630 lines
15 KiB
C
630 lines
15 KiB
C
/*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
* Copyright (C) 2001 Rusty Russell.
|
|
* Copyright (C) 2003, 2004 Ralf Baechle (ralf@linux-mips.org)
|
|
* Copyright (C) 2005 Thiemo Seufer
|
|
*/
|
|
|
|
#undef DEBUG
|
|
|
|
#include <linux/extable.h>
|
|
#include <linux/moduleloader.h>
|
|
#include <linux/elf.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/numa.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/string.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/jump_label.h>
|
|
|
|
#include <asm/pgtable.h> /* MODULE_START */
|
|
|
|
struct mips_hi16 {
|
|
struct mips_hi16 *next;
|
|
Elf_Addr *addr;
|
|
Elf_Addr value;
|
|
};
|
|
|
|
static LIST_HEAD(dbe_list);
|
|
static DEFINE_SPINLOCK(dbe_lock);
|
|
|
|
/*
|
|
* Get the potential max trampolines size required of the init and
|
|
* non-init sections. Only used if we cannot find enough contiguous
|
|
* physically mapped memory to put the module into.
|
|
*/
|
|
static unsigned int
|
|
get_plt_size(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
|
|
const char *secstrings, unsigned int symindex, bool is_init)
|
|
{
|
|
unsigned long ret = 0;
|
|
unsigned int i, j;
|
|
Elf_Sym *syms;
|
|
|
|
/* Everything marked ALLOC (this includes the exported symbols) */
|
|
for (i = 1; i < hdr->e_shnum; ++i) {
|
|
unsigned int info = sechdrs[i].sh_info;
|
|
|
|
if (sechdrs[i].sh_type != SHT_REL
|
|
&& sechdrs[i].sh_type != SHT_RELA)
|
|
continue;
|
|
|
|
/* Not a valid relocation section? */
|
|
if (info >= hdr->e_shnum)
|
|
continue;
|
|
|
|
/* Don't bother with non-allocated sections */
|
|
if (!(sechdrs[info].sh_flags & SHF_ALLOC))
|
|
continue;
|
|
|
|
/* If it's called *.init*, and we're not init, we're
|
|
not interested */
|
|
if ((strstr(secstrings + sechdrs[i].sh_name, ".init") != 0)
|
|
!= is_init)
|
|
continue;
|
|
|
|
syms = (Elf_Sym *) sechdrs[symindex].sh_addr;
|
|
if (sechdrs[i].sh_type == SHT_REL) {
|
|
Elf_Mips_Rel *rel = (void *) sechdrs[i].sh_addr;
|
|
unsigned int size = sechdrs[i].sh_size / sizeof(*rel);
|
|
|
|
for (j = 0; j < size; ++j) {
|
|
Elf_Sym *sym;
|
|
|
|
if (ELF_MIPS_R_TYPE(rel[j]) != R_MIPS_26)
|
|
continue;
|
|
|
|
sym = syms + ELF_MIPS_R_SYM(rel[j]);
|
|
if (!is_init && sym->st_shndx != SHN_UNDEF)
|
|
continue;
|
|
|
|
ret += 4 * sizeof(int);
|
|
}
|
|
} else {
|
|
Elf_Mips_Rela *rela = (void *) sechdrs[i].sh_addr;
|
|
unsigned int size = sechdrs[i].sh_size / sizeof(*rela);
|
|
|
|
for (j = 0; j < size; ++j) {
|
|
Elf_Sym *sym;
|
|
|
|
if (ELF_MIPS_R_TYPE(rela[j]) != R_MIPS_26)
|
|
continue;
|
|
|
|
sym = syms + ELF_MIPS_R_SYM(rela[j]);
|
|
if (!is_init && sym->st_shndx != SHN_UNDEF)
|
|
continue;
|
|
|
|
ret += 4 * sizeof(int);
|
|
}
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifndef MODULE_START
|
|
static void *alloc_phys(unsigned long size)
|
|
{
|
|
unsigned order;
|
|
struct page *page;
|
|
struct page *p;
|
|
|
|
size = PAGE_ALIGN(size);
|
|
order = get_order(size);
|
|
|
|
page = alloc_pages(GFP_KERNEL | __GFP_NORETRY | __GFP_NOWARN |
|
|
__GFP_THISNODE, order);
|
|
if (!page)
|
|
return NULL;
|
|
|
|
split_page(page, order);
|
|
|
|
/* mark all pages except for the last one */
|
|
for (p = page; p + 1 < page + (size >> PAGE_SHIFT); ++p)
|
|
set_bit(PG_owner_priv_1, &p->flags);
|
|
|
|
for (p = page + (size >> PAGE_SHIFT); p < page + (1 << order); ++p)
|
|
__free_page(p);
|
|
|
|
return page_address(page);
|
|
}
|
|
#endif
|
|
|
|
static void free_phys(void *ptr)
|
|
{
|
|
struct page *page;
|
|
bool free;
|
|
|
|
page = virt_to_page(ptr);
|
|
do {
|
|
free = test_and_clear_bit(PG_owner_priv_1, &page->flags);
|
|
__free_page(page);
|
|
page++;
|
|
} while (free);
|
|
}
|
|
|
|
|
|
void *module_alloc(unsigned long size)
|
|
{
|
|
#ifdef MODULE_START
|
|
return __vmalloc_node_range(size, 1, MODULE_START, MODULE_END,
|
|
GFP_KERNEL, PAGE_KERNEL, 0, NUMA_NO_NODE,
|
|
__builtin_return_address(0));
|
|
#else
|
|
void *ptr;
|
|
|
|
if (size == 0)
|
|
return NULL;
|
|
|
|
ptr = alloc_phys(size);
|
|
|
|
/* If we failed to allocate physically contiguous memory,
|
|
* fall back to regular vmalloc. The module loader code will
|
|
* create jump tables to handle long jumps */
|
|
if (!ptr)
|
|
return vmalloc(size);
|
|
|
|
return ptr;
|
|
#endif
|
|
}
|
|
|
|
static inline bool is_phys_addr(void *ptr)
|
|
{
|
|
#ifdef CONFIG_64BIT
|
|
return (KSEGX((unsigned long)ptr) == CKSEG0);
|
|
#else
|
|
return (KSEGX(ptr) == KSEG0);
|
|
#endif
|
|
}
|
|
|
|
/* Free memory returned from module_alloc */
|
|
void module_memfree(void *module_region)
|
|
{
|
|
if (is_phys_addr(module_region))
|
|
free_phys(module_region);
|
|
else
|
|
vfree(module_region);
|
|
}
|
|
|
|
static void *__module_alloc(int size, bool phys)
|
|
{
|
|
void *ptr;
|
|
|
|
if (phys)
|
|
ptr = kmalloc(size, GFP_KERNEL);
|
|
else
|
|
ptr = vmalloc(size);
|
|
return ptr;
|
|
}
|
|
|
|
static void __module_free(void *ptr)
|
|
{
|
|
if (is_phys_addr(ptr))
|
|
kfree(ptr);
|
|
else
|
|
vfree(ptr);
|
|
}
|
|
|
|
int module_frob_arch_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
|
|
char *secstrings, struct module *mod)
|
|
{
|
|
unsigned int symindex = 0;
|
|
unsigned int core_size, init_size;
|
|
int i;
|
|
|
|
mod->arch.phys_plt_offset = 0;
|
|
mod->arch.virt_plt_offset = 0;
|
|
mod->arch.phys_plt_tbl = NULL;
|
|
mod->arch.virt_plt_tbl = NULL;
|
|
|
|
if (IS_ENABLED(CONFIG_64BIT))
|
|
return 0;
|
|
|
|
for (i = 1; i < hdr->e_shnum; i++)
|
|
if (sechdrs[i].sh_type == SHT_SYMTAB)
|
|
symindex = i;
|
|
|
|
core_size = get_plt_size(hdr, sechdrs, secstrings, symindex, false);
|
|
init_size = get_plt_size(hdr, sechdrs, secstrings, symindex, true);
|
|
|
|
if ((core_size + init_size) == 0)
|
|
return 0;
|
|
|
|
mod->arch.phys_plt_tbl = __module_alloc(core_size + init_size, 1);
|
|
if (!mod->arch.phys_plt_tbl)
|
|
return -ENOMEM;
|
|
|
|
mod->arch.virt_plt_tbl = __module_alloc(core_size + init_size, 0);
|
|
if (!mod->arch.virt_plt_tbl) {
|
|
__module_free(mod->arch.phys_plt_tbl);
|
|
mod->arch.phys_plt_tbl = NULL;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int apply_r_mips_none(struct module *me, u32 *location, Elf_Addr v)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_mips_32_rel(struct module *me, u32 *location, Elf_Addr v)
|
|
{
|
|
*location += v;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static Elf_Addr add_plt_entry_to(unsigned *plt_offset,
|
|
void *start, Elf_Addr v)
|
|
{
|
|
unsigned *tramp = start + *plt_offset;
|
|
*plt_offset += 4 * sizeof(int);
|
|
|
|
/* adjust carry for addiu */
|
|
if (v & 0x00008000)
|
|
v += 0x10000;
|
|
|
|
tramp[0] = 0x3c190000 | (v >> 16); /* lui t9, hi16 */
|
|
tramp[1] = 0x27390000 | (v & 0xffff); /* addiu t9, t9, lo16 */
|
|
tramp[2] = 0x03200008; /* jr t9 */
|
|
tramp[3] = 0x00000000; /* nop */
|
|
|
|
return (Elf_Addr) tramp;
|
|
}
|
|
|
|
static Elf_Addr add_plt_entry(struct module *me, void *location, Elf_Addr v)
|
|
{
|
|
if (is_phys_addr(location))
|
|
return add_plt_entry_to(&me->arch.phys_plt_offset,
|
|
me->arch.phys_plt_tbl, v);
|
|
else
|
|
return add_plt_entry_to(&me->arch.virt_plt_offset,
|
|
me->arch.virt_plt_tbl, v);
|
|
|
|
}
|
|
|
|
static int apply_r_mips_26_rel(struct module *me, u32 *location, Elf_Addr v)
|
|
{
|
|
u32 ofs = *location & 0x03ffffff;
|
|
|
|
if (v % 4) {
|
|
pr_err("module %s: dangerous R_MIPS_26 REL relocation\n",
|
|
me->name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
if ((v & 0xf0000000) != (((unsigned long)location + 4) & 0xf0000000)) {
|
|
v = add_plt_entry(me, location, v + (ofs << 2));
|
|
if (!v) {
|
|
pr_err("module %s: relocation overflow\n",
|
|
me->name);
|
|
return -ENOEXEC;
|
|
}
|
|
ofs = 0;
|
|
}
|
|
|
|
*location = (*location & ~0x03ffffff) |
|
|
((ofs + (v >> 2)) & 0x03ffffff);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_mips_hi16_rel(struct module *me, u32 *location, Elf_Addr v)
|
|
{
|
|
struct mips_hi16 *n;
|
|
|
|
/*
|
|
* We cannot relocate this one now because we don't know the value of
|
|
* the carry we need to add. Save the information, and let LO16 do the
|
|
* actual relocation.
|
|
*/
|
|
n = kmalloc(sizeof *n, GFP_KERNEL);
|
|
if (!n)
|
|
return -ENOMEM;
|
|
|
|
n->addr = (Elf_Addr *)location;
|
|
n->value = v;
|
|
n->next = me->arch.r_mips_hi16_list;
|
|
me->arch.r_mips_hi16_list = n;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void free_relocation_chain(struct mips_hi16 *l)
|
|
{
|
|
struct mips_hi16 *next;
|
|
|
|
while (l) {
|
|
next = l->next;
|
|
kfree(l);
|
|
l = next;
|
|
}
|
|
}
|
|
|
|
static int apply_r_mips_lo16_rel(struct module *me, u32 *location, Elf_Addr v)
|
|
{
|
|
unsigned long insnlo = *location;
|
|
struct mips_hi16 *l;
|
|
Elf_Addr val, vallo;
|
|
|
|
/* Sign extend the addend we extract from the lo insn. */
|
|
vallo = ((insnlo & 0xffff) ^ 0x8000) - 0x8000;
|
|
|
|
if (me->arch.r_mips_hi16_list != NULL) {
|
|
l = me->arch.r_mips_hi16_list;
|
|
while (l != NULL) {
|
|
struct mips_hi16 *next;
|
|
unsigned long insn;
|
|
|
|
/*
|
|
* The value for the HI16 had best be the same.
|
|
*/
|
|
if (v != l->value)
|
|
goto out_danger;
|
|
|
|
/*
|
|
* Do the HI16 relocation. Note that we actually don't
|
|
* need to know anything about the LO16 itself, except
|
|
* where to find the low 16 bits of the addend needed
|
|
* by the LO16.
|
|
*/
|
|
insn = *l->addr;
|
|
val = ((insn & 0xffff) << 16) + vallo;
|
|
val += v;
|
|
|
|
/*
|
|
* Account for the sign extension that will happen in
|
|
* the low bits.
|
|
*/
|
|
val = ((val >> 16) + ((val & 0x8000) != 0)) & 0xffff;
|
|
|
|
insn = (insn & ~0xffff) | val;
|
|
*l->addr = insn;
|
|
|
|
next = l->next;
|
|
kfree(l);
|
|
l = next;
|
|
}
|
|
|
|
me->arch.r_mips_hi16_list = NULL;
|
|
}
|
|
|
|
/*
|
|
* Ok, we're done with the HI16 relocs. Now deal with the LO16.
|
|
*/
|
|
val = v + vallo;
|
|
insnlo = (insnlo & ~0xffff) | (val & 0xffff);
|
|
*location = insnlo;
|
|
|
|
return 0;
|
|
|
|
out_danger:
|
|
free_relocation_chain(l);
|
|
me->arch.r_mips_hi16_list = NULL;
|
|
|
|
pr_err("module %s: dangerous R_MIPS_LO16 REL relocation\n", me->name);
|
|
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
static int apply_r_mips_pc_rel(struct module *me, u32 *location, Elf_Addr v,
|
|
unsigned bits)
|
|
{
|
|
unsigned long mask = GENMASK(bits - 1, 0);
|
|
unsigned long se_bits;
|
|
long offset;
|
|
|
|
if (v % 4) {
|
|
pr_err("module %s: dangerous R_MIPS_PC%u REL relocation\n",
|
|
me->name, bits);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
/* retrieve & sign extend implicit addend */
|
|
offset = *location & mask;
|
|
offset |= (offset & BIT(bits - 1)) ? ~mask : 0;
|
|
|
|
offset += ((long)v - (long)location) >> 2;
|
|
|
|
/* check the sign bit onwards are identical - ie. we didn't overflow */
|
|
se_bits = (offset & BIT(bits - 1)) ? ~0ul : 0;
|
|
if ((offset & ~mask) != (se_bits & ~mask)) {
|
|
pr_err("module %s: relocation overflow\n", me->name);
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
*location = (*location & ~mask) | (offset & mask);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int apply_r_mips_pc16_rel(struct module *me, u32 *location, Elf_Addr v)
|
|
{
|
|
return apply_r_mips_pc_rel(me, location, v, 16);
|
|
}
|
|
|
|
static int apply_r_mips_pc21_rel(struct module *me, u32 *location, Elf_Addr v)
|
|
{
|
|
return apply_r_mips_pc_rel(me, location, v, 21);
|
|
}
|
|
|
|
static int apply_r_mips_pc26_rel(struct module *me, u32 *location, Elf_Addr v)
|
|
{
|
|
return apply_r_mips_pc_rel(me, location, v, 26);
|
|
}
|
|
|
|
static int (*reloc_handlers_rel[]) (struct module *me, u32 *location,
|
|
Elf_Addr v) = {
|
|
[R_MIPS_NONE] = apply_r_mips_none,
|
|
[R_MIPS_32] = apply_r_mips_32_rel,
|
|
[R_MIPS_26] = apply_r_mips_26_rel,
|
|
[R_MIPS_HI16] = apply_r_mips_hi16_rel,
|
|
[R_MIPS_LO16] = apply_r_mips_lo16_rel,
|
|
[R_MIPS_PC16] = apply_r_mips_pc16_rel,
|
|
[R_MIPS_PC21_S2] = apply_r_mips_pc21_rel,
|
|
[R_MIPS_PC26_S2] = apply_r_mips_pc26_rel,
|
|
};
|
|
|
|
int apply_relocate(Elf_Shdr *sechdrs, const char *strtab,
|
|
unsigned int symindex, unsigned int relsec,
|
|
struct module *me)
|
|
{
|
|
Elf_Mips_Rel *rel = (void *) sechdrs[relsec].sh_addr;
|
|
int (*handler)(struct module *me, u32 *location, Elf_Addr v);
|
|
Elf_Sym *sym;
|
|
u32 *location;
|
|
unsigned int i, type;
|
|
Elf_Addr v;
|
|
int res;
|
|
|
|
pr_debug("Applying relocate section %u to %u\n", relsec,
|
|
sechdrs[relsec].sh_info);
|
|
|
|
me->arch.r_mips_hi16_list = NULL;
|
|
for (i = 0; i < sechdrs[relsec].sh_size / sizeof(*rel); i++) {
|
|
/* This is where to make the change */
|
|
location = (void *)sechdrs[sechdrs[relsec].sh_info].sh_addr
|
|
+ rel[i].r_offset;
|
|
/* This is the symbol it is referring to */
|
|
sym = (Elf_Sym *)sechdrs[symindex].sh_addr
|
|
+ ELF_MIPS_R_SYM(rel[i]);
|
|
if (sym->st_value >= -MAX_ERRNO) {
|
|
/* Ignore unresolved weak symbol */
|
|
if (ELF_ST_BIND(sym->st_info) == STB_WEAK)
|
|
continue;
|
|
pr_warn("%s: Unknown symbol %s\n",
|
|
me->name, strtab + sym->st_name);
|
|
return -ENOENT;
|
|
}
|
|
|
|
type = ELF_MIPS_R_TYPE(rel[i]);
|
|
|
|
if (type < ARRAY_SIZE(reloc_handlers_rel))
|
|
handler = reloc_handlers_rel[type];
|
|
else
|
|
handler = NULL;
|
|
|
|
if (!handler) {
|
|
pr_err("%s: Unknown relocation type %u\n",
|
|
me->name, type);
|
|
return -EINVAL;
|
|
}
|
|
|
|
v = sym->st_value;
|
|
res = handler(me, location, v);
|
|
if (res)
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* Normally the hi16 list should be deallocated at this point. A
|
|
* malformed binary however could contain a series of R_MIPS_HI16
|
|
* relocations not followed by a R_MIPS_LO16 relocation. In that
|
|
* case, free up the list and return an error.
|
|
*/
|
|
if (me->arch.r_mips_hi16_list) {
|
|
free_relocation_chain(me->arch.r_mips_hi16_list);
|
|
me->arch.r_mips_hi16_list = NULL;
|
|
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Given an address, look for it in the module exception tables. */
|
|
const struct exception_table_entry *search_module_dbetables(unsigned long addr)
|
|
{
|
|
unsigned long flags;
|
|
const struct exception_table_entry *e = NULL;
|
|
struct mod_arch_specific *dbe;
|
|
|
|
spin_lock_irqsave(&dbe_lock, flags);
|
|
list_for_each_entry(dbe, &dbe_list, dbe_list) {
|
|
e = search_extable(dbe->dbe_start, dbe->dbe_end - 1, addr);
|
|
if (e)
|
|
break;
|
|
}
|
|
spin_unlock_irqrestore(&dbe_lock, flags);
|
|
|
|
/* Now, if we found one, we are running inside it now, hence
|
|
we cannot unload the module, hence no refcnt needed. */
|
|
return e;
|
|
}
|
|
|
|
/* Put in dbe list if necessary. */
|
|
int module_finalize(const Elf_Ehdr *hdr,
|
|
const Elf_Shdr *sechdrs,
|
|
struct module *me)
|
|
{
|
|
const Elf_Shdr *s;
|
|
char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
|
|
|
|
/* Make jump label nops. */
|
|
jump_label_apply_nops(me);
|
|
|
|
INIT_LIST_HEAD(&me->arch.dbe_list);
|
|
for (s = sechdrs; s < sechdrs + hdr->e_shnum; s++) {
|
|
if (strcmp("__dbe_table", secstrings + s->sh_name) != 0)
|
|
continue;
|
|
me->arch.dbe_start = (void *)s->sh_addr;
|
|
me->arch.dbe_end = (void *)s->sh_addr + s->sh_size;
|
|
spin_lock_irq(&dbe_lock);
|
|
list_add(&me->arch.dbe_list, &dbe_list);
|
|
spin_unlock_irq(&dbe_lock);
|
|
}
|
|
|
|
/* Get rid of the fixup trampoline if we're running the module
|
|
* from physically mapped address space */
|
|
if (me->arch.phys_plt_offset == 0) {
|
|
__module_free(me->arch.phys_plt_tbl);
|
|
me->arch.phys_plt_tbl = NULL;
|
|
}
|
|
if (me->arch.virt_plt_offset == 0) {
|
|
__module_free(me->arch.virt_plt_tbl);
|
|
me->arch.virt_plt_tbl = NULL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
void module_arch_freeing_init(struct module *mod)
|
|
{
|
|
if (mod->state == MODULE_STATE_LIVE)
|
|
return;
|
|
|
|
if (mod->arch.phys_plt_tbl) {
|
|
__module_free(mod->arch.phys_plt_tbl);
|
|
mod->arch.phys_plt_tbl = NULL;
|
|
}
|
|
if (mod->arch.virt_plt_tbl) {
|
|
__module_free(mod->arch.virt_plt_tbl);
|
|
mod->arch.virt_plt_tbl = NULL;
|
|
}
|
|
}
|
|
|
|
void module_arch_cleanup(struct module *mod)
|
|
{
|
|
spin_lock_irq(&dbe_lock);
|
|
list_del(&mod->arch.dbe_list);
|
|
spin_unlock_irq(&dbe_lock);
|
|
}
|