1
0
Files
Greg Kroah-Hartman e1df0ff86c Merge 4.9.142 into android-4.9
Changes in 4.9.142
	usb: core: Fix hub port connection events lost
	usb: dwc3: core: Clean up ULPI device
	usb: xhci: fix timeout for transition from RExit to U0
	MAINTAINERS: Add Sasha as a stable branch maintainer
	gpio: don't free unallocated ida on gpiochip_add_data_with_key() error path
	iwlwifi: mvm: support sta_statistics() even on older firmware
	iwlwifi: mvm: fix regulatory domain update when the firmware starts
	brcmfmac: fix reporting support for 160 MHz channels
	tools/power/cpupower: fix compilation with STATIC=true
	v9fs_dir_readdir: fix double-free on p9stat_read error
	selinux: Add __GFP_NOWARN to allocation at str_read()
	bfs: add sanity check at bfs_fill_super()
	sctp: clear the transport of some out_chunk_list chunks in sctp_assoc_rm_peer
	gfs2: Don't leave s_fs_info pointing to freed memory in init_sbd
	llc: do not use sk_eat_skb()
	mm: don't warn about large allocations for slab
	drm/ast: change resolution may cause screen blurred
	drm/ast: fixed cursor may disappear sometimes
	drm/ast: Remove existing framebuffers before loading driver
	can: dev: can_get_echo_skb(): factor out non sending code to __can_get_echo_skb()
	can: dev: __can_get_echo_skb(): replace struct can_frame by canfd_frame to access frame length
	can: dev: __can_get_echo_skb(): Don't crash the kernel if can_priv::echo_skb is accessed out of bounds
	can: dev: __can_get_echo_skb(): print error message, if trying to echo non existing skb
	IB/core: Fix for core panic
	IB/hfi1: Eliminate races in the SDMA send error path
	usb: xhci: Prevent bus suspend if a port connect change or polling state is detected
	pinctrl: meson: fix pinconf bias disable
	KVM: PPC: Move and undef TRACE_INCLUDE_PATH/FILE
	cpufreq: imx6q: add return value check for voltage scale
	rtc: pcf2127: fix a kmemleak caused in pcf2127_i2c_gather_write
	floppy: fix race condition in __floppy_read_block_0()
	powerpc/io: Fix the IO workarounds code to work with Radix
	perf/x86/intel/uncore: Add more IMC PCI IDs for KabyLake and CoffeeLake CPUs
	SUNRPC: Fix a bogus get/put in generic_key_to_expire()
	kdb: Use strscpy with destination buffer size
	powerpc/numa: Suppress "VPHN is not supported" messages
	efi/arm: Revert deferred unmap of early memmap mapping
	tmpfs: make lseek(SEEK_DATA/SEK_HOLE) return ENXIO with a negative offset
	of: add helper to lookup compatible child node
	NFC: nfcmrvl_uart: fix OF child-node lookup
	net: bcmgenet: fix OF child-node lookup
	arm64: remove no-op -p linker flag
	ath10k: fix kernel panic due to race in accessing arvif list
	Input: xpad - add product ID for Xbox One S pad
	Input: xpad - fix Xbox One rumble stopping after 2.5 secs
	Input: xpad - correctly sort vendor id's
	Input: xpad - move reporting xbox one home button to common function
	Input: xpad - simplify error condition in init_output
	Input: xpad - don't depend on endpoint order
	Input: xpad - fix stuck mode button on Xbox One S pad
	Input: xpad - restore LED state after device resume
	Input: xpad - support some quirky Xbox One pads
	Input: xpad - sort supported devices by USB ID
	Input: xpad - sync supported devices with xboxdrv
	Input: xpad - add USB IDs for Mad Catz Brawlstick and Razer Sabertooth
	Input: xpad - sync supported devices with 360Controller
	Input: xpad - sync supported devices with XBCD
	Input: xpad - constify usb_device_id
	Input: xpad - fix PowerA init quirk for some gamepad models
	Input: xpad - validate USB endpoint type during probe
	Input: xpad - add support for PDP Xbox One controllers
	Input: xpad - add PDP device id 0x02a4
	Input: xpad - fix some coding style issues
	Input: xpad - avoid using __set_bit() for capabilities
	Input: xpad - add GPD Win 2 Controller USB IDs
	Input: xpad - fix GPD Win 2 controller name
	Input: xpad - add support for Xbox1 PDP Camo series gamepad
	cw1200: Don't leak memory if krealloc failes
	mwifiex: prevent register accesses after host is sleeping
	mwifiex: report error to PCIe for suspend failure
	mwifiex: Fix NULL pointer dereference in skb_dequeue()
	mwifiex: fix p2p device doesn't find in scan problem
	scsi: ufs: fix bugs related to null pointer access and array size
	scsi: ufshcd: Fix race between clk scaling and ungate work
	scsi: ufs: fix race between clock gating and devfreq scaling work
	scsi: ufshcd: release resources if probe fails
	include/linux/pfn_t.h: force '~' to be parsed as an unary operator
	tty: wipe buffer.
	tty: wipe buffer if not echoing data
	usb: xhci: fix uninitialized completion when USB3 port got wrong status
	sched/core: Allow __sched_setscheduler() in interrupts when PI is not used
	namei: allow restricted O_CREAT of FIFOs and regular files
	lan78xx: Read MAC address from DT if present
	s390/mm: Check for valid vma before zapping in gmap_discard
	net: ieee802154: 6lowpan: fix frag reassembly
	Revert "evm: Translate user/group ids relative to s_user_ns when computing HMAC"
	ima: always measure and audit files in policy
	EVM: Add support for portable signature format
	ima: re-introduce own integrity cache lock
	ima: re-initialize iint->atomic_flags
	Linux 4.9.142

Signed-off-by: Greg Kroah-Hartman <gregkh@google.com>
2019-02-11 23:00:57 +03:00

367 lines
14 KiB
Plaintext

Documentation for /proc/sys/fs/* kernel version 2.2.10
(c) 1998, 1999, Rik van Riel <riel@nl.linux.org>
(c) 2009, Shen Feng<shen@cn.fujitsu.com>
For general info and legal blurb, please look in README.
==============================================================
This file contains documentation for the sysctl files in
/proc/sys/fs/ and is valid for Linux kernel version 2.2.
The files in this directory can be used to tune and monitor
miscellaneous and general things in the operation of the Linux
kernel. Since some of the files _can_ be used to screw up your
system, it is advisable to read both documentation and source
before actually making adjustments.
1. /proc/sys/fs
----------------------------------------------------------
Currently, these files are in /proc/sys/fs:
- aio-max-nr
- aio-nr
- dentry-state
- dquot-max
- dquot-nr
- file-max
- file-nr
- inode-max
- inode-nr
- inode-state
- nr_open
- overflowuid
- overflowgid
- pipe-user-pages-hard
- pipe-user-pages-soft
- protected_fifos
- protected_hardlinks
- protected_regular
- protected_symlinks
- suid_dumpable
- super-max
- super-nr
==============================================================
aio-nr & aio-max-nr:
aio-nr is the running total of the number of events specified on the
io_setup system call for all currently active aio contexts. If aio-nr
reaches aio-max-nr then io_setup will fail with EAGAIN. Note that
raising aio-max-nr does not result in the pre-allocation or re-sizing
of any kernel data structures.
==============================================================
dentry-state:
From linux/fs/dentry.c:
--------------------------------------------------------------
struct {
int nr_dentry;
int nr_unused;
int age_limit; /* age in seconds */
int want_pages; /* pages requested by system */
int dummy[2];
} dentry_stat = {0, 0, 45, 0,};
--------------------------------------------------------------
Dentries are dynamically allocated and deallocated, and
nr_dentry seems to be 0 all the time. Hence it's safe to
assume that only nr_unused, age_limit and want_pages are
used. Nr_unused seems to be exactly what its name says.
Age_limit is the age in seconds after which dcache entries
can be reclaimed when memory is short and want_pages is
nonzero when shrink_dcache_pages() has been called and the
dcache isn't pruned yet.
==============================================================
dquot-max & dquot-nr:
The file dquot-max shows the maximum number of cached disk
quota entries.
The file dquot-nr shows the number of allocated disk quota
entries and the number of free disk quota entries.
If the number of free cached disk quotas is very low and
you have some awesome number of simultaneous system users,
you might want to raise the limit.
==============================================================
file-max & file-nr:
The value in file-max denotes the maximum number of file-
handles that the Linux kernel will allocate. When you get lots
of error messages about running out of file handles, you might
want to increase this limit.
Historically,the kernel was able to allocate file handles
dynamically, but not to free them again. The three values in
file-nr denote the number of allocated file handles, the number
of allocated but unused file handles, and the maximum number of
file handles. Linux 2.6 always reports 0 as the number of free
file handles -- this is not an error, it just means that the
number of allocated file handles exactly matches the number of
used file handles.
Attempts to allocate more file descriptors than file-max are
reported with printk, look for "VFS: file-max limit <number>
reached".
==============================================================
nr_open:
This denotes the maximum number of file-handles a process can
allocate. Default value is 1024*1024 (1048576) which should be
enough for most machines. Actual limit depends on RLIMIT_NOFILE
resource limit.
==============================================================
inode-max, inode-nr & inode-state:
As with file handles, the kernel allocates the inode structures
dynamically, but can't free them yet.
The value in inode-max denotes the maximum number of inode
handlers. This value should be 3-4 times larger than the value
in file-max, since stdin, stdout and network sockets also
need an inode struct to handle them. When you regularly run
out of inodes, you need to increase this value.
The file inode-nr contains the first two items from
inode-state, so we'll skip to that file...
Inode-state contains three actual numbers and four dummies.
The actual numbers are, in order of appearance, nr_inodes,
nr_free_inodes and preshrink.
Nr_inodes stands for the number of inodes the system has
allocated, this can be slightly more than inode-max because
Linux allocates them one pageful at a time.
Nr_free_inodes represents the number of free inodes (?) and
preshrink is nonzero when the nr_inodes > inode-max and the
system needs to prune the inode list instead of allocating
more.
==============================================================
overflowgid & overflowuid:
Some filesystems only support 16-bit UIDs and GIDs, although in Linux
UIDs and GIDs are 32 bits. When one of these filesystems is mounted
with writes enabled, any UID or GID that would exceed 65535 is translated
to a fixed value before being written to disk.
These sysctls allow you to change the value of the fixed UID and GID.
The default is 65534.
==============================================================
pipe-user-pages-hard:
Maximum total number of pages a non-privileged user may allocate for pipes.
Once this limit is reached, no new pipes may be allocated until usage goes
below the limit again. When set to 0, no limit is applied, which is the default
setting.
==============================================================
pipe-user-pages-soft:
Maximum total number of pages a non-privileged user may allocate for pipes
before the pipe size gets limited to a single page. Once this limit is reached,
new pipes will be limited to a single page in size for this user in order to
limit total memory usage, and trying to increase them using fcntl() will be
denied until usage goes below the limit again. The default value allows to
allocate up to 1024 pipes at their default size. When set to 0, no limit is
applied.
==============================================================
protected_fifos:
The intent of this protection is to avoid unintentional writes to
an attacker-controlled FIFO, where a program expected to create a regular
file.
When set to "0", writing to FIFOs is unrestricted.
When set to "1" don't allow O_CREAT open on FIFOs that we don't own
in world writable sticky directories, unless they are owned by the
owner of the directory.
When set to "2" it also applies to group writable sticky directories.
This protection is based on the restrictions in Openwall.
==============================================================
protected_hardlinks:
A long-standing class of security issues is the hardlink-based
time-of-check-time-of-use race, most commonly seen in world-writable
directories like /tmp. The common method of exploitation of this flaw
is to cross privilege boundaries when following a given hardlink (i.e. a
root process follows a hardlink created by another user). Additionally,
on systems without separated partitions, this stops unauthorized users
from "pinning" vulnerable setuid/setgid files against being upgraded by
the administrator, or linking to special files.
When set to "0", hardlink creation behavior is unrestricted.
When set to "1" hardlinks cannot be created by users if they do not
already own the source file, or do not have read/write access to it.
This protection is based on the restrictions in Openwall and grsecurity.
==============================================================
protected_regular:
This protection is similar to protected_fifos, but it
avoids writes to an attacker-controlled regular file, where a program
expected to create one.
When set to "0", writing to regular files is unrestricted.
When set to "1" don't allow O_CREAT open on regular files that we
don't own in world writable sticky directories, unless they are
owned by the owner of the directory.
When set to "2" it also applies to group writable sticky directories.
==============================================================
protected_symlinks:
A long-standing class of security issues is the symlink-based
time-of-check-time-of-use race, most commonly seen in world-writable
directories like /tmp. The common method of exploitation of this flaw
is to cross privilege boundaries when following a given symlink (i.e. a
root process follows a symlink belonging to another user). For a likely
incomplete list of hundreds of examples across the years, please see:
http://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=/tmp
When set to "0", symlink following behavior is unrestricted.
When set to "1" symlinks are permitted to be followed only when outside
a sticky world-writable directory, or when the uid of the symlink and
follower match, or when the directory owner matches the symlink's owner.
This protection is based on the restrictions in Openwall and grsecurity.
==============================================================
suid_dumpable:
This value can be used to query and set the core dump mode for setuid
or otherwise protected/tainted binaries. The modes are
0 - (default) - traditional behaviour. Any process which has changed
privilege levels or is execute only will not be dumped.
1 - (debug) - all processes dump core when possible. The core dump is
owned by the current user and no security is applied. This is
intended for system debugging situations only. Ptrace is unchecked.
This is insecure as it allows regular users to examine the memory
contents of privileged processes.
2 - (suidsafe) - any binary which normally would not be dumped is dumped
anyway, but only if the "core_pattern" kernel sysctl is set to
either a pipe handler or a fully qualified path. (For more details
on this limitation, see CVE-2006-2451.) This mode is appropriate
when administrators are attempting to debug problems in a normal
environment, and either have a core dump pipe handler that knows
to treat privileged core dumps with care, or specific directory
defined for catching core dumps. If a core dump happens without
a pipe handler or fully qualifid path, a message will be emitted
to syslog warning about the lack of a correct setting.
==============================================================
super-max & super-nr:
These numbers control the maximum number of superblocks, and
thus the maximum number of mounted filesystems the kernel
can have. You only need to increase super-max if you need to
mount more filesystems than the current value in super-max
allows you to.
==============================================================
aio-nr & aio-max-nr:
aio-nr shows the current system-wide number of asynchronous io
requests. aio-max-nr allows you to change the maximum value
aio-nr can grow to.
==============================================================
mount-max:
This denotes the maximum number of mounts that may exist
in a mount namespace.
==============================================================
2. /proc/sys/fs/binfmt_misc
----------------------------------------------------------
Documentation for the files in /proc/sys/fs/binfmt_misc is
in Documentation/binfmt_misc.txt.
3. /proc/sys/fs/mqueue - POSIX message queues filesystem
----------------------------------------------------------
The "mqueue" filesystem provides the necessary kernel features to enable the
creation of a user space library that implements the POSIX message queues
API (as noted by the MSG tag in the POSIX 1003.1-2001 version of the System
Interfaces specification.)
The "mqueue" filesystem contains values for determining/setting the amount of
resources used by the file system.
/proc/sys/fs/mqueue/queues_max is a read/write file for setting/getting the
maximum number of message queues allowed on the system.
/proc/sys/fs/mqueue/msg_max is a read/write file for setting/getting the
maximum number of messages in a queue value. In fact it is the limiting value
for another (user) limit which is set in mq_open invocation. This attribute of
a queue must be less or equal then msg_max.
/proc/sys/fs/mqueue/msgsize_max is a read/write file for setting/getting the
maximum message size value (it is every message queue's attribute set during
its creation).
/proc/sys/fs/mqueue/msg_default is a read/write file for setting/getting the
default number of messages in a queue value if attr parameter of mq_open(2) is
NULL. If it exceed msg_max, the default value is initialized msg_max.
/proc/sys/fs/mqueue/msgsize_default is a read/write file for setting/getting
the default message size value if attr parameter of mq_open(2) is NULL. If it
exceed msgsize_max, the default value is initialized msgsize_max.
4. /proc/sys/fs/epoll - Configuration options for the epoll interface
--------------------------------------------------------
This directory contains configuration options for the epoll(7) interface.
max_user_watches
----------------
Every epoll file descriptor can store a number of files to be monitored
for event readiness. Each one of these monitored files constitutes a "watch".
This configuration option sets the maximum number of "watches" that are
allowed for each user.
Each "watch" costs roughly 90 bytes on a 32bit kernel, and roughly 160 bytes
on a 64bit one.
The current default value for max_user_watches is the 1/32 of the available
low memory, divided for the "watch" cost in bytes.