155 lines
5.1 KiB
C
155 lines
5.1 KiB
C
/* Test of isnanl() substitute.
|
|
Copyright (C) 2007-2009 Free Software Foundation, Inc.
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
/* Written by Bruno Haible <bruno@clisp.org>, 2007. */
|
|
|
|
#include <float.h>
|
|
#include <limits.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include "nan.h"
|
|
|
|
#define ASSERT(expr) \
|
|
do \
|
|
{ \
|
|
if (!(expr)) \
|
|
{ \
|
|
fprintf (stderr, "%s:%d: assertion failed\n", __FILE__, __LINE__); \
|
|
fflush (stderr); \
|
|
abort (); \
|
|
} \
|
|
} \
|
|
while (0)
|
|
|
|
/* On HP-UX 10.20, negating 0.0L does not yield -0.0L.
|
|
So we use minus_zero instead.
|
|
IRIX cc can't put -0.0L into .data, but can compute at runtime.
|
|
Note that the expression -LDBL_MIN * LDBL_MIN does not work on other
|
|
platforms, such as when cross-compiling to PowerPC on MacOS X 10.5. */
|
|
#if defined __hpux || defined __sgi
|
|
static long double
|
|
compute_minus_zero (void)
|
|
{
|
|
return -LDBL_MIN * LDBL_MIN;
|
|
}
|
|
# define minus_zero compute_minus_zero ()
|
|
#else
|
|
long double minus_zero = -0.0L;
|
|
#endif
|
|
|
|
int
|
|
main ()
|
|
{
|
|
#define NWORDS \
|
|
((sizeof (long double) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
|
|
typedef union { unsigned int word[NWORDS]; long double value; }
|
|
memory_long_double;
|
|
|
|
/* Finite values. */
|
|
ASSERT (!isnanl (3.141L));
|
|
ASSERT (!isnanl (3.141e30L));
|
|
ASSERT (!isnanl (3.141e-30L));
|
|
ASSERT (!isnanl (-2.718L));
|
|
ASSERT (!isnanl (-2.718e30L));
|
|
ASSERT (!isnanl (-2.718e-30L));
|
|
ASSERT (!isnanl (0.0L));
|
|
ASSERT (!isnanl (minus_zero));
|
|
/* Infinite values. */
|
|
ASSERT (!isnanl (1.0L / 0.0L));
|
|
ASSERT (!isnanl (-1.0L / 0.0L));
|
|
/* Quiet NaN. */
|
|
ASSERT (isnanl (NaNl ()));
|
|
|
|
#if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT
|
|
/* A bit pattern that is different from a Quiet NaN. With a bit of luck,
|
|
it's a Signalling NaN. */
|
|
{
|
|
memory_long_double m;
|
|
m.value = NaNl ();
|
|
# if LDBL_EXPBIT0_BIT > 0
|
|
m.word[LDBL_EXPBIT0_WORD] ^= (unsigned int) 1 << (LDBL_EXPBIT0_BIT - 1);
|
|
# else
|
|
m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
|
|
^= (unsigned int) 1 << (sizeof (unsigned int) * CHAR_BIT - 1);
|
|
# endif
|
|
m.word[LDBL_EXPBIT0_WORD + (LDBL_EXPBIT0_WORD < NWORDS / 2 ? 1 : - 1)]
|
|
|= (unsigned int) 1 << LDBL_EXPBIT0_BIT;
|
|
ASSERT (isnanl (m.value));
|
|
}
|
|
#endif
|
|
|
|
#if ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_))
|
|
/* Representation of an 80-bit 'long double' as an initializer for a sequence
|
|
of 'unsigned int' words. */
|
|
# ifdef WORDS_BIGENDIAN
|
|
# define LDBL80_WORDS(exponent,manthi,mantlo) \
|
|
{ ((unsigned int) (exponent) << 16) | ((unsigned int) (manthi) >> 16), \
|
|
((unsigned int) (manthi) << 16) | (unsigned int) (mantlo) >> 16), \
|
|
(unsigned int) (mantlo) << 16 \
|
|
}
|
|
# else
|
|
# define LDBL80_WORDS(exponent,manthi,mantlo) \
|
|
{ mantlo, manthi, exponent }
|
|
# endif
|
|
{ /* Quiet NaN. */
|
|
static memory_long_double x =
|
|
{ LDBL80_WORDS (0xFFFF, 0xC3333333, 0x00000000) };
|
|
ASSERT (isnanl (x.value));
|
|
}
|
|
{
|
|
/* Signalling NaN. */
|
|
static memory_long_double x =
|
|
{ LDBL80_WORDS (0xFFFF, 0x83333333, 0x00000000) };
|
|
ASSERT (isnanl (x.value));
|
|
}
|
|
/* The isnanl function should recognize Pseudo-NaNs, Pseudo-Infinities,
|
|
Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals, as defined in
|
|
Intel IA-64 Architecture Software Developer's Manual, Volume 1:
|
|
Application Architecture.
|
|
Table 5-2 "Floating-Point Register Encodings"
|
|
Figure 5-6 "Memory to Floating-Point Register Data Translation"
|
|
*/
|
|
{ /* Pseudo-NaN. */
|
|
static memory_long_double x =
|
|
{ LDBL80_WORDS (0xFFFF, 0x40000001, 0x00000000) };
|
|
ASSERT (isnanl (x.value));
|
|
}
|
|
{ /* Pseudo-Infinity. */
|
|
static memory_long_double x =
|
|
{ LDBL80_WORDS (0xFFFF, 0x00000000, 0x00000000) };
|
|
ASSERT (isnanl (x.value));
|
|
}
|
|
{ /* Pseudo-Zero. */
|
|
static memory_long_double x =
|
|
{ LDBL80_WORDS (0x4004, 0x00000000, 0x00000000) };
|
|
ASSERT (isnanl (x.value));
|
|
}
|
|
{ /* Unnormalized number. */
|
|
static memory_long_double x =
|
|
{ LDBL80_WORDS (0x4000, 0x63333333, 0x00000000) };
|
|
ASSERT (isnanl (x.value));
|
|
}
|
|
{ /* Pseudo-Denormal. */
|
|
static memory_long_double x =
|
|
{ LDBL80_WORDS (0x0000, 0x83333333, 0x00000000) };
|
|
ASSERT (isnanl (x.value));
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|