1
0
This repository has been archived on 2024-07-22. You can view files and clone it, but cannot push or open issues or pull requests.
ZyXEL_PMG5617GA/target/linux/generic/files/drivers/net/phy/ar8216.c
2022-11-27 10:16:14 +00:00

2544 lines
62 KiB
C

/*
* ar8216.c: AR8216 switch driver
*
* Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
* Copyright (C) 2011-2012 Gabor Juhos <juhosg@openwrt.org>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/if.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/if_ether.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/netlink.h>
#include <linux/bitops.h>
#include <net/genetlink.h>
#include <linux/switch.h>
#include <linux/delay.h>
#include <linux/phy.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/lockdep.h>
#include <linux/ar8216_platform.h>
#include <linux/workqueue.h>
#include <linux/ctype.h>
#include "ar8216.h"
/* size of the vlan table */
#define AR8X16_MAX_VLANS 128
#define AR8X16_PROBE_RETRIES 10
#define AR8X16_MAX_PORTS 8
#define AR8XXX_MIB_WORK_DELAY 2000 /* msecs */
struct ar8216_priv;
#define AR8XXX_CAP_GIGE BIT(0)
#define AR8XXX_CAP_MIB_COUNTERS BIT(1)
enum {
AR8XXX_VER_AR8216 = 0x01,
AR8XXX_VER_AR8236 = 0x03,
AR8XXX_VER_AR8316 = 0x10,
AR8XXX_VER_AR8327 = 0x12,
AR8XXX_VER_AR8337 = 0x13,
};
struct ar8xxx_mib_desc {
unsigned int size;
unsigned int offset;
const char *name;
};
struct ar8xxx_chip {
unsigned long caps;
int (*hw_init)(struct ar8216_priv *priv);
void (*init_globals)(struct ar8216_priv *priv);
void (*init_port)(struct ar8216_priv *priv, int port);
void (*setup_port)(struct ar8216_priv *priv, int port, u32 egress,
u32 ingress, u32 members, u32 pvid);
u32 (*read_port_status)(struct ar8216_priv *priv, int port);
int (*atu_flush)(struct ar8216_priv *priv);
void (*vtu_flush)(struct ar8216_priv *priv);
void (*vtu_load_vlan)(struct ar8216_priv *priv, u32 vid, u32 port_mask);
const struct ar8xxx_mib_desc *mib_decs;
unsigned num_mibs;
};
struct ar8216_priv {
struct switch_dev dev;
struct phy_device *phy;
u32 (*read)(struct ar8216_priv *priv, int reg);
void (*write)(struct ar8216_priv *priv, int reg, u32 val);
const struct net_device_ops *ndo_old;
struct net_device_ops ndo;
struct mutex reg_mutex;
u8 chip_ver;
u8 chip_rev;
const struct ar8xxx_chip *chip;
bool initialized;
bool port4_phy;
char buf[2048];
bool init;
bool mii_lo_first;
struct mutex mib_lock;
struct delayed_work mib_work;
int mib_next_port;
u64 *mib_stats;
/* all fields below are cleared on reset */
bool vlan;
u16 vlan_id[AR8X16_MAX_VLANS];
u8 vlan_table[AR8X16_MAX_VLANS];
u8 vlan_tagged;
u16 pvid[AR8X16_MAX_PORTS];
/* if set, the vlan interface is UP */
u8 vlan_status[AR8X16_MAX_VLANS];
struct net_device *vlan_dev[AR8X16_MAX_VLANS];
u32 old_port_status;
};
#define MIB_DESC(_s , _o, _n) \
{ \
.size = (_s), \
.offset = (_o), \
.name = (_n), \
}
static const struct ar8xxx_mib_desc ar8216_mibs[] = {
MIB_DESC(1, AR8216_STATS_RXBROAD, "RxBroad"),
MIB_DESC(1, AR8216_STATS_RXPAUSE, "RxPause"),
MIB_DESC(1, AR8216_STATS_RXMULTI, "RxMulti"),
MIB_DESC(1, AR8216_STATS_RXFCSERR, "RxFcsErr"),
MIB_DESC(1, AR8216_STATS_RXALIGNERR, "RxAlignErr"),
MIB_DESC(1, AR8216_STATS_RXRUNT, "RxRunt"),
MIB_DESC(1, AR8216_STATS_RXFRAGMENT, "RxFragment"),
MIB_DESC(1, AR8216_STATS_RX64BYTE, "Rx64Byte"),
MIB_DESC(1, AR8216_STATS_RX128BYTE, "Rx128Byte"),
MIB_DESC(1, AR8216_STATS_RX256BYTE, "Rx256Byte"),
MIB_DESC(1, AR8216_STATS_RX512BYTE, "Rx512Byte"),
MIB_DESC(1, AR8216_STATS_RX1024BYTE, "Rx1024Byte"),
MIB_DESC(1, AR8216_STATS_RXMAXBYTE, "RxMaxByte"),
MIB_DESC(1, AR8216_STATS_RXTOOLONG, "RxTooLong"),
MIB_DESC(2, AR8216_STATS_RXGOODBYTE, "RxGoodByte"),
MIB_DESC(2, AR8216_STATS_RXBADBYTE, "RxBadByte"),
MIB_DESC(1, AR8216_STATS_RXOVERFLOW, "RxOverFlow"),
MIB_DESC(1, AR8216_STATS_FILTERED, "Filtered"),
MIB_DESC(1, AR8216_STATS_TXBROAD, "TxBroad"),
MIB_DESC(1, AR8216_STATS_TXPAUSE, "TxPause"),
MIB_DESC(1, AR8216_STATS_TXMULTI, "TxMulti"),
MIB_DESC(1, AR8216_STATS_TXUNDERRUN, "TxUnderRun"),
MIB_DESC(1, AR8216_STATS_TX64BYTE, "Tx64Byte"),
MIB_DESC(1, AR8216_STATS_TX128BYTE, "Tx128Byte"),
MIB_DESC(1, AR8216_STATS_TX256BYTE, "Tx256Byte"),
MIB_DESC(1, AR8216_STATS_TX512BYTE, "Tx512Byte"),
MIB_DESC(1, AR8216_STATS_TX1024BYTE, "Tx1024Byte"),
MIB_DESC(1, AR8216_STATS_TXMAXBYTE, "TxMaxByte"),
MIB_DESC(1, AR8216_STATS_TXOVERSIZE, "TxOverSize"),
MIB_DESC(2, AR8216_STATS_TXBYTE, "TxByte"),
MIB_DESC(1, AR8216_STATS_TXCOLLISION, "TxCollision"),
MIB_DESC(1, AR8216_STATS_TXABORTCOL, "TxAbortCol"),
MIB_DESC(1, AR8216_STATS_TXMULTICOL, "TxMultiCol"),
MIB_DESC(1, AR8216_STATS_TXSINGLECOL, "TxSingleCol"),
MIB_DESC(1, AR8216_STATS_TXEXCDEFER, "TxExcDefer"),
MIB_DESC(1, AR8216_STATS_TXDEFER, "TxDefer"),
MIB_DESC(1, AR8216_STATS_TXLATECOL, "TxLateCol"),
};
static const struct ar8xxx_mib_desc ar8236_mibs[] = {
MIB_DESC(1, AR8236_STATS_RXBROAD, "RxBroad"),
MIB_DESC(1, AR8236_STATS_RXPAUSE, "RxPause"),
MIB_DESC(1, AR8236_STATS_RXMULTI, "RxMulti"),
MIB_DESC(1, AR8236_STATS_RXFCSERR, "RxFcsErr"),
MIB_DESC(1, AR8236_STATS_RXALIGNERR, "RxAlignErr"),
MIB_DESC(1, AR8236_STATS_RXRUNT, "RxRunt"),
MIB_DESC(1, AR8236_STATS_RXFRAGMENT, "RxFragment"),
MIB_DESC(1, AR8236_STATS_RX64BYTE, "Rx64Byte"),
MIB_DESC(1, AR8236_STATS_RX128BYTE, "Rx128Byte"),
MIB_DESC(1, AR8236_STATS_RX256BYTE, "Rx256Byte"),
MIB_DESC(1, AR8236_STATS_RX512BYTE, "Rx512Byte"),
MIB_DESC(1, AR8236_STATS_RX1024BYTE, "Rx1024Byte"),
MIB_DESC(1, AR8236_STATS_RX1518BYTE, "Rx1518Byte"),
MIB_DESC(1, AR8236_STATS_RXMAXBYTE, "RxMaxByte"),
MIB_DESC(1, AR8236_STATS_RXTOOLONG, "RxTooLong"),
MIB_DESC(2, AR8236_STATS_RXGOODBYTE, "RxGoodByte"),
MIB_DESC(2, AR8236_STATS_RXBADBYTE, "RxBadByte"),
MIB_DESC(1, AR8236_STATS_RXOVERFLOW, "RxOverFlow"),
MIB_DESC(1, AR8236_STATS_FILTERED, "Filtered"),
MIB_DESC(1, AR8236_STATS_TXBROAD, "TxBroad"),
MIB_DESC(1, AR8236_STATS_TXPAUSE, "TxPause"),
MIB_DESC(1, AR8236_STATS_TXMULTI, "TxMulti"),
MIB_DESC(1, AR8236_STATS_TXUNDERRUN, "TxUnderRun"),
MIB_DESC(1, AR8236_STATS_TX64BYTE, "Tx64Byte"),
MIB_DESC(1, AR8236_STATS_TX128BYTE, "Tx128Byte"),
MIB_DESC(1, AR8236_STATS_TX256BYTE, "Tx256Byte"),
MIB_DESC(1, AR8236_STATS_TX512BYTE, "Tx512Byte"),
MIB_DESC(1, AR8236_STATS_TX1024BYTE, "Tx1024Byte"),
MIB_DESC(1, AR8236_STATS_TX1518BYTE, "Tx1518Byte"),
MIB_DESC(1, AR8236_STATS_TXMAXBYTE, "TxMaxByte"),
MIB_DESC(1, AR8236_STATS_TXOVERSIZE, "TxOverSize"),
MIB_DESC(2, AR8236_STATS_TXBYTE, "TxByte"),
MIB_DESC(1, AR8236_STATS_TXCOLLISION, "TxCollision"),
MIB_DESC(1, AR8236_STATS_TXABORTCOL, "TxAbortCol"),
MIB_DESC(1, AR8236_STATS_TXMULTICOL, "TxMultiCol"),
MIB_DESC(1, AR8236_STATS_TXSINGLECOL, "TxSingleCol"),
MIB_DESC(1, AR8236_STATS_TXEXCDEFER, "TxExcDefer"),
MIB_DESC(1, AR8236_STATS_TXDEFER, "TxDefer"),
MIB_DESC(1, AR8236_STATS_TXLATECOL, "TxLateCol"),
};
#define SWITCH_PROC_ENTRY_DIR "driver/ar8216"
#define SWITCH_PROC_ENTRY_INFO "info"
#define SWITCH_PROC_ENTRY_REGISTER_ADDR "regAddr"
#define SWITCH_PROC_ENTRY_REGISTER_VAL "regVal"
#define SWITCH_PROC_ENTRY_PHY_REG_ADDR "phyRegAddr"
#define SWITCH_PROC_ENTRY_PHY_REG_VAL "phyRegVal"
#define SWITCH_PROC_ENTRY_CPU_REG_ADDR "cpuRegAddr"
#define SWITCH_PROC_ENTRY_CPU_REG_VAL "cpuRegVal"
static struct ar8216_priv *ar8216_priv_backup=NULL;
static u32 switch_proc_reg=0;
static struct proc_dir_entry *switch_proc=NULL;
static int switch_proc_phyAddr=1, switch_proc_phyReg=0;
//#define DBG_ACCESS_CPU_REGISTER
#ifdef DBG_ACCESS_CPU_REGISTER
static u32 switch_proc_cpuAddr=0x18050000;
static int switch_cpuRegAddr_show(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len;
len = sprintf(page, "0x%08X\n", switch_proc_cpuAddr);
*eof = 1;
return len;
}
static int switch_cpuRegAddr_store(struct file *file, const char __user *buf,
unsigned long count, void *data)
{
char num[11];
if (!count) return 0; /* no data be written */
if (count > sizeof(num)) {
printk("Out of buffer size!\n");
return -EINVAL;
}
memset(num, 0, sizeof(num));
if (copy_from_user(num, buf, count)) {
printk("copy from user failed\n");
return -EFAULT;
}
switch_proc_cpuAddr = simple_strtoul(num, NULL, 0);
return count;
}
static int switch_cpuRegVal_show(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len;
void __iomem *base;
base = ioremap_nocache(switch_proc_cpuAddr&0xffffff00, 0x100);
len = sprintf(page, "0x%08X\n", __raw_readl(base+(switch_proc_cpuAddr&0xff)));
iounmap(base);
*eof = 1;
return len;
}
static int switch_cpuRegVal_store(struct file *file, const char __user *buf,
unsigned long count, void *data)
{
char num[11];
void __iomem *base;
u32 val;
if (!count) return 0; /* no data be written */
if (count > sizeof(num)) {
printk("Out of buffer size!\n");
return -EINVAL;
}
memset(num, 0, sizeof(num));
if (copy_from_user(num, buf, count)) {
printk("copy from user failed\n");
return -EFAULT;
}
val = simple_strtoul(num, NULL, 0);
base = ioremap_nocache(switch_proc_cpuAddr&0xffffff00, 0x100);
__raw_writel(val, base+(switch_proc_cpuAddr&0xff));
iounmap(base);
return count;
}
#endif
static int switch_phyRegAddr_show(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len;
len = sprintf(page, "%d 0x%04X\n", switch_proc_phyAddr, switch_proc_phyReg);
*eof = 1;
return len;
}
static int switch_phyRegAddr_store(struct file *file, const char __user *buf,
unsigned long count, void *data)
{
char num[12], *ptr;
int addr, reg;
if (!count) return 0; /* no data be written */
if (count > sizeof(num)) {
printk("Out of buffer size!\n");
return -EINVAL;
}
memset(num, 0, sizeof(num));
if (copy_from_user(num, buf, count)) {
printk("copy from user failed\n");
return -EFAULT;
}
addr = simple_strtoul(num, &ptr, 0);
if (!isspace(*ptr) || addr >= 32 || addr < 0) {
printk("Wrong %s!", addr>=32?"PHY address":"format");
return -EINVAL;
}
ptr++;
reg = simple_strtoul(ptr, NULL, 0);
if ( reg < 0 || reg > 0xffff ) {
return -EINVAL;
}
switch_proc_phyAddr = addr;
switch_proc_phyReg = reg;
return count;
}
static int switch_phyRegVal_show(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
/* Read PHY register via MDIO/MDC bus */
int len;
u16 value;
struct mii_bus *bus;
if (ar8216_priv_backup==NULL) {
len = sprintf(page,"N/A\n");
} else {
bus = ar8216_priv_backup->phy->bus;
mutex_lock(&bus->mdio_lock);
value = bus->read(bus, switch_proc_phyAddr, switch_proc_phyReg);
mutex_unlock(&bus->mdio_lock);
len = sprintf(page, "0x%04X\n", value);
}
*eof = 1;
return len;
}
static int switch_phyRegVal_store(struct file *file, const char __user *buf,
unsigned long count, void *data)
{
/* Write PHY register via MDIO/MDC bus */
int ret = -EACCES;
struct mii_bus *bus;
char num[7];
u16 value;
if (ar8216_priv_backup!=NULL) {
if (!count) return 0; /* no data be written */
if (count > sizeof(num)) {
printk("Out of buffer size!\n");
return -EINVAL;
}
memset(num, 0, sizeof(num));
if (copy_from_user(num, buf, count)) {
printk("copy from user failed\n");
return -EFAULT;
}
value = simple_strtoul(num, NULL, 0);
bus = ar8216_priv_backup->phy->bus;
mutex_lock(&bus->mdio_lock);
bus->write(bus, switch_proc_phyAddr, switch_proc_phyReg, value);
mutex_unlock(&bus->mdio_lock);
ret = count;
}
return ret;
}
static int switch_reg_show(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
int len;
len = sprintf(page, "0x%04X\n", switch_proc_reg);
*eof = 1;
return len;
}
static int switch_reg_store(struct file *file, const char __user *buf,
unsigned long count, void *data)
{
char num[11];
if (!count) return 0; /* no data be written */
if (count > sizeof(num)) {
printk("Out of buffer size!\n");
return -EINVAL;
}
memset(num, 0, sizeof(num));
if (copy_from_user(num, buf, count)) {
printk("copy from user failed\n");
return -EFAULT;
}
switch_proc_reg = simple_strtoul(num, NULL, 0);
return count;
}
static int switch_reg_val_show(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
u32 value;
int len;
if (ar8216_priv_backup==NULL) {
len = sprintf(page,"N/A\n");
} else {
lockdep_assert_held(&ar8216_priv_backup->reg_mutex);
value = ar8216_priv_backup->read(ar8216_priv_backup, switch_proc_reg);
len = sprintf(page, "0x%08X\n", value);
//printk("value=0x%08X, read from register 0x%04X\n", value, switch_proc_reg);
}
*eof = 1;
return len;
}
static int switch_reg_val_store(struct file *file, const char __user *buf,
unsigned long count, void *data)
{
int ret = -EACCES;
u32 value;
char num[11];
if (ar8216_priv_backup!=NULL) {
if (!count) return 0; /* no data be written */
if (count > sizeof(num)) {
printk("Out of buffer size!\n");
return -EINVAL;
}
memset(num, 0, sizeof(num));
if (copy_from_user(num, buf, count)) {
printk("copy from user failed\n");
return -EFAULT;
}
//printk("count=%d, buf[%d]=0x%02X\n", count, count-1, num[count-1]);
value = simple_strtoul(num, NULL, 0);
lockdep_assert_held(&ar8216_priv_backup->reg_mutex);
ar8216_priv_backup->write(ar8216_priv_backup, switch_proc_reg, value);
//printk("value=0x%08X, write to register 0x%04X\n", value, switch_proc_reg);
ret = count;
}
return ret;
}
static int switch_info_read_proc(char *page, char **start, off_t off,
int count, int *eof, void *data)
{
*eof = 1;
return sprintf(page, "%s\n", (char *)data);;
}
static void ar8216_switch_proc_remove(void)
{
if (switch_proc) {
remove_proc_entry(SWITCH_PROC_ENTRY_INFO, switch_proc);
remove_proc_entry(SWITCH_PROC_ENTRY_REGISTER_ADDR, switch_proc);
remove_proc_entry(SWITCH_PROC_ENTRY_REGISTER_VAL, switch_proc);
remove_proc_entry(SWITCH_PROC_ENTRY_PHY_REG_ADDR, switch_proc);
remove_proc_entry(SWITCH_PROC_ENTRY_PHY_REG_VAL, switch_proc);
#ifdef DBG_ACCESS_CPU_REGISTER
remove_proc_entry(SWITCH_PROC_ENTRY_CPU_REG_ADDR, switch_proc);
remove_proc_entry(SWITCH_PROC_ENTRY_CPU_REG_VAL, switch_proc);
#endif
remove_proc_entry(SWITCH_PROC_ENTRY_DIR, NULL);
switch_proc=NULL;
}
}
static int ar8216_switch_proc_create(const char *chipName)
{
struct proc_dir_entry *ent;
switch_proc = proc_mkdir(SWITCH_PROC_ENTRY_DIR, NULL);
//switch_proc = proc_mkdir(SWITCH_PROC_ENTRY_DIR, init_net.proc_net);
if (!switch_proc) {
printk("%s: Fail to create proc dir!\n", __func__);
return -EACCES;
}
if (!create_proc_read_entry(SWITCH_PROC_ENTRY_INFO, 0, switch_proc,
switch_info_read_proc, chipName)) {
printk("%s: Fail to create proc file '%s'!\n", __func__, SWITCH_PROC_ENTRY_INFO);
goto ar8216_switch_proc_create_failed1;
}
ent = create_proc_entry(SWITCH_PROC_ENTRY_REGISTER_ADDR,
S_IFREG|S_IRUSR|S_IWUSR, switch_proc);
if (!ent) {
printk("%s: Fail to create proc file '%s'!\n", __func__,
SWITCH_PROC_ENTRY_REGISTER_ADDR);
goto ar8216_switch_proc_create_failed2;
} else {
ent->read_proc = switch_reg_show;
ent->write_proc = switch_reg_store;
}
ent = create_proc_entry(SWITCH_PROC_ENTRY_REGISTER_VAL,
S_IFREG|S_IRUSR|S_IWUSR, switch_proc);
if (!ent) {
printk("%s: Fail to create proc file '%s'!\n", __func__,
SWITCH_PROC_ENTRY_REGISTER_VAL);
goto ar8216_switch_proc_create_failed3;
} else {
ent->read_proc = switch_reg_val_show;
ent->write_proc = switch_reg_val_store;
}
ent = create_proc_entry(SWITCH_PROC_ENTRY_PHY_REG_ADDR,
S_IFREG|S_IRUSR|S_IWUSR, switch_proc);
if (!ent) {
printk("%s: Fail to create proc file '%s'!\n", __func__,
SWITCH_PROC_ENTRY_PHY_REG_ADDR);
goto ar8216_switch_proc_create_failed4;
} else {
ent->read_proc = switch_phyRegAddr_show;
ent->write_proc = switch_phyRegAddr_store;
}
ent = create_proc_entry(SWITCH_PROC_ENTRY_PHY_REG_VAL,
S_IFREG|S_IRUSR|S_IWUSR, switch_proc);
if (!ent) {
printk("%s: Fail to create proc file '%s'!\n", __func__,
SWITCH_PROC_ENTRY_PHY_REG_VAL);
goto ar8216_switch_proc_create_failed5;
} else {
ent->read_proc = switch_phyRegVal_show;
ent->write_proc = switch_phyRegVal_store;
}
#ifdef DBG_ACCESS_CPU_REGISTER
ent = create_proc_entry(SWITCH_PROC_ENTRY_CPU_REG_ADDR,
S_IFREG|S_IRUSR|S_IWUSR, switch_proc);
if (!ent) {
printk("%s: Fail to create proc file '%s'!\n", __func__,
SWITCH_PROC_ENTRY_CPU_REG_ADDR);
goto ar8216_switch_proc_create_failed5;
} else {
ent->read_proc = switch_cpuRegAddr_show;
ent->write_proc = switch_cpuRegAddr_store;
}
ent = create_proc_entry(SWITCH_PROC_ENTRY_CPU_REG_VAL,
S_IFREG|S_IRUSR|S_IWUSR, switch_proc);
if (!ent) {
printk("%s: Fail to create proc file '%s'!\n", __func__,
SWITCH_PROC_ENTRY_CPU_REG_VAL);
remove_proc_entry(SWITCH_PROC_ENTRY_CPU_REG_ADDR, switch_proc);
goto ar8216_switch_proc_create_failed5;
} else {
ent->read_proc = switch_cpuRegVal_show;
ent->write_proc = switch_cpuRegVal_store;
}
#endif
return 0;
ar8216_switch_proc_create_failed5:
remove_proc_entry(SWITCH_PROC_ENTRY_PHY_REG_ADDR, switch_proc);
ar8216_switch_proc_create_failed4:
remove_proc_entry(SWITCH_PROC_ENTRY_REGISTER_VAL, switch_proc);
ar8216_switch_proc_create_failed3:
remove_proc_entry(SWITCH_PROC_ENTRY_REGISTER_ADDR, switch_proc);
ar8216_switch_proc_create_failed2:
remove_proc_entry(SWITCH_PROC_ENTRY_INFO, switch_proc);
ar8216_switch_proc_create_failed1:
remove_proc_entry(SWITCH_PROC_ENTRY_DIR, NULL);
switch_proc = NULL;
return -EACCES;
}
#define to_ar8216(_dev) container_of(_dev, struct ar8216_priv, dev)
static inline bool ar8xxx_has_gige(struct ar8216_priv *priv)
{
return priv->chip->caps & AR8XXX_CAP_GIGE;
}
static inline bool ar8xxx_has_mib_counters(struct ar8216_priv *priv)
{
return priv->chip->caps & AR8XXX_CAP_MIB_COUNTERS;
}
static inline bool chip_is_ar8216(struct ar8216_priv *priv)
{
return priv->chip_ver == AR8XXX_VER_AR8216;
}
static inline bool chip_is_ar8236(struct ar8216_priv *priv)
{
return priv->chip_ver == AR8XXX_VER_AR8236;
}
static inline bool chip_is_ar8316(struct ar8216_priv *priv)
{
return priv->chip_ver == AR8XXX_VER_AR8316;
}
static inline bool chip_is_ar8327(struct ar8216_priv *priv)
{
return priv->chip_ver == AR8XXX_VER_AR8327;
}
static inline bool chip_is_ar8337(struct ar8216_priv *priv)
{
return priv->chip_ver == AR8XXX_VER_AR8337;
}
static inline void
split_addr(u32 regaddr, u16 *r1, u16 *r2, u16 *page)
{
regaddr >>= 1;
*r1 = regaddr & 0x1e;
regaddr >>= 5;
*r2 = regaddr & 0x7;
regaddr >>= 3;
*page = regaddr & 0x1ff;
}
static u32
ar8216_mii_read(struct ar8216_priv *priv, int reg)
{
struct phy_device *phy = priv->phy;
struct mii_bus *bus = phy->bus;
u16 r1, r2, page;
u16 lo, hi;
split_addr((u32) reg, &r1, &r2, &page);
mutex_lock(&bus->mdio_lock);
bus->write(bus, 0x18, 0, page);
usleep_range(1000, 2000); /* wait for the page switch to propagate */
lo = bus->read(bus, 0x10 | r2, r1);
hi = bus->read(bus, 0x10 | r2, r1 + 1);
mutex_unlock(&bus->mdio_lock);
return (hi << 16) | lo;
}
static void
ar8216_mii_write(struct ar8216_priv *priv, int reg, u32 val)
{
struct phy_device *phy = priv->phy;
struct mii_bus *bus = phy->bus;
u16 r1, r2, r3;
u16 lo, hi;
split_addr((u32) reg, &r1, &r2, &r3);
lo = val & 0xffff;
hi = (u16) (val >> 16);
mutex_lock(&bus->mdio_lock);
bus->write(bus, 0x18, 0, r3);
usleep_range(1000, 2000); /* wait for the page switch to propagate */
if (priv->mii_lo_first) {
bus->write(bus, 0x10 | r2, r1, lo);
bus->write(bus, 0x10 | r2, r1 + 1, hi);
} else {
bus->write(bus, 0x10 | r2, r1 + 1, hi);
bus->write(bus, 0x10 | r2, r1, lo);
}
mutex_unlock(&bus->mdio_lock);
}
static void
ar8216_phy_dbg_write(struct ar8216_priv *priv, int phy_addr,
u16 dbg_addr, u16 dbg_data)
{
struct mii_bus *bus = priv->phy->bus;
mutex_lock(&bus->mdio_lock);
bus->write(bus, phy_addr, MII_ATH_DBG_ADDR, dbg_addr);
bus->write(bus, phy_addr, MII_ATH_DBG_DATA, dbg_data);
mutex_unlock(&bus->mdio_lock);
}
static void
ar8216_phy_mmd_write(struct ar8216_priv *priv, int phy_addr, u16 addr, u16 data)
{
struct mii_bus *bus = priv->phy->bus;
mutex_lock(&bus->mdio_lock);
bus->write(bus, phy_addr, MII_ATH_MMD_ADDR, addr);
bus->write(bus, phy_addr, MII_ATH_MMD_DATA, data);
mutex_unlock(&bus->mdio_lock);
}
static u32
ar8216_rmw(struct ar8216_priv *priv, int reg, u32 mask, u32 val)
{
u32 v;
lockdep_assert_held(&priv->reg_mutex);
v = priv->read(priv, reg);
v &= ~mask;
v |= val;
priv->write(priv, reg, v);
return v;
}
static u32
ar8216_rmr(struct ar8216_priv *priv, int reg, u32 mask)
{
u32 v;
lockdep_assert_held(&priv->reg_mutex);
v = priv->read(priv, reg);
v &= mask;
return v;
}
static inline void
ar8216_reg_set(struct ar8216_priv *priv, int reg, u32 val)
{
u32 v;
lockdep_assert_held(&priv->reg_mutex);
v = priv->read(priv, reg);
v |= val;
priv->write(priv, reg, v);
}
static int
ar8216_reg_wait(struct ar8216_priv *priv, u32 reg, u32 mask, u32 val,
unsigned timeout)
{
int i;
for (i = 0; i < timeout; i++) {
u32 t;
t = priv->read(priv, reg);
if ((t & mask) == val)
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static int
ar8216_mib_op(struct ar8216_priv *priv, u32 op)
{
unsigned mib_func;
int ret;
lockdep_assert_held(&priv->mib_lock);
if (chip_is_ar8327(priv)||chip_is_ar8337(priv))
mib_func = AR8327_REG_MIB_FUNC;
else
mib_func = AR8216_REG_MIB_FUNC;
mutex_lock(&priv->reg_mutex);
/* Capture the hardware statistics for all ports */
ar8216_rmw(priv, mib_func, AR8216_MIB_FUNC, (op << AR8216_MIB_FUNC_S));
mutex_unlock(&priv->reg_mutex);
/* Wait for the capturing to complete. */
ret = ar8216_reg_wait(priv, mib_func, AR8216_MIB_BUSY, 0, 10);
if (ret)
goto out;
ret = 0;
out:
return ret;
}
static int
ar8216_mib_capture(struct ar8216_priv *priv)
{
return ar8216_mib_op(priv, AR8216_MIB_FUNC_CAPTURE);
}
static int
ar8216_mib_flush(struct ar8216_priv *priv)
{
return ar8216_mib_op(priv, AR8216_MIB_FUNC_FLUSH);
}
static void
ar8216_mib_fetch_port_stat(struct ar8216_priv *priv, int port, bool flush)
{
unsigned int base;
u64 *mib_stats;
int i;
WARN_ON(port >= priv->dev.ports);
lockdep_assert_held(&priv->mib_lock);
if (chip_is_ar8327(priv)||chip_is_ar8337(priv))
base = AR8327_REG_PORT_STATS_BASE(port);
else if (chip_is_ar8236(priv) ||
chip_is_ar8316(priv))
base = AR8236_REG_PORT_STATS_BASE(port);
else
base = AR8216_REG_PORT_STATS_BASE(port);
mib_stats = &priv->mib_stats[port * priv->chip->num_mibs];
for (i = 0; i < priv->chip->num_mibs; i++) {
const struct ar8xxx_mib_desc *mib;
u64 t;
mib = &priv->chip->mib_decs[i];
t = priv->read(priv, base + mib->offset);
if (mib->size == 2) {
u64 hi;
hi = priv->read(priv, base + mib->offset + 4);
t |= hi << 32;
}
if (flush)
mib_stats[i] = 0;
else
mib_stats[i] += t;
}
}
static void
ar8216_read_port_link(struct ar8216_priv *priv, int port,
struct switch_port_link *link)
{
u32 status;
u32 speed;
memset(link, '\0', sizeof(*link));
status = priv->chip->read_port_status(priv, port);
link->aneg = !!(status & AR8216_PORT_STATUS_LINK_AUTO);
if (link->aneg) {
link->link = !!(status & AR8216_PORT_STATUS_LINK_UP);
if (!link->link)
return;
} else {
link->link = true;
}
link->duplex = !!(status & AR8216_PORT_STATUS_DUPLEX);
link->tx_flow = !!(status & AR8216_PORT_STATUS_TXFLOW);
link->rx_flow = !!(status & AR8216_PORT_STATUS_RXFLOW);
speed = (status & AR8216_PORT_STATUS_SPEED) >>
AR8216_PORT_STATUS_SPEED_S;
switch (speed) {
case AR8216_PORT_SPEED_10M:
link->speed = SWITCH_PORT_SPEED_10;
break;
case AR8216_PORT_SPEED_100M:
link->speed = SWITCH_PORT_SPEED_100;
break;
case AR8216_PORT_SPEED_1000M:
link->speed = SWITCH_PORT_SPEED_1000;
break;
default:
link->speed = SWITCH_PORT_SPEED_UNKNOWN;
break;
}
}
static struct sk_buff *
ar8216_mangle_tx(struct net_device *dev, struct sk_buff *skb)
{
struct ar8216_priv *priv = dev->phy_ptr;
unsigned char *buf;
if (unlikely(!priv))
goto error;
if (!priv->vlan)
goto send;
if (unlikely(skb_headroom(skb) < 2)) {
if (pskb_expand_head(skb, 2, 0, GFP_ATOMIC) < 0)
goto error;
}
buf = skb_push(skb, 2);
buf[0] = 0x10;
buf[1] = 0x80;
send:
return skb;
error:
dev_kfree_skb_any(skb);
return NULL;
}
static void
ar8216_mangle_rx(struct net_device *dev, struct sk_buff *skb)
{
struct ar8216_priv *priv;
unsigned char *buf;
int port, vlan;
priv = dev->phy_ptr;
if (!priv)
return;
/* don't strip the header if vlan mode is disabled */
if (!priv->vlan)
return;
/* strip header, get vlan id */
buf = skb->data;
skb_pull(skb, 2);
/* check for vlan header presence */
if ((buf[12 + 2] != 0x81) || (buf[13 + 2] != 0x00))
return;
port = buf[0] & 0xf;
/* no need to fix up packets coming from a tagged source */
if (priv->vlan_tagged & (1 << port))
return;
/* lookup port vid from local table, the switch passes an invalid vlan id */
vlan = priv->vlan_id[priv->pvid[port]];
buf[14 + 2] &= 0xf0;
buf[14 + 2] |= vlan >> 8;
buf[15 + 2] = vlan & 0xff;
}
static int
ar8216_wait_bit(struct ar8216_priv *priv, int reg, u32 mask, u32 val)
{
int timeout = 20;
u32 t = 0;
while (1) {
t = priv->read(priv, reg);
if ((t & mask) == val)
return 0;
if (timeout-- <= 0)
break;
udelay(10);
}
pr_err("ar8216: timeout on reg %08x: %08x & %08x != %08x\n",
(unsigned int) reg, t, mask, val);
return -ETIMEDOUT;
}
static void
ar8216_vtu_op(struct ar8216_priv *priv, u32 op, u32 val)
{
if (ar8216_wait_bit(priv, AR8216_REG_VTU, AR8216_VTU_ACTIVE, 0))
return;
if ((op & AR8216_VTU_OP) == AR8216_VTU_OP_LOAD) {
val &= AR8216_VTUDATA_MEMBER;
val |= AR8216_VTUDATA_VALID;
priv->write(priv, AR8216_REG_VTU_DATA, val);
}
op |= AR8216_VTU_ACTIVE;
priv->write(priv, AR8216_REG_VTU, op);
}
static void
ar8216_vtu_flush(struct ar8216_priv *priv)
{
ar8216_vtu_op(priv, AR8216_VTU_OP_FLUSH, 0);
}
static void
ar8216_vtu_load_vlan(struct ar8216_priv *priv, u32 vid, u32 port_mask)
{
u32 op;
op = AR8216_VTU_OP_LOAD | (vid << AR8216_VTU_VID_S);
ar8216_vtu_op(priv, op, port_mask);
}
static int
ar8216_atu_flush(struct ar8216_priv *priv)
{
int ret;
ret = ar8216_wait_bit(priv, AR8216_REG_ATU, AR8216_ATU_ACTIVE, 0);
if (!ret)
priv->write(priv, AR8216_REG_ATU, AR8216_ATU_OP_FLUSH);
return ret;
}
static u32
ar8216_read_port_status(struct ar8216_priv *priv, int port)
{
return priv->read(priv, AR8216_REG_PORT_STATUS(port));
}
static void
ar8216_setup_port(struct ar8216_priv *priv, int port, u32 egress, u32 ingress,
u32 members, u32 pvid)
{
u32 header;
if (chip_is_ar8216(priv) && priv->vlan && port == AR8216_PORT_CPU)
header = AR8216_PORT_CTRL_HEADER;
else
header = 0;
ar8216_rmw(priv, AR8216_REG_PORT_CTRL(port),
AR8216_PORT_CTRL_LEARN | AR8216_PORT_CTRL_VLAN_MODE |
AR8216_PORT_CTRL_SINGLE_VLAN | AR8216_PORT_CTRL_STATE |
AR8216_PORT_CTRL_HEADER | AR8216_PORT_CTRL_LEARN_LOCK,
AR8216_PORT_CTRL_LEARN | header |
(egress << AR8216_PORT_CTRL_VLAN_MODE_S) |
(AR8216_PORT_STATE_FORWARD << AR8216_PORT_CTRL_STATE_S));
ar8216_rmw(priv, AR8216_REG_PORT_VLAN(port),
AR8216_PORT_VLAN_DEST_PORTS | AR8216_PORT_VLAN_MODE |
AR8216_PORT_VLAN_DEFAULT_ID,
(members << AR8216_PORT_VLAN_DEST_PORTS_S) |
(ingress << AR8216_PORT_VLAN_MODE_S) |
(pvid << AR8216_PORT_VLAN_DEFAULT_ID_S));
}
static int
ar8216_hw_init(struct ar8216_priv *priv)
{
return 0;
}
static void
ar8216_init_globals(struct ar8216_priv *priv)
{
/* standard atheros magic */
priv->write(priv, 0x38, 0xc000050e);
ar8216_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8216_GCTRL_MTU, 1518 + 8 + 2);
}
static void
ar8216_init_port(struct ar8216_priv *priv, int port)
{
/* Enable port learning and tx */
priv->write(priv, AR8216_REG_PORT_CTRL(port),
AR8216_PORT_CTRL_LEARN |
(4 << AR8216_PORT_CTRL_STATE_S));
priv->write(priv, AR8216_REG_PORT_VLAN(port), 0);
if (port == AR8216_PORT_CPU) {
priv->write(priv, AR8216_REG_PORT_STATUS(port),
AR8216_PORT_STATUS_LINK_UP |
(ar8xxx_has_gige(priv) ?
AR8216_PORT_SPEED_1000M : AR8216_PORT_SPEED_100M) |
AR8216_PORT_STATUS_TXMAC |
AR8216_PORT_STATUS_RXMAC |
(chip_is_ar8316(priv) ? AR8216_PORT_STATUS_RXFLOW : 0) |
(chip_is_ar8316(priv) ? AR8216_PORT_STATUS_TXFLOW : 0) |
AR8216_PORT_STATUS_DUPLEX);
} else {
priv->write(priv, AR8216_REG_PORT_STATUS(port),
AR8216_PORT_STATUS_LINK_AUTO);
}
}
static const struct ar8xxx_chip ar8216_chip = {
.caps = AR8XXX_CAP_MIB_COUNTERS,
.hw_init = ar8216_hw_init,
.init_globals = ar8216_init_globals,
.init_port = ar8216_init_port,
.setup_port = ar8216_setup_port,
.read_port_status = ar8216_read_port_status,
.atu_flush = ar8216_atu_flush,
.vtu_flush = ar8216_vtu_flush,
.vtu_load_vlan = ar8216_vtu_load_vlan,
.num_mibs = ARRAY_SIZE(ar8216_mibs),
.mib_decs = ar8216_mibs,
};
static void
ar8236_setup_port(struct ar8216_priv *priv, int port, u32 egress, u32 ingress,
u32 members, u32 pvid)
{
ar8216_rmw(priv, AR8216_REG_PORT_CTRL(port),
AR8216_PORT_CTRL_LEARN | AR8216_PORT_CTRL_VLAN_MODE |
AR8216_PORT_CTRL_SINGLE_VLAN | AR8216_PORT_CTRL_STATE |
AR8216_PORT_CTRL_HEADER | AR8216_PORT_CTRL_LEARN_LOCK,
AR8216_PORT_CTRL_LEARN |
(egress << AR8216_PORT_CTRL_VLAN_MODE_S) |
(AR8216_PORT_STATE_FORWARD << AR8216_PORT_CTRL_STATE_S));
ar8216_rmw(priv, AR8236_REG_PORT_VLAN(port),
AR8236_PORT_VLAN_DEFAULT_ID,
(pvid << AR8236_PORT_VLAN_DEFAULT_ID_S));
ar8216_rmw(priv, AR8236_REG_PORT_VLAN2(port),
AR8236_PORT_VLAN2_VLAN_MODE |
AR8236_PORT_VLAN2_MEMBER,
(ingress << AR8236_PORT_VLAN2_VLAN_MODE_S) |
(members << AR8236_PORT_VLAN2_MEMBER_S));
}
static int
ar8236_hw_init(struct ar8216_priv *priv)
{
int i;
struct mii_bus *bus;
if (priv->initialized)
return 0;
/* Initialize the PHYs */
bus = priv->phy->bus;
for (i = 0; i < 5; i++) {
mdiobus_write(bus, i, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE);
}
msleep(1000);
priv->initialized = true;
return 0;
}
static void
ar8236_init_globals(struct ar8216_priv *priv)
{
/* enable jumbo frames */
ar8216_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8316_GCTRL_MTU, 9018 + 8 + 2);
/* Enable MIB counters */
ar8216_rmw(priv, AR8216_REG_MIB_FUNC, AR8216_MIB_FUNC | AR8236_MIB_EN,
(AR8216_MIB_FUNC_NO_OP << AR8216_MIB_FUNC_S) |
AR8236_MIB_EN);
}
static const struct ar8xxx_chip ar8236_chip = {
.caps = AR8XXX_CAP_MIB_COUNTERS,
.hw_init = ar8236_hw_init,
.init_globals = ar8236_init_globals,
.init_port = ar8216_init_port,
.setup_port = ar8236_setup_port,
.read_port_status = ar8216_read_port_status,
.atu_flush = ar8216_atu_flush,
.vtu_flush = ar8216_vtu_flush,
.vtu_load_vlan = ar8216_vtu_load_vlan,
.num_mibs = ARRAY_SIZE(ar8236_mibs),
.mib_decs = ar8236_mibs,
};
static int
ar8316_hw_init(struct ar8216_priv *priv)
{
int i;
u32 val, newval;
struct mii_bus *bus;
val = priv->read(priv, 0x8);
if (priv->phy->interface == PHY_INTERFACE_MODE_RGMII) {
if (priv->port4_phy) {
/* value taken from Ubiquiti RouterStation Pro */
newval = 0x81461bea;
printk(KERN_INFO "ar8316: Using port 4 as PHY\n");
} else {
newval = 0x01261be2;
printk(KERN_INFO "ar8316: Using port 4 as switch port\n");
}
} else if (priv->phy->interface == PHY_INTERFACE_MODE_GMII) {
/* value taken from AVM Fritz!Box 7390 sources */
newval = 0x010e5b71;
} else {
/* no known value for phy interface */
printk(KERN_ERR "ar8316: unsupported mii mode: %d.\n",
priv->phy->interface);
return -EINVAL;
}
if (val == newval)
goto out;
priv->write(priv, 0x8, newval);
/* Initialize the ports */
bus = priv->phy->bus;
for (i = 0; i < 5; i++) {
if ((i == 4) && priv->port4_phy &&
priv->phy->interface == PHY_INTERFACE_MODE_RGMII) {
/* work around for phy4 rgmii mode */
ar8216_phy_dbg_write(priv, i, 0x12, 0x480c);
/* rx delay */
ar8216_phy_dbg_write(priv, i, 0x0, 0x824e);
/* tx delay */
ar8216_phy_dbg_write(priv, i, 0x5, 0x3d47);
msleep(1000);
}
/* initialize the port itself */
mdiobus_write(bus, i, MII_ADVERTISE,
ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM);
mdiobus_write(bus, i, MII_CTRL1000, ADVERTISE_1000FULL);
mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE);
msleep(1000);
}
out:
priv->initialized = true;
return 0;
}
static void
ar8316_init_globals(struct ar8216_priv *priv)
{
/* standard atheros magic */
priv->write(priv, 0x38, 0xc000050e);
/* enable cpu port to receive multicast and broadcast frames */
priv->write(priv, AR8216_REG_FLOOD_MASK, 0x003f003f);
/* enable jumbo frames */
ar8216_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8316_GCTRL_MTU, 9018 + 8 + 2);
/* Enable MIB counters */
ar8216_rmw(priv, AR8216_REG_MIB_FUNC, AR8216_MIB_FUNC | AR8236_MIB_EN,
(AR8216_MIB_FUNC_NO_OP << AR8216_MIB_FUNC_S) |
AR8236_MIB_EN);
}
static const struct ar8xxx_chip ar8316_chip = {
.caps = AR8XXX_CAP_GIGE | AR8XXX_CAP_MIB_COUNTERS,
.hw_init = ar8316_hw_init,
.init_globals = ar8316_init_globals,
.init_port = ar8216_init_port,
.setup_port = ar8216_setup_port,
.read_port_status = ar8216_read_port_status,
.atu_flush = ar8216_atu_flush,
.vtu_flush = ar8216_vtu_flush,
.vtu_load_vlan = ar8216_vtu_load_vlan,
.num_mibs = ARRAY_SIZE(ar8236_mibs),
.mib_decs = ar8236_mibs,
};
static u32
ar8327_get_pad_cfg(struct ar8327_pad_cfg *cfg)
{
u32 t;
if (!cfg)
return 0;
t = 0;
switch (cfg->mode) {
case AR8327_PAD_NC:
break;
case AR8327_PAD_MAC2MAC_MII:
t = AR8327_PAD_MAC_MII_EN;
if (cfg->rxclk_sel)
t |= AR8327_PAD_MAC_MII_RXCLK_SEL;
if (cfg->txclk_sel)
t |= AR8327_PAD_MAC_MII_TXCLK_SEL;
break;
case AR8327_PAD_MAC2MAC_GMII:
t = AR8327_PAD_MAC_GMII_EN;
if (cfg->rxclk_sel)
t |= AR8327_PAD_MAC_GMII_RXCLK_SEL;
if (cfg->txclk_sel)
t |= AR8327_PAD_MAC_GMII_TXCLK_SEL;
break;
case AR8327_PAD_MAC_SGMII:
t = AR8327_PAD_SGMII_EN;
/*
* WAR for the QUalcomm Atheros AP136 board.
* It seems that RGMII TX/RX delay settings needs to be
* applied for SGMII mode as well, The ethernet is not
* reliable without this.
*/
t |= cfg->txclk_delay_sel << AR8327_PAD_RGMII_TXCLK_DELAY_SEL_S;
t |= cfg->rxclk_delay_sel << AR8327_PAD_RGMII_RXCLK_DELAY_SEL_S;
if (cfg->rxclk_delay_en)
t |= AR8327_PAD_RGMII_RXCLK_DELAY_EN;
if (cfg->txclk_delay_en)
t |= AR8327_PAD_RGMII_TXCLK_DELAY_EN;
#if 1// should be 0? need to modify mach-ap135.c
if (cfg->sgmii_delay_en)
t |= AR8327_PAD_SGMII_DELAY_EN;
#endif
t |= cfg->sgmii_clk_phase_sel << AR8327_PAD_SGMII_CLK_PHASE_SEL_S;
break;
case AR8327_PAD_MAC2PHY_MII:
t = AR8327_PAD_PHY_MII_EN;
if (cfg->rxclk_sel)
t |= AR8327_PAD_PHY_MII_RXCLK_SEL;
if (cfg->txclk_sel)
t |= AR8327_PAD_PHY_MII_TXCLK_SEL;
break;
case AR8327_PAD_MAC2PHY_GMII:
t = AR8327_PAD_PHY_GMII_EN;
if (cfg->pipe_rxclk_sel)
t |= AR8327_PAD_PHY_GMII_PIPE_RXCLK_SEL;
if (cfg->rxclk_sel)
t |= AR8327_PAD_PHY_GMII_RXCLK_SEL;
if (cfg->txclk_sel)
t |= AR8327_PAD_PHY_GMII_TXCLK_SEL;
break;
case AR8327_PAD_MAC_RGMII:
t = AR8327_PAD_RGMII_EN;
t |= cfg->txclk_delay_sel << AR8327_PAD_RGMII_TXCLK_DELAY_SEL_S;
t |= cfg->rxclk_delay_sel << AR8327_PAD_RGMII_RXCLK_DELAY_SEL_S;
if (cfg->rxclk_delay_en)
t |= AR8327_PAD_RGMII_RXCLK_DELAY_EN;
if (cfg->txclk_delay_en)
t |= AR8327_PAD_RGMII_TXCLK_DELAY_EN;
break;
case AR8327_PAD_PHY_GMII:
t = AR8327_PAD_PHYX_GMII_EN;
break;
case AR8327_PAD_PHY_RGMII:
t = AR8327_PAD_PHYX_RGMII_EN;
break;
case AR8327_PAD_PHY_MII:
t = AR8327_PAD_PHYX_MII_EN;
break;
}
return t;
}
static void
ar8327_phy_fixup(struct ar8216_priv *priv, int phy)
{
switch (priv->chip_rev) {
case 1:
/* For 100M waveform */
ar8216_phy_dbg_write(priv, phy, 0, 0x02ea);
/* Turn on Gigabit clock */
ar8216_phy_dbg_write(priv, phy, 0x3d, 0x68a0);
break;
case 2:
ar8216_phy_mmd_write(priv, phy, 0x7, 0x3c);
ar8216_phy_mmd_write(priv, phy, 0x4007, 0x0);
/* fallthrough */
case 4:
ar8216_phy_mmd_write(priv, phy, 0x3, 0x800d);
ar8216_phy_mmd_write(priv, phy, 0x4003, 0x803f);
ar8216_phy_dbg_write(priv, phy, 0x3d, 0x6860);
ar8216_phy_dbg_write(priv, phy, 0x5, 0x2c46);
ar8216_phy_dbg_write(priv, phy, 0x3c, 0x6000);
break;
}
}
static int
ar8327_hw_init(struct ar8216_priv *priv)
{
struct ar8327_platform_data *pdata;
struct ar8327_led_cfg *led_cfg;
struct mii_bus *bus;
u32 pos, new_pos;
u32 t;
int i;
pdata = priv->phy->dev.platform_data;
if (!pdata)
return -EINVAL;
t = ar8327_get_pad_cfg(pdata->pad0_cfg);
priv->write(priv, AR8327_REG_PAD0_MODE, t);
t = ar8327_get_pad_cfg(pdata->pad5_cfg);
priv->write(priv, AR8327_REG_PAD5_MODE, t);
t = ar8327_get_pad_cfg(pdata->pad6_cfg);
priv->write(priv, AR8327_REG_PAD6_MODE, t);
if ( (pdata->pad0_cfg->mode==AR8327_PAD_MAC_SGMII) ||
(pdata->pad6_cfg->mode==AR8327_PAD_MAC_SGMII) ) {
/* due to AR8337 disable SGMII interface by default(power-on),
* so we need to enable SGMII interface */
priv->write(priv, AR8327_REG_SGMII_CTRL,
priv->read(priv, AR8327_REG_SGMII_CTRL)|0x0e);
}
pos = priv->read(priv, AR8327_REG_POWER_ON_STRIP);
new_pos = pos;
led_cfg = pdata->led_cfg;
if (led_cfg) {
if (led_cfg->open_drain)
new_pos |= AR8327_POWER_ON_STRIP_LED_OPEN_EN;
else
new_pos &= ~AR8327_POWER_ON_STRIP_LED_OPEN_EN;
priv->write(priv, AR8327_REG_LED_CTRL0, led_cfg->led_ctrl0);
priv->write(priv, AR8327_REG_LED_CTRL1, led_cfg->led_ctrl1);
priv->write(priv, AR8327_REG_LED_CTRL2, led_cfg->led_ctrl2);
priv->write(priv, AR8327_REG_LED_CTRL3, led_cfg->led_ctrl3);
}
if (new_pos != pos) {
new_pos |= AR8327_POWER_ON_STRIP_POWER_ON_SEL;
priv->write(priv, AR8327_REG_POWER_ON_STRIP, new_pos);
}
bus = priv->phy->bus;
for (i = 0; i < AR8327_NUM_PHYS; i++) {
ar8327_phy_fixup(priv, i);
/* start aneg on the PHY */
mdiobus_write(bus, i, MII_ADVERTISE, ADVERTISE_ALL |
ADVERTISE_PAUSE_CAP |
ADVERTISE_PAUSE_ASYM);
mdiobus_write(bus, i, MII_CTRL1000, ADVERTISE_1000FULL);
mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE);
}
msleep(1000);
return 0;
}
static void
ar8327_init_globals(struct ar8216_priv *priv)
{
u32 t;
/* enable CPU port and disable mirror port */
t = AR8327_FWD_CTRL0_CPU_PORT_EN |
AR8327_FWD_CTRL0_MIRROR_PORT;
priv->write(priv, AR8327_REG_FWD_CTRL0, t);
/* forward multicast and broadcast frames to CPU */
t = (AR8327_PORTS_ALL << AR8327_FWD_CTRL1_UC_FLOOD_S) |
(AR8327_PORTS_ALL << AR8327_FWD_CTRL1_MC_FLOOD_S) |
(AR8327_PORTS_ALL << AR8327_FWD_CTRL1_BC_FLOOD_S);
priv->write(priv, AR8327_REG_FWD_CTRL1, t);
/* setup MTU */
ar8216_rmw(priv, AR8327_REG_MAX_FRAME_SIZE,
AR8327_MAX_FRAME_SIZE_MTU, 1518 + 8 + 2);
/* Enable MIB counters */
ar8216_reg_set(priv, AR8327_REG_MODULE_EN,
AR8327_MODULE_EN_MIB);
}
static void
ar8327_config_port(struct ar8216_priv *priv, unsigned int port,
struct ar8327_port_cfg *cfg)
{
u32 t;
if (!cfg || !cfg->force_link) {
priv->write(priv, AR8327_REG_PORT_STATUS(port),
AR8216_PORT_STATUS_LINK_AUTO);
return;
}
t = AR8216_PORT_STATUS_TXMAC | AR8216_PORT_STATUS_RXMAC;
t |= cfg->duplex ? AR8216_PORT_STATUS_DUPLEX : 0;
t |= cfg->rxpause ? AR8216_PORT_STATUS_RXFLOW : 0;
t |= cfg->txpause ? AR8216_PORT_STATUS_TXFLOW : 0;
switch (cfg->speed) {
case AR8327_PORT_SPEED_10:
t |= AR8216_PORT_SPEED_10M;
break;
case AR8327_PORT_SPEED_100:
t |= AR8216_PORT_SPEED_100M;
break;
case AR8327_PORT_SPEED_1000:
t |= AR8216_PORT_SPEED_1000M;
break;
}
priv->write(priv, AR8327_REG_PORT_STATUS(port), t);
}
static void
ar8327_init_port(struct ar8216_priv *priv, int port)
{
struct ar8327_platform_data *pdata;
struct ar8327_port_cfg *cfg;
u32 t;
pdata = priv->phy->dev.platform_data;
if (pdata && port == AR8216_PORT_CPU)
cfg = &pdata->port0_cfg;
else if (pdata && port == 6)
cfg = &pdata->port6_cfg;
else
cfg = NULL;
ar8327_config_port(priv, port, cfg);
priv->write(priv, AR8327_REG_PORT_HEADER(port), 0);
t = 1 << AR8327_PORT_VLAN0_DEF_SVID_S;
t |= 1 << AR8327_PORT_VLAN0_DEF_CVID_S;
priv->write(priv, AR8327_REG_PORT_VLAN0(port), t);
t = AR8327_PORT_VLAN1_OUT_MODE_UNTOUCH << AR8327_PORT_VLAN1_OUT_MODE_S;
priv->write(priv, AR8327_REG_PORT_VLAN1(port), t);
t = AR8327_PORT_LOOKUP_LEARN;
t |= AR8216_PORT_STATE_FORWARD << AR8327_PORT_LOOKUP_STATE_S;
priv->write(priv, AR8327_REG_PORT_LOOKUP(port), t);
}
static u32
ar8327_read_port_status(struct ar8216_priv *priv, int port)
{
return priv->read(priv, AR8327_REG_PORT_STATUS(port));
}
static int
ar8327_atu_flush(struct ar8216_priv *priv)
{
int ret;
ret = ar8216_wait_bit(priv, AR8327_REG_ATU_FUNC,
AR8327_ATU_FUNC_BUSY, 0);
if (!ret)
priv->write(priv, AR8327_REG_ATU_FUNC,
AR8327_ATU_FUNC_OP_FLUSH);
return ret;
}
static void
ar8327_vtu_op(struct ar8216_priv *priv, u32 op, u32 val)
{
if (ar8216_wait_bit(priv, AR8327_REG_VTU_FUNC1,
AR8327_VTU_FUNC1_BUSY, 0))
return;
if ((op & AR8327_VTU_FUNC1_OP) == AR8327_VTU_FUNC1_OP_LOAD)
priv->write(priv, AR8327_REG_VTU_FUNC0, val);
op |= AR8327_VTU_FUNC1_BUSY;
priv->write(priv, AR8327_REG_VTU_FUNC1, op);
}
static void
ar8327_vtu_flush(struct ar8216_priv *priv)
{
ar8327_vtu_op(priv, AR8327_VTU_FUNC1_OP_FLUSH, 0);
}
static void
ar8327_vtu_load_vlan(struct ar8216_priv *priv, u32 vid, u32 port_mask)
{
u32 op;
u32 val;
int i;
op = AR8327_VTU_FUNC1_OP_LOAD | (vid << AR8327_VTU_FUNC1_VID_S);
val = AR8327_VTU_FUNC0_VALID | AR8327_VTU_FUNC0_IVL;
for (i = 0; i < AR8327_NUM_PORTS; i++) {
u32 mode;
if ((port_mask & BIT(i)) == 0)
mode = AR8327_VTU_FUNC0_EG_MODE_NOT;
else if (priv->vlan == 0)
mode = AR8327_VTU_FUNC0_EG_MODE_KEEP;
else if (priv->vlan_tagged & BIT(i))
mode = AR8327_VTU_FUNC0_EG_MODE_TAG;
else
mode = AR8327_VTU_FUNC0_EG_MODE_UNTAG;
val |= mode << AR8327_VTU_FUNC0_EG_MODE_S(i);
}
ar8327_vtu_op(priv, op, val);
}
static void
ar8327_setup_port(struct ar8216_priv *priv, int port, u32 egress, u32 ingress,
u32 members, u32 pvid)
{
u32 t;
u32 mode;
t = pvid << AR8327_PORT_VLAN0_DEF_SVID_S;
t |= pvid << AR8327_PORT_VLAN0_DEF_CVID_S;
priv->write(priv, AR8327_REG_PORT_VLAN0(port), t);
mode = AR8327_PORT_VLAN1_OUT_MODE_UNMOD;
switch (egress) {
case AR8216_OUT_KEEP:
mode = AR8327_PORT_VLAN1_OUT_MODE_UNTOUCH;
break;
case AR8216_OUT_STRIP_VLAN:
mode = AR8327_PORT_VLAN1_OUT_MODE_UNTAG;
break;
case AR8216_OUT_ADD_VLAN:
mode = AR8327_PORT_VLAN1_OUT_MODE_TAG;
break;
}
t = AR8327_PORT_VLAN1_PORT_VLAN_PROP;
t |= mode << AR8327_PORT_VLAN1_OUT_MODE_S;
priv->write(priv, AR8327_REG_PORT_VLAN1(port), t);
t = members;
t |= AR8327_PORT_LOOKUP_LEARN;
t |= ingress << AR8327_PORT_LOOKUP_IN_MODE_S;
t |= AR8216_PORT_STATE_FORWARD << AR8327_PORT_LOOKUP_STATE_S;
priv->write(priv, AR8327_REG_PORT_LOOKUP(port), t);
}
static const struct ar8xxx_chip ar8327_chip = {
.caps = AR8XXX_CAP_GIGE | AR8XXX_CAP_MIB_COUNTERS,
.hw_init = ar8327_hw_init,
.init_globals = ar8327_init_globals,
.init_port = ar8327_init_port,
.setup_port = ar8327_setup_port,
.read_port_status = ar8327_read_port_status,
.atu_flush = ar8327_atu_flush,
.vtu_flush = ar8327_vtu_flush,
.vtu_load_vlan = ar8327_vtu_load_vlan,
.num_mibs = ARRAY_SIZE(ar8236_mibs),
.mib_decs = ar8236_mibs,
};
static int
ar8216_sw_set_vlan(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
priv->vlan = !!val->value.i;
return 0;
}
static int
ar8216_sw_get_vlan(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
val->value.i = priv->vlan;
return 0;
}
static int
ar8216_sw_set_max_frame_size(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
if(chip_is_ar8236(priv))
ar8216_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8236_GCTRL_MTU, val->value.i + 8 + 2);
else if(chip_is_ar8316(priv))
ar8216_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8316_GCTRL_MTU, val->value.i + 8 + 2);
else if(chip_is_ar8216(priv))
ar8216_rmw(priv, AR8216_REG_GLOBAL_CTRL,
AR8216_GCTRL_MTU, val->value.i + 8 + 2);
else if(chip_is_ar8327(priv) || chip_is_ar8337(priv))
ar8216_rmw(priv, AR8327_REG_MAX_FRAME_SIZE,
AR8327_MAX_FRAME_SIZE_MTU, val->value.i + 8 + 2);
return 0;
}
static int
ar8216_sw_get_max_frame_size(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
u32 v = 0;
struct ar8216_priv *priv = to_ar8216(dev);
if(chip_is_ar8236(priv))
v = ar8216_rmr(priv, AR8216_REG_GLOBAL_CTRL,AR8236_GCTRL_MTU);
else if(chip_is_ar8316(priv))
v = ar8216_rmr(priv, AR8216_REG_GLOBAL_CTRL,AR8316_GCTRL_MTU);
else if(chip_is_ar8216(priv))
v = ar8216_rmr(priv, AR8216_REG_GLOBAL_CTRL,AR8216_GCTRL_MTU);
else if(chip_is_ar8327(priv) || chip_is_ar8337(priv))
v = ar8216_rmr(priv, AR8327_REG_MAX_FRAME_SIZE,AR8327_MAX_FRAME_SIZE_MTU);
val->value.i = v;
return 0;
}
static int
ar8216_sw_set_pvid(struct switch_dev *dev, int port, int vlan)
{
struct ar8216_priv *priv = to_ar8216(dev);
/* make sure no invalid PVIDs get set */
if (vlan >= dev->vlans)
return -EINVAL;
priv->pvid[port] = vlan;
return 0;
}
static int
ar8216_sw_get_pvid(struct switch_dev *dev, int port, int *vlan)
{
struct ar8216_priv *priv = to_ar8216(dev);
*vlan = priv->pvid[port];
return 0;
}
static int
ar8216_sw_set_vid(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
priv->vlan_id[val->port_vlan] = val->value.i;
return 0;
}
static int
ar8216_sw_get_vid(struct switch_dev *dev, const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
val->value.i = priv->vlan_id[val->port_vlan];
return 0;
}
static int
ar8216_sw_get_port_link(struct switch_dev *dev, int port,
struct switch_port_link *link)
{
struct ar8216_priv *priv = to_ar8216(dev);
ar8216_read_port_link(priv, port, link);
return 0;
}
static int
ar8216_sw_get_ports(struct switch_dev *dev, struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
u8 ports = priv->vlan_table[val->port_vlan];
int i;
val->len = 0;
for (i = 0; i < dev->ports; i++) {
struct switch_port *p;
if (!(ports & (1 << i)))
continue;
p = &val->value.ports[val->len++];
p->id = i;
if (priv->vlan_tagged & (1 << i))
p->flags = (1 << SWITCH_PORT_FLAG_TAGGED);
else
p->flags = 0;
}
return 0;
}
static int
ar8216_sw_set_ports(struct switch_dev *dev, struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
u8 *vt = &priv->vlan_table[val->port_vlan];
int i, j;
*vt = 0;
for (i = 0; i < val->len; i++) {
struct switch_port *p = &val->value.ports[i];
if (p->flags & (1 << SWITCH_PORT_FLAG_TAGGED)) {
priv->vlan_tagged |= (1 << p->id);
} else {
priv->vlan_tagged &= ~(1 << p->id);
priv->pvid[p->id] = val->port_vlan;
/* make sure that an untagged port does not
* appear in other vlans */
for (j = 0; j < AR8X16_MAX_VLANS; j++) {
if (j == val->port_vlan)
continue;
priv->vlan_table[j] &= ~(1 << p->id);
}
}
*vt |= 1 << p->id;
}
return 0;
}
static int
ar8216_sw_hw_apply(struct switch_dev *dev)
{
struct ar8216_priv *priv = to_ar8216(dev);
u8 portmask[AR8X16_MAX_PORTS];
int i, j;
mutex_lock(&priv->reg_mutex);
/* flush all vlan translation unit entries */
priv->chip->vtu_flush(priv);
memset(portmask, 0, sizeof(portmask));
if (!priv->init) {
/* calculate the port destination masks and load vlans
* into the vlan translation unit */
for (j = 0; j < AR8X16_MAX_VLANS; j++) {
u8 vp = priv->vlan_table[j];
if (!vp)
continue;
for (i = 0; i < dev->ports; i++) {
u8 mask = (1 << i);
if (vp & mask)
portmask[i] |= vp & ~mask;
}
priv->chip->vtu_load_vlan(priv, priv->vlan_id[j],
priv->vlan_table[j]);
}
} else {
/* vlan disabled:
* isolate all ports, but connect them to the cpu port */
for (i = 0; i < dev->ports; i++) {
if (i == AR8216_PORT_CPU)
continue;
portmask[i] = 1 << AR8216_PORT_CPU;
portmask[AR8216_PORT_CPU] |= (1 << i);
}
}
/* update the port destination mask registers and tag settings */
for (i = 0; i < dev->ports; i++) {
int egress, ingress;
int pvid;
if (priv->vlan) {
pvid = priv->vlan_id[priv->pvid[i]];
if (priv->vlan_tagged & (1 << i))
egress = AR8216_OUT_ADD_VLAN;
else
egress = AR8216_OUT_STRIP_VLAN;
ingress = AR8216_IN_SECURE;
} else {
pvid = i;
egress = AR8216_OUT_KEEP;
ingress = AR8216_IN_PORT_ONLY;
}
priv->chip->setup_port(priv, i, egress, ingress, portmask[i],
pvid);
}
mutex_unlock(&priv->reg_mutex);
return 0;
}
static int
ar8216_sw_reset_switch(struct switch_dev *dev)
{
struct ar8216_priv *priv = to_ar8216(dev);
int i;
mutex_lock(&priv->reg_mutex);
memset(&priv->vlan, 0, sizeof(struct ar8216_priv) -
offsetof(struct ar8216_priv, vlan));
for (i = 0; i < AR8X16_MAX_VLANS; i++)
priv->vlan_id[i] = i;
/* Configure all ports */
for (i = 0; i < dev->ports; i++)
priv->chip->init_port(priv, i);
priv->chip->init_globals(priv);
mutex_unlock(&priv->reg_mutex);
return ar8216_sw_hw_apply(dev);
}
static int
ar8216_sw_set_reset_mibs(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
unsigned int len;
int ret;
if (!ar8xxx_has_mib_counters(priv))
return -EOPNOTSUPP;
mutex_lock(&priv->mib_lock);
len = priv->dev.ports * priv->chip->num_mibs *
sizeof(*priv->mib_stats);
memset(priv->mib_stats, '\0', len);
ret = ar8216_mib_flush(priv);
if (ret)
goto unlock;
ret = 0;
unlock:
mutex_unlock(&priv->mib_lock);
return ret;
}
static int
ar8216_sw_set_port_reset_mib(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
int port;
int ret;
if (!ar8xxx_has_mib_counters(priv))
return -EOPNOTSUPP;
port = val->port_vlan;
if (port >= dev->ports)
return -EINVAL;
mutex_lock(&priv->mib_lock);
ret = ar8216_mib_capture(priv);
if (ret)
goto unlock;
ar8216_mib_fetch_port_stat(priv, port, true);
ret = 0;
unlock:
mutex_unlock(&priv->mib_lock);
return ret;
}
static int
ar8216_sw_get_port_mib(struct switch_dev *dev,
const struct switch_attr *attr,
struct switch_val *val)
{
struct ar8216_priv *priv = to_ar8216(dev);
const struct ar8xxx_chip *chip = priv->chip;
u64 *mib_stats;
int port;
int ret;
char *buf = priv->buf;
int i, len = 0;
if (!ar8xxx_has_mib_counters(priv))
return -EOPNOTSUPP;
port = val->port_vlan;
if (port >= dev->ports)
return -EINVAL;
mutex_lock(&priv->mib_lock);
ret = ar8216_mib_capture(priv);
if (ret)
goto unlock;
ar8216_mib_fetch_port_stat(priv, port, false);
len += snprintf(buf + len, sizeof(priv->buf) - len,
"Port %d MIB counters\n",
port);
mib_stats = &priv->mib_stats[port * chip->num_mibs];
for (i = 0; i < chip->num_mibs; i++)
len += snprintf(buf + len, sizeof(priv->buf) - len,
"%-12s: %llu\n",
chip->mib_decs[i].name,
mib_stats[i]);
val->value.s = buf;
val->len = len;
ret = 0;
unlock:
mutex_unlock(&priv->mib_lock);
return ret;
}
static struct switch_attr ar8216_globals[] = {
{
.type = SWITCH_TYPE_INT,
.name = "enable_vlan",
.description = "Enable VLAN mode",
.set = ar8216_sw_set_vlan,
.get = ar8216_sw_get_vlan,
.max = 1
},
{
.type = SWITCH_TYPE_NOVAL,
.name = "reset_mibs",
.description = "Reset all MIB counters",
.set = ar8216_sw_set_reset_mibs,
},
{
.type = SWITCH_TYPE_INT,
.name = "max_frame_size",
.description = "Max frame size can be received and transmitted by mac",
.set = ar8216_sw_set_max_frame_size,
.get = ar8216_sw_get_max_frame_size,
.max = 9018
},
};
static struct switch_attr ar8216_port[] = {
{
.type = SWITCH_TYPE_NOVAL,
.name = "reset_mib",
.description = "Reset single port MIB counters",
.set = ar8216_sw_set_port_reset_mib,
},
{
.type = SWITCH_TYPE_STRING,
.name = "mib",
.description = "Get port's MIB counters",
.set = NULL,
.get = ar8216_sw_get_port_mib,
},
};
static struct switch_attr ar8216_vlan[] = {
{
.type = SWITCH_TYPE_INT,
.name = "vid",
.description = "VLAN ID (0-4094)",
.set = ar8216_sw_set_vid,
.get = ar8216_sw_get_vid,
.max = 4094,
},
};
static const struct switch_dev_ops ar8216_sw_ops = {
.attr_global = {
.attr = ar8216_globals,
.n_attr = ARRAY_SIZE(ar8216_globals),
},
.attr_port = {
.attr = ar8216_port,
.n_attr = ARRAY_SIZE(ar8216_port),
},
.attr_vlan = {
.attr = ar8216_vlan,
.n_attr = ARRAY_SIZE(ar8216_vlan),
},
.get_port_pvid = ar8216_sw_get_pvid,
.set_port_pvid = ar8216_sw_set_pvid,
.get_vlan_ports = ar8216_sw_get_ports,
.set_vlan_ports = ar8216_sw_set_ports,
.apply_config = ar8216_sw_hw_apply,
.reset_switch = ar8216_sw_reset_switch,
.get_port_link = ar8216_sw_get_port_link,
};
static int
ar8216_id_chip(struct ar8216_priv *priv)
{
u32 val;
u16 id;
int i;
val = ar8216_mii_read(priv, AR8216_REG_CTRL);
if (val == ~0)
return -ENODEV;
id = val & (AR8216_CTRL_REVISION | AR8216_CTRL_VERSION);
for (i = 0; i < AR8X16_PROBE_RETRIES; i++) {
u16 t;
val = ar8216_mii_read(priv, AR8216_REG_CTRL);
if (val == ~0)
return -ENODEV;
t = val & (AR8216_CTRL_REVISION | AR8216_CTRL_VERSION);
if (t != id)
return -ENODEV;
}
priv->chip_ver = (id & AR8216_CTRL_VERSION) >> AR8216_CTRL_VERSION_S;
priv->chip_rev = (id & AR8216_CTRL_REVISION);
switch (priv->chip_ver) {
case AR8XXX_VER_AR8216:
priv->chip = &ar8216_chip;
break;
case AR8XXX_VER_AR8236:
priv->chip = &ar8236_chip;
break;
case AR8XXX_VER_AR8316:
priv->chip = &ar8316_chip;
break;
case AR8XXX_VER_AR8327:
priv->mii_lo_first = true;
priv->chip = &ar8327_chip;
break;
case AR8XXX_VER_AR8337:
priv->mii_lo_first = true;
priv->chip = &ar8327_chip;
break;
default:
printk(KERN_DEBUG
"ar8216: Unknown Atheros device [ver=%d, rev=%d, phy_id=%04x%04x]\n",
priv->chip_ver, priv->chip_rev,
mdiobus_read(priv->phy->bus, priv->phy->addr, 2),
mdiobus_read(priv->phy->bus, priv->phy->addr, 3));
return -ENODEV;
}
return 0;
}
static void
ar8xxx_mib_work_func(struct work_struct *work)
{
struct ar8216_priv *priv;
int err;
priv = container_of(work, struct ar8216_priv, mib_work.work);
mutex_lock(&priv->mib_lock);
err = ar8216_mib_capture(priv);
if (err)
goto next_port;
ar8216_mib_fetch_port_stat(priv, priv->mib_next_port, false);
next_port:
priv->mib_next_port++;
if (priv->mib_next_port >= priv->dev.ports)
priv->mib_next_port = 0;
mutex_unlock(&priv->mib_lock);
schedule_delayed_work(&priv->mib_work,
msecs_to_jiffies(AR8XXX_MIB_WORK_DELAY));
}
static int
ar8xxx_mib_init(struct ar8216_priv *priv)
{
unsigned int len;
if (!ar8xxx_has_mib_counters(priv))
return 0;
BUG_ON(!priv->chip->mib_decs || !priv->chip->num_mibs);
len = priv->dev.ports * priv->chip->num_mibs *
sizeof(*priv->mib_stats);
priv->mib_stats = kzalloc(len, GFP_KERNEL);
if (!priv->mib_stats)
return -ENOMEM;
mutex_init(&priv->mib_lock);
INIT_DELAYED_WORK(&priv->mib_work, ar8xxx_mib_work_func);
return 0;
}
static void
ar8xxx_mib_start(struct ar8216_priv *priv)
{
if (!ar8xxx_has_mib_counters(priv))
return;
schedule_delayed_work(&priv->mib_work,
msecs_to_jiffies(AR8XXX_MIB_WORK_DELAY));
}
static void
ar8xxx_mib_cleanup(struct ar8216_priv *priv)
{
if (!ar8xxx_has_mib_counters(priv))
return;
cancel_delayed_work(&priv->mib_work);
kfree(priv->mib_stats);
}
static int
ar8216_config_init(struct phy_device *pdev)
{
struct ar8216_priv *priv = pdev->priv;
struct net_device *dev = pdev->attached_dev;
struct switch_dev *swdev;
int ret;
if (!priv) {
priv = kzalloc(sizeof(struct ar8216_priv), GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
}
priv->phy = pdev;
ret = ar8216_id_chip(priv);
if (ret)
goto err_free_priv;
if (pdev->addr != 0) {
if (ar8xxx_has_gige(priv)) {
pdev->supported |= SUPPORTED_1000baseT_Full;
pdev->advertising |= ADVERTISED_1000baseT_Full;
}
if (chip_is_ar8316(priv)) {
/* check if we're attaching to the switch twice */
pdev = pdev->bus->phy_map[0];
if (!pdev) {
kfree(priv);
return 0;
}
/* switch device has not been initialized, reuse priv */
if (!pdev->priv) {
priv->port4_phy = true;
pdev->priv = priv;
return 0;
}
kfree(priv);
/* switch device has been initialized, reinit */
priv = pdev->priv;
priv->dev.ports = (AR8216_NUM_PORTS - 1);
priv->initialized = false;
priv->port4_phy = true;
ar8316_hw_init(priv);
return 0;
}
kfree(priv);
return 0;
}
if (ar8xxx_has_gige(priv))
pdev->supported = SUPPORTED_1000baseT_Full;
else
pdev->supported = SUPPORTED_100baseT_Full;
pdev->advertising = pdev->supported;
mutex_init(&priv->reg_mutex);
priv->read = ar8216_mii_read;
priv->write = ar8216_mii_write;
pdev->priv = priv;
swdev = &priv->dev;
swdev->cpu_port = AR8216_PORT_CPU;
swdev->ops = &ar8216_sw_ops;
swdev->ports = AR8216_NUM_PORTS;
if (chip_is_ar8316(priv)) {
swdev->name = "Atheros AR8316";
swdev->vlans = AR8X16_MAX_VLANS;
if (priv->port4_phy) {
/* port 5 connected to the other mac, therefore unusable */
swdev->ports = (AR8216_NUM_PORTS - 1);
}
} else if (chip_is_ar8236(priv)) {
swdev->name = "Atheros AR8236";
swdev->vlans = AR8216_NUM_VLANS;
swdev->ports = AR8216_NUM_PORTS;
} else if (chip_is_ar8327(priv)) {
swdev->name = "Atheros AR8327";
swdev->vlans = AR8X16_MAX_VLANS;
swdev->ports = AR8327_NUM_PORTS;
} else if (chip_is_ar8337(priv)) {
swdev->name = "Atheros AR8337";
swdev->vlans = AR8X16_MAX_VLANS;
swdev->ports = AR8327_NUM_PORTS;
} else {
swdev->name = "Atheros AR8216";
swdev->vlans = AR8216_NUM_VLANS;
}
ret = ar8xxx_mib_init(priv);
if (ret)
goto err_free_priv;
ret = register_switch(&priv->dev, pdev->attached_dev);
if (ret)
goto err_cleanup_mib;
printk(KERN_INFO "%s: %s switch driver attached.\n",
pdev->attached_dev->name, swdev->name);
priv->init = true;
ret = priv->chip->hw_init(priv);
if (ret)
goto err_cleanup_mib;
ret = ar8216_sw_reset_switch(&priv->dev);
if (ret)
goto err_cleanup_mib;
ar8216_priv_backup = priv;
if ( ar8216_switch_proc_create(swdev->name+8) )
goto err_cleanup_mib;
dev->phy_ptr = priv;
/* VID fixup only needed on ar8216 */
if (chip_is_ar8216(priv) && pdev->addr == 0) {
dev->priv_flags |= IFF_NO_IP_ALIGN;
dev->eth_mangle_rx = ar8216_mangle_rx;
dev->eth_mangle_tx = ar8216_mangle_tx;
}
priv->init = false;
ar8xxx_mib_start(priv);
return 0;
err_cleanup_mib:
ar8xxx_mib_cleanup(priv);
err_free_priv:
kfree(priv);
return ret;
}
static int ar8216_get_vlan_dev(struct phy_device *phydev, int vlanID)
{
struct ar8216_priv *priv = phydev->priv;
uint8_t name[10];
sprintf(name, "%s.%d\0", phydev->attached_dev->name, vlanID);
priv->vlan_dev[vlanID] = dev_get_by_name(&init_net, name);
if(priv->vlan_dev[vlanID] != NULL){
dev_put(priv->vlan_dev[vlanID]);
return 1;
}
return 0;
}
static int
ar8216_read_status(struct phy_device *phydev)
{
struct ar8216_priv *priv = phydev->priv;
struct switch_port_link link;
struct switch_dev *dev;
int ret;
int i, port_status = 0;
if (phydev->addr != 0)
return genphy_read_status(phydev);
dev = (struct switch_dev *)priv;
for(i = 1; i < dev->ports; i++) {
ar8216_read_port_link(priv, i, &link);
if(link.link)
port_status |= 1 << i;
}
if(priv->old_port_status ^ port_status != 0) {
for(i = 0; i < AR8X16_MAX_VLANS; i++) {
if(((port_status & priv->vlan_table[i]) != 0) &&
(priv->vlan_status[i] == 0)){
if(unlikely(priv->vlan_dev[i] == NULL)) {
ret = ar8216_get_vlan_dev(phydev, i);
} else
ret = 1;
if(ret == 1) {
netif_carrier_on(priv->vlan_dev[i]);
priv->vlan_status[i] = 1;
}
} else if( (priv->vlan_table[i] != 0) &&
((port_status & priv->vlan_table[i]) == 0)) {
if(unlikely(priv->vlan_dev[i] == NULL)) {
ret = ar8216_get_vlan_dev(phydev, i);
} else
ret = 1;
if(ret == 1) {
netif_carrier_off(priv->vlan_dev[i]);
priv->vlan_status[i] = 0;
}
}
}
}
priv->old_port_status = port_status;
ar8216_read_port_link(priv, phydev->addr, &link);
phydev->link = !!link.link;
if (!phydev->link)
return 0;
switch (link.speed) {
case SWITCH_PORT_SPEED_10:
phydev->speed = SPEED_10;
break;
case SWITCH_PORT_SPEED_100:
phydev->speed = SPEED_100;
break;
case SWITCH_PORT_SPEED_1000:
phydev->speed = SPEED_1000;
break;
default:
phydev->speed = 0;
}
phydev->duplex = link.duplex ? DUPLEX_FULL : DUPLEX_HALF;
/* flush the address translation unit */
mutex_lock(&priv->reg_mutex);
ret = priv->chip->atu_flush(priv);
mutex_unlock(&priv->reg_mutex);
phydev->state = PHY_RUNNING;
netif_carrier_on(phydev->attached_dev);
phydev->adjust_link(phydev->attached_dev);
return ret;
}
static int
ar8216_config_aneg(struct phy_device *phydev)
{
if (phydev->addr == 0)
return 0;
return genphy_config_aneg(phydev);
}
static int
ar8216_probe(struct phy_device *pdev)
{
struct ar8216_priv *priv;
int ret;
priv = kzalloc(sizeof(struct ar8216_priv), GFP_KERNEL);
if (priv == NULL)
return -ENOMEM;
priv->phy = pdev;
ret = ar8216_id_chip(priv);
kfree(priv);
return ret;
}
static void
ar8216_remove(struct phy_device *pdev)
{
struct ar8216_priv *priv = pdev->priv;
struct net_device *dev = pdev->attached_dev;
if (!priv)
return;
ar8216_switch_proc_remove();
ar8216_priv_backup = NULL;
dev->priv_flags &= ~IFF_NO_IP_ALIGN;
dev->eth_mangle_rx = NULL;
dev->eth_mangle_tx = NULL;
if (pdev->addr == 0)
unregister_switch(&priv->dev);
ar8xxx_mib_cleanup(priv);
kfree(priv);
}
static struct phy_driver ar8216_driver = {
.phy_id = 0x004d0000,
.name = "Atheros AR8216/AR8236/AR8316",
.phy_id_mask = 0xffff0000,
.features = PHY_BASIC_FEATURES,
.probe = ar8216_probe,
.remove = ar8216_remove,
.config_init = &ar8216_config_init,
.config_aneg = &ar8216_config_aneg,
.read_status = &ar8216_read_status,
.driver = { .owner = THIS_MODULE },
};
int __init
ar8216_init(void)
{
return phy_driver_register(&ar8216_driver);
}
void __exit
ar8216_exit(void)
{
phy_driver_unregister(&ar8216_driver);
}
module_init(ar8216_init);
module_exit(ar8216_exit);
MODULE_LICENSE("GPL");