1
0
This repository has been archived on 2024-07-22. You can view files and clone it, but cannot push or open issues or pull requests.
TP-Link_Archer-XR500v/EN7526G_3.18Kernel_SDK/tools/mtd-utils-1.4.5/serve_image.c
2024-07-22 01:58:46 -03:00

302 lines
7.7 KiB
C
Executable File

#define PROGRAM_NAME "serve_image"
#define _POSIX_C_SOURCE 199309
#include <time.h>
#include <errno.h>
#include <error.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/socket.h>
#include <sys/mman.h>
#include <netinet/in.h>
#include <sys/time.h>
#include <crc32.h>
#include <inttypes.h>
#include "mcast_image.h"
int tx_rate = 80000;
int pkt_delay;
#undef RANDOMDROP
int main(int argc, char **argv)
{
struct addrinfo *ai;
struct addrinfo hints;
struct addrinfo *runp;
int ret;
int sock;
struct image_pkt pktbuf;
int rfd;
struct stat st;
int writeerrors = 0;
uint32_t erasesize;
unsigned char *image, *blockptr = NULL;
uint32_t block_nr, pkt_nr;
int nr_blocks;
struct timeval then, now, nextpkt;
long time_msecs;
int pkts_per_block;
int total_pkts_per_block;
struct fec_parms *fec;
unsigned char *last_block;
uint32_t *block_crcs;
long tosleep;
uint32_t sequence = 0;
if (argc == 6) {
tx_rate = atol(argv[5]) * 1024;
if (tx_rate < PKT_SIZE || tx_rate > 20000000) {
fprintf(stderr, "Bogus TX rate %d KiB/s\n", tx_rate);
exit(1);
}
argc = 5;
}
if (argc != 5) {
fprintf(stderr, "usage: %s <host> <port> <image> <erasesize> [<tx_rate>]\n",
PROGRAM_NAME);
exit(1);
}
pkt_delay = (sizeof(pktbuf) * 1000000) / tx_rate;
printf("Inter-packet delay (avg): %dµs\n", pkt_delay);
printf("Transmit rate: %d KiB/s\n", tx_rate / 1024);
erasesize = atol(argv[4]);
if (!erasesize) {
fprintf(stderr, "erasesize cannot be zero\n");
exit(1);
}
pkts_per_block = (erasesize + PKT_SIZE - 1) / PKT_SIZE;
total_pkts_per_block = pkts_per_block * 3 / 2;
/* We have to pad it with zeroes, so can't use it in-place */
last_block = malloc(pkts_per_block * PKT_SIZE);
if (!last_block) {
fprintf(stderr, "Failed to allocate last-block buffer\n");
exit(1);
}
fec = fec_new(pkts_per_block, total_pkts_per_block);
if (!fec) {
fprintf(stderr, "Error initialising FEC\n");
exit(1);
}
memset(&hints, 0, sizeof(hints));
hints.ai_flags = AI_ADDRCONFIG;
hints.ai_socktype = SOCK_DGRAM;
ret = getaddrinfo(argv[1], argv[2], &hints, &ai);
if (ret) {
fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(ret));
exit(1);
}
runp = ai;
for (runp = ai; runp; runp = runp->ai_next) {
sock = socket(runp->ai_family, runp->ai_socktype,
runp->ai_protocol);
if (sock == -1) {
perror("socket");
continue;
}
if (connect(sock, runp->ai_addr, runp->ai_addrlen) == 0)
break;
perror("connect");
close(sock);
}
if (!runp)
exit(1);
rfd = open(argv[3], O_RDONLY);
if (rfd < 0) {
perror("open");
exit(1);
}
if (fstat(rfd, &st)) {
perror("fstat");
exit(1);
}
if (st.st_size % erasesize) {
fprintf(stderr, "Image size %" PRIu64 " bytes is not a multiple of erasesize %d bytes\n",
st.st_size, erasesize);
exit(1);
}
image = mmap(NULL, st.st_size, PROT_READ, MAP_PRIVATE, rfd, 0);
if (image == MAP_FAILED) {
perror("mmap");
exit(1);
}
nr_blocks = st.st_size / erasesize;
block_crcs = malloc(nr_blocks * sizeof(uint32_t));
if (!block_crcs) {
fprintf(stderr, "Failed to allocate memory for CRCs\n");
exit(1);
}
memcpy(last_block, image + (nr_blocks - 1) * erasesize, erasesize);
memset(last_block + erasesize, 0, (PKT_SIZE * pkts_per_block) - erasesize);
printf("Checking CRC....");
fflush(stdout);
pktbuf.hdr.resend = 0;
pktbuf.hdr.totcrc = htonl(mtd_crc32(-1, image, st.st_size));
pktbuf.hdr.nr_blocks = htonl(nr_blocks);
pktbuf.hdr.blocksize = htonl(erasesize);
pktbuf.hdr.thislen = htonl(PKT_SIZE);
pktbuf.hdr.nr_pkts = htons(total_pkts_per_block);
printf("%08x\n", ntohl(pktbuf.hdr.totcrc));
printf("Checking block CRCs....");
fflush(stdout);
for (block_nr=0; block_nr < nr_blocks; block_nr++) {
printf("\rChecking block CRCS.... %d/%d",
block_nr + 1, nr_blocks);
fflush(stdout);
block_crcs[block_nr] = mtd_crc32(-1, image + (block_nr * erasesize), erasesize);
}
printf("\nImage size %ld KiB (0x%08lx). %d blocks at %d pkts/block\n"
"Estimated transmit time per cycle: %ds\n",
(long)st.st_size / 1024, (long) st.st_size,
nr_blocks, pkts_per_block,
nr_blocks * pkts_per_block * pkt_delay / 1000000);
gettimeofday(&then, NULL);
nextpkt = then;
#ifdef RANDOMDROP
srand((unsigned)then.tv_usec);
printf("Random seed %u\n", (unsigned)then.tv_usec);
#endif
while (1) for (pkt_nr=0; pkt_nr < total_pkts_per_block; pkt_nr++) {
if (blockptr && pkt_nr == 0) {
unsigned long amt_sent = total_pkts_per_block * nr_blocks * sizeof(pktbuf);
gettimeofday(&now, NULL);
time_msecs = (now.tv_sec - then.tv_sec) * 1000;
time_msecs += ((int)(now.tv_usec - then.tv_usec)) / 1000;
printf("\n%ld KiB sent in %ldms (%ld KiB/s)\n",
amt_sent / 1024, time_msecs,
amt_sent / 1024 * 1000 / time_msecs);
then = now;
}
for (block_nr = 0; block_nr < nr_blocks; block_nr++) {
int actualpkt;
/* Calculating the redundant FEC blocks is expensive;
the first $pkts_per_block are cheap enough though
because they're just copies. So alternate between
simple and complex stuff, so that we don't start
to choke and fail to keep up with the expected
bitrate in the second half of the sequence */
if (block_nr & 1)
actualpkt = pkt_nr;
else
actualpkt = total_pkts_per_block - 1 - pkt_nr;
blockptr = image + (erasesize * block_nr);
if (block_nr == nr_blocks - 1)
blockptr = last_block;
fec_encode_linear(fec, blockptr, pktbuf.data, actualpkt, PKT_SIZE);
pktbuf.hdr.thiscrc = htonl(mtd_crc32(-1, pktbuf.data, PKT_SIZE));
pktbuf.hdr.block_crc = htonl(block_crcs[block_nr]);
pktbuf.hdr.block_nr = htonl(block_nr);
pktbuf.hdr.pkt_nr = htons(actualpkt);
pktbuf.hdr.pkt_sequence = htonl(sequence++);
printf("\rSending data block %08x packet %3d/%d",
block_nr * erasesize,
pkt_nr, total_pkts_per_block);
if (pkt_nr && !block_nr) {
unsigned long amt_sent = pkt_nr * nr_blocks * sizeof(pktbuf);
gettimeofday(&now, NULL);
time_msecs = (now.tv_sec - then.tv_sec) * 1000;
time_msecs += ((int)(now.tv_usec - then.tv_usec)) / 1000;
printf(" (%ld KiB/s) ",
amt_sent / 1024 * 1000 / time_msecs);
}
fflush(stdout);
#ifdef RANDOMDROP
if ((rand() % 1000) < 20) {
printf("\nDropping packet %d of block %08x\n", pkt_nr+1, block_nr * erasesize);
continue;
}
#endif
gettimeofday(&now, NULL);
#if 1
tosleep = nextpkt.tv_usec - now.tv_usec +
(1000000 * (nextpkt.tv_sec - now.tv_sec));
/* We need hrtimers for this to actually work */
if (tosleep > 0) {
struct timespec req;
req.tv_nsec = (tosleep % 1000000) * 1000;
req.tv_sec = tosleep / 1000000;
nanosleep(&req, NULL);
}
#else
while (now.tv_sec < nextpkt.tv_sec ||
(now.tv_sec == nextpkt.tv_sec &&
now.tv_usec < nextpkt.tv_usec)) {
gettimeofday(&now, NULL);
}
#endif
nextpkt.tv_usec += pkt_delay;
if (nextpkt.tv_usec >= 1000000) {
nextpkt.tv_sec += nextpkt.tv_usec / 1000000;
nextpkt.tv_usec %= 1000000;
}
/* If the time for the next packet has already
passed (by some margin), then we've lost time
Adjust our expected timings accordingly. If
we're only a little way behind, don't slip yet */
if (now.tv_usec > (now.tv_usec + (5 * pkt_delay) +
1000000 * (nextpkt.tv_sec - now.tv_sec))) {
nextpkt = now;
}
if (write(sock, &pktbuf, sizeof(pktbuf)) < 0) {
perror("write");
writeerrors++;
if (writeerrors > 10) {
fprintf(stderr, "Too many consecutive write errors\n");
exit(1);
}
} else
writeerrors = 0;
}
}
munmap(image, st.st_size);
close(rfd);
close(sock);
return 0;
}