree;
spin_lock_irq(&tree->lock);
node = tree_search(tree, file_offset);
if (!node)
goto out;
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
atomic_inc(&entry->refs);
out:
spin_unlock_irq(&tree->lock);
return entry;
}
/*
* After an extent is done, call this to conditionally update the on disk
* i_size. i_size is updated to cover any fully written part of the file.
*/
int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
struct btrfs_ordered_extent *ordered)
{
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
u64 disk_i_size;
u64 new_i_size;
u64 i_size = i_size_read(inode);
struct rb_node *node;
struct rb_node *prev = NULL;
struct btrfs_ordered_extent *test;
int ret = 1;
u64 orig_offset = offset;
spin_lock_irq(&tree->lock);
if (ordered) {
offset = entry_end(ordered);
if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
offset = min(offset,
ordered->file_offset +
ordered->truncated_len);
} else {
offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
}
disk_i_size = BTRFS_I(inode)->disk_i_size;
/* truncate file */
if (disk_i_size > i_size) {
BTRFS_I(inode)->disk_i_size = orig_offset;
ret = 0;
goto out;
}
/*
* if the disk i_size is already at the inode->i_size, or
* this ordered extent is inside the disk i_size, we're done
*/
if (disk_i_size == i_size)
goto out;
/*
* We still need to update disk_i_size if outstanding_isize is greater
* than disk_i_size.
*/
if (offset <= disk_i_size &&
(!ordered || ordered->outstanding_isize <= disk_i_size))
goto out;
/*
* walk backward from this ordered extent to disk_i_size.
* if we find an ordered extent then we can't update disk i_size
* yet
*/
if (ordered) {
node = rb_prev(&ordered->rb_node);
} else {
prev = tree_search(tree, offset);
/*
* we insert file extents without involving ordered struct,
* so there should be no ordered struct cover this offset
*/
if (prev) {
test = rb_entry(prev, struct btrfs_ordered_extent,
rb_node);
BUG_ON(offset_in_entry(test, offset));
}
node = prev;
}
for (; node; node = rb_prev(node)) {
test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
/* We treat this entry as if it doesn't exist */
if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
continue;
if (test->file_offset + test->len <= disk_i_size)
break;
if (test->file_offset >= i_size)
break;
if (entry_end(test) > disk_i_size) {
/*
* we don't update disk_i_size now, so record this
* undealt i_size. Or we will not know the real
* i_size.
*/
if (test->outstanding_isize < offset)
test->outstanding_isize = offset;
if (ordered &&
ordered->outstanding_isize >
test->outstanding_isize)
test->outstanding_isize =
ordered->outstanding_isize;
goto out;
}
}
new_i_size = min_t(u64, offset, i_size);
/*
* Some ordered extents may completed before the current one, and
* we hold the real i_size in ->outstanding_isize.
*/
if (ordered && ordered->outstanding_isize > new_i_size)
new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
BTRFS_I(inode)->disk_i_size = new_i_size;
ret = 0;
out:
/*
* We need to do this because we can't remove ordered extents until
* after the i_disk_size has been updated and then the inode has been
* updated to reflect the change, so we need to tell anybody who finds
* this ordered extent that we've already done all the real work, we
* just haven't completed all the other work.
*/
if (ordered)
set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
spin_unlock_irq(&tree->lock);
return ret;
}
/*
* search the ordered extents for one corresponding to 'offset' and
* try to find a checksum. This is used because we allow pages to
* be reclaimed before their checksum is actually put into the btree
*/
int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
u32 *sum, int len)
{
struct btrfs_ordered_sum *ordered_sum;
struct btrfs_ordered_extent *ordered;
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
unsigned long num_sectors;
unsigned long i;
u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
int index = 0;
ordered = btrfs_lookup_ordered_extent(inode, offset);
if (!ordered)
return 0;
spin_lock_irq(&tree->lock);
list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
if (disk_bytenr >= ordered_sum->bytenr &&
disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
i = (disk_bytenr - ordered_sum->bytenr) >>
inode->i_sb->s_blocksize_bits;
num_sectors = ordered_sum->len >>
inode->i_sb->s_blocksize_bits;
num_sectors = min_t(int, len - index, num_sectors - i);
memcpy(sum + index, ordered_sum->sums + i,
num_sectors);
index += (int)num_sectors;
if (index == len)
goto out;
disk_bytenr += num_sectors * sectorsize;
}
}
out:
spin_unlock_irq(&tree->lock);
btrfs_put_ordered_extent(ordered);
return index;
}
int __init ordered_data_init(void)
{
btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
sizeof(struct btrfs_ordered_extent), 0,
SLAB_MEM_SPREAD,
NULL);
if (!btrfs_ordered_extent_cache)
return -ENOMEM;
return 0;
}
void ordered_data_exit(void)
{
kmem_cache_destroy(btrfs_ordered_extent_cache);
}