775 lines
22 KiB
C
Executable File
775 lines
22 KiB
C
Executable File
/*********************************************************************
|
|
*
|
|
* Filename: qos.c
|
|
* Version: 1.0
|
|
* Description: IrLAP QoS parameter negotiation
|
|
* Status: Stable
|
|
* Author: Dag Brattli <dagb@cs.uit.no>
|
|
* Created at: Tue Sep 9 00:00:26 1997
|
|
* Modified at: Sun Jan 30 14:29:16 2000
|
|
* Modified by: Dag Brattli <dagb@cs.uit.no>
|
|
*
|
|
* Copyright (c) 1998-2000 Dag Brattli <dagb@cs.uit.no>,
|
|
* All Rights Reserved.
|
|
* Copyright (c) 2000-2001 Jean Tourrilhes <jt@hpl.hp.com>
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of
|
|
* the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
********************************************************************/
|
|
|
|
#include <linux/export.h>
|
|
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <net/irda/irda.h>
|
|
#include <net/irda/parameters.h>
|
|
#include <net/irda/qos.h>
|
|
#include <net/irda/irlap.h>
|
|
#include <net/irda/irlap_frame.h>
|
|
|
|
/*
|
|
* Maximum values of the baud rate we negotiate with the other end.
|
|
* Most often, you don't have to change that, because Linux-IrDA will
|
|
* use the maximum offered by the link layer, which usually works fine.
|
|
* In some very rare cases, you may want to limit it to lower speeds...
|
|
*/
|
|
int sysctl_max_baud_rate = 16000000;
|
|
/*
|
|
* Maximum value of the lap disconnect timer we negotiate with the other end.
|
|
* Most often, the value below represent the best compromise, but some user
|
|
* may want to keep the LAP alive longer or shorter in case of link failure.
|
|
* Remember that the threshold time (early warning) is fixed to 3s...
|
|
*/
|
|
int sysctl_max_noreply_time = 12;
|
|
/*
|
|
* Minimum turn time to be applied before transmitting to the peer.
|
|
* Nonzero values (usec) are used as lower limit to the per-connection
|
|
* mtt value which was announced by the other end during negotiation.
|
|
* Might be helpful if the peer device provides too short mtt.
|
|
* Default is 10us which means using the unmodified value given by the
|
|
* peer except if it's 0 (0 is likely a bug in the other stack).
|
|
*/
|
|
unsigned int sysctl_min_tx_turn_time = 10;
|
|
/*
|
|
* Maximum data size to be used in transmission in payload of LAP frame.
|
|
* There is a bit of confusion in the IrDA spec :
|
|
* The LAP spec defines the payload of a LAP frame (I field) to be
|
|
* 2048 bytes max (IrLAP 1.1, chapt 6.6.5, p40).
|
|
* On the other hand, the PHY mention frames of 2048 bytes max (IrPHY
|
|
* 1.2, chapt 5.3.2.1, p41). But, this number includes the LAP header
|
|
* (2 bytes), and CRC (32 bits at 4 Mb/s). So, for the I field (LAP
|
|
* payload), that's only 2042 bytes. Oups !
|
|
* My nsc-ircc hardware has troubles receiving 2048 bytes frames at 4 Mb/s,
|
|
* so adjust to 2042... I don't know if this bug applies only for 2048
|
|
* bytes frames or all negotiated frame sizes, but you can use the sysctl
|
|
* to play with this value anyway.
|
|
* Jean II */
|
|
unsigned int sysctl_max_tx_data_size = 2042;
|
|
/*
|
|
* Maximum transmit window, i.e. number of LAP frames between turn-around.
|
|
* This allow to override what the peer told us. Some peers are buggy and
|
|
* don't always support what they tell us.
|
|
* Jean II */
|
|
unsigned int sysctl_max_tx_window = 7;
|
|
|
|
static int irlap_param_baud_rate(void *instance, irda_param_t *param, int get);
|
|
static int irlap_param_link_disconnect(void *instance, irda_param_t *parm,
|
|
int get);
|
|
static int irlap_param_max_turn_time(void *instance, irda_param_t *param,
|
|
int get);
|
|
static int irlap_param_data_size(void *instance, irda_param_t *param, int get);
|
|
static int irlap_param_window_size(void *instance, irda_param_t *param,
|
|
int get);
|
|
static int irlap_param_additional_bofs(void *instance, irda_param_t *parm,
|
|
int get);
|
|
static int irlap_param_min_turn_time(void *instance, irda_param_t *param,
|
|
int get);
|
|
|
|
#ifndef CONFIG_IRDA_DYNAMIC_WINDOW
|
|
static __u32 irlap_requested_line_capacity(struct qos_info *qos);
|
|
#endif
|
|
|
|
static __u32 min_turn_times[] = { 10000, 5000, 1000, 500, 100, 50, 10, 0 }; /* us */
|
|
static __u32 baud_rates[] = { 2400, 9600, 19200, 38400, 57600, 115200, 576000,
|
|
1152000, 4000000, 16000000 }; /* bps */
|
|
static __u32 data_sizes[] = { 64, 128, 256, 512, 1024, 2048 }; /* bytes */
|
|
static __u32 add_bofs[] = { 48, 24, 12, 5, 3, 2, 1, 0 }; /* bytes */
|
|
static __u32 max_turn_times[] = { 500, 250, 100, 50 }; /* ms */
|
|
static __u32 link_disc_times[] = { 3, 8, 12, 16, 20, 25, 30, 40 }; /* secs */
|
|
|
|
static __u32 max_line_capacities[10][4] = {
|
|
/* 500 ms 250 ms 100 ms 50 ms (max turn time) */
|
|
{ 100, 0, 0, 0 }, /* 2400 bps */
|
|
{ 400, 0, 0, 0 }, /* 9600 bps */
|
|
{ 800, 0, 0, 0 }, /* 19200 bps */
|
|
{ 1600, 0, 0, 0 }, /* 38400 bps */
|
|
{ 2360, 0, 0, 0 }, /* 57600 bps */
|
|
{ 4800, 2400, 960, 480 }, /* 115200 bps */
|
|
{ 28800, 11520, 5760, 2880 }, /* 576000 bps */
|
|
{ 57600, 28800, 11520, 5760 }, /* 1152000 bps */
|
|
{ 200000, 100000, 40000, 20000 }, /* 4000000 bps */
|
|
{ 800000, 400000, 160000, 80000 }, /* 16000000 bps */
|
|
};
|
|
|
|
static pi_minor_info_t pi_minor_call_table_type_0[] = {
|
|
{ NULL, 0 },
|
|
/* 01 */{ irlap_param_baud_rate, PV_INTEGER | PV_LITTLE_ENDIAN },
|
|
{ NULL, 0 },
|
|
{ NULL, 0 },
|
|
{ NULL, 0 },
|
|
{ NULL, 0 },
|
|
{ NULL, 0 },
|
|
{ NULL, 0 },
|
|
/* 08 */{ irlap_param_link_disconnect, PV_INT_8_BITS }
|
|
};
|
|
|
|
static pi_minor_info_t pi_minor_call_table_type_1[] = {
|
|
{ NULL, 0 },
|
|
{ NULL, 0 },
|
|
/* 82 */{ irlap_param_max_turn_time, PV_INT_8_BITS },
|
|
/* 83 */{ irlap_param_data_size, PV_INT_8_BITS },
|
|
/* 84 */{ irlap_param_window_size, PV_INT_8_BITS },
|
|
/* 85 */{ irlap_param_additional_bofs, PV_INT_8_BITS },
|
|
/* 86 */{ irlap_param_min_turn_time, PV_INT_8_BITS },
|
|
};
|
|
|
|
static pi_major_info_t pi_major_call_table[] = {
|
|
{ pi_minor_call_table_type_0, 9 },
|
|
{ pi_minor_call_table_type_1, 7 },
|
|
};
|
|
|
|
static pi_param_info_t irlap_param_info = { pi_major_call_table, 2, 0x7f, 7 };
|
|
|
|
/* ---------------------- LOCAL SUBROUTINES ---------------------- */
|
|
/* Note : we start with a bunch of local subroutines.
|
|
* As the compiler is "one pass", this is the only way to get them to
|
|
* inline properly...
|
|
* Jean II
|
|
*/
|
|
/*
|
|
* Function value_index (value, array, size)
|
|
*
|
|
* Returns the index to the value in the specified array
|
|
*/
|
|
static inline int value_index(__u32 value, __u32 *array, int size)
|
|
{
|
|
int i;
|
|
|
|
for (i=0; i < size; i++)
|
|
if (array[i] == value)
|
|
break;
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Function index_value (index, array)
|
|
*
|
|
* Returns value to index in array, easy!
|
|
*
|
|
*/
|
|
static inline __u32 index_value(int index, __u32 *array)
|
|
{
|
|
return array[index];
|
|
}
|
|
|
|
/*
|
|
* Function msb_index (word)
|
|
*
|
|
* Returns index to most significant bit (MSB) in word
|
|
*
|
|
*/
|
|
static int msb_index (__u16 word)
|
|
{
|
|
__u16 msb = 0x8000;
|
|
int index = 15; /* Current MSB */
|
|
|
|
/* Check for buggy peers.
|
|
* Note : there is a small probability that it could be us, but I
|
|
* would expect driver authors to catch that pretty early and be
|
|
* able to check precisely what's going on. If a end user sees this,
|
|
* it's very likely the peer. - Jean II */
|
|
if (word == 0) {
|
|
IRDA_WARNING("%s(), Detected buggy peer, adjust null PV to 0x1!\n",
|
|
__func__);
|
|
/* The only safe choice (we don't know the array size) */
|
|
word = 0x1;
|
|
}
|
|
|
|
while (msb) {
|
|
if (word & msb)
|
|
break; /* Found it! */
|
|
msb >>=1;
|
|
index--;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
/*
|
|
* Function value_lower_bits (value, array)
|
|
*
|
|
* Returns a bit field marking all possibility lower than value.
|
|
*/
|
|
static inline int value_lower_bits(__u32 value, __u32 *array, int size, __u16 *field)
|
|
{
|
|
int i;
|
|
__u16 mask = 0x1;
|
|
__u16 result = 0x0;
|
|
|
|
for (i=0; i < size; i++) {
|
|
/* Add the current value to the bit field, shift mask */
|
|
result |= mask;
|
|
mask <<= 1;
|
|
/* Finished ? */
|
|
if (array[i] >= value)
|
|
break;
|
|
}
|
|
/* Send back a valid index */
|
|
if(i >= size)
|
|
i = size - 1; /* Last item */
|
|
*field = result;
|
|
return i;
|
|
}
|
|
|
|
/*
|
|
* Function value_highest_bit (value, array)
|
|
*
|
|
* Returns a bit field marking the highest possibility lower than value.
|
|
*/
|
|
static inline int value_highest_bit(__u32 value, __u32 *array, int size, __u16 *field)
|
|
{
|
|
int i;
|
|
__u16 mask = 0x1;
|
|
__u16 result = 0x0;
|
|
|
|
for (i=0; i < size; i++) {
|
|
/* Finished ? */
|
|
if (array[i] <= value)
|
|
break;
|
|
/* Shift mask */
|
|
mask <<= 1;
|
|
}
|
|
/* Set the current value to the bit field */
|
|
result |= mask;
|
|
/* Send back a valid index */
|
|
if(i >= size)
|
|
i = size - 1; /* Last item */
|
|
*field = result;
|
|
return i;
|
|
}
|
|
|
|
/* -------------------------- MAIN CALLS -------------------------- */
|
|
|
|
/*
|
|
* Function irda_qos_compute_intersection (qos, new)
|
|
*
|
|
* Compute the intersection of the old QoS capabilities with new ones
|
|
*
|
|
*/
|
|
void irda_qos_compute_intersection(struct qos_info *qos, struct qos_info *new)
|
|
{
|
|
IRDA_ASSERT(qos != NULL, return;);
|
|
IRDA_ASSERT(new != NULL, return;);
|
|
|
|
/* Apply */
|
|
qos->baud_rate.bits &= new->baud_rate.bits;
|
|
qos->window_size.bits &= new->window_size.bits;
|
|
qos->min_turn_time.bits &= new->min_turn_time.bits;
|
|
qos->max_turn_time.bits &= new->max_turn_time.bits;
|
|
qos->data_size.bits &= new->data_size.bits;
|
|
qos->link_disc_time.bits &= new->link_disc_time.bits;
|
|
qos->additional_bofs.bits &= new->additional_bofs.bits;
|
|
|
|
irda_qos_bits_to_value(qos);
|
|
}
|
|
|
|
/*
|
|
* Function irda_init_max_qos_capabilies (qos)
|
|
*
|
|
* The purpose of this function is for layers and drivers to be able to
|
|
* set the maximum QoS possible and then "and in" their own limitations
|
|
*
|
|
*/
|
|
void irda_init_max_qos_capabilies(struct qos_info *qos)
|
|
{
|
|
int i;
|
|
/*
|
|
* These are the maximum supported values as specified on pages
|
|
* 39-43 in IrLAP
|
|
*/
|
|
|
|
/* Use sysctl to set some configurable values... */
|
|
/* Set configured max speed */
|
|
i = value_lower_bits(sysctl_max_baud_rate, baud_rates, 10,
|
|
&qos->baud_rate.bits);
|
|
sysctl_max_baud_rate = index_value(i, baud_rates);
|
|
|
|
/* Set configured max disc time */
|
|
i = value_lower_bits(sysctl_max_noreply_time, link_disc_times, 8,
|
|
&qos->link_disc_time.bits);
|
|
sysctl_max_noreply_time = index_value(i, link_disc_times);
|
|
|
|
/* LSB is first byte, MSB is second byte */
|
|
qos->baud_rate.bits &= 0x03ff;
|
|
|
|
qos->window_size.bits = 0x7f;
|
|
qos->min_turn_time.bits = 0xff;
|
|
qos->max_turn_time.bits = 0x0f;
|
|
qos->data_size.bits = 0x3f;
|
|
qos->link_disc_time.bits &= 0xff;
|
|
qos->additional_bofs.bits = 0xff;
|
|
}
|
|
EXPORT_SYMBOL(irda_init_max_qos_capabilies);
|
|
|
|
/*
|
|
* Function irlap_adjust_qos_settings (qos)
|
|
*
|
|
* Adjust QoS settings in case some values are not possible to use because
|
|
* of other settings
|
|
*/
|
|
static void irlap_adjust_qos_settings(struct qos_info *qos)
|
|
{
|
|
__u32 line_capacity;
|
|
int index;
|
|
|
|
IRDA_DEBUG(2, "%s()\n", __func__);
|
|
|
|
/*
|
|
* Make sure the mintt is sensible.
|
|
* Main culprit : Ericsson T39. - Jean II
|
|
*/
|
|
if (sysctl_min_tx_turn_time > qos->min_turn_time.value) {
|
|
int i;
|
|
|
|
IRDA_WARNING("%s(), Detected buggy peer, adjust mtt to %dus!\n",
|
|
__func__, sysctl_min_tx_turn_time);
|
|
|
|
/* We don't really need bits, but easier this way */
|
|
i = value_highest_bit(sysctl_min_tx_turn_time, min_turn_times,
|
|
8, &qos->min_turn_time.bits);
|
|
sysctl_min_tx_turn_time = index_value(i, min_turn_times);
|
|
qos->min_turn_time.value = sysctl_min_tx_turn_time;
|
|
}
|
|
|
|
/*
|
|
* Not allowed to use a max turn time less than 500 ms if the baudrate
|
|
* is less than 115200
|
|
*/
|
|
if ((qos->baud_rate.value < 115200) &&
|
|
(qos->max_turn_time.value < 500))
|
|
{
|
|
IRDA_DEBUG(0,
|
|
"%s(), adjusting max turn time from %d to 500 ms\n",
|
|
__func__, qos->max_turn_time.value);
|
|
qos->max_turn_time.value = 500;
|
|
}
|
|
|
|
/*
|
|
* The data size must be adjusted according to the baud rate and max
|
|
* turn time
|
|
*/
|
|
index = value_index(qos->data_size.value, data_sizes, 6);
|
|
line_capacity = irlap_max_line_capacity(qos->baud_rate.value,
|
|
qos->max_turn_time.value);
|
|
|
|
#ifdef CONFIG_IRDA_DYNAMIC_WINDOW
|
|
while ((qos->data_size.value > line_capacity) && (index > 0)) {
|
|
qos->data_size.value = data_sizes[index--];
|
|
IRDA_DEBUG(2, "%s(), reducing data size to %d\n",
|
|
__func__, qos->data_size.value);
|
|
}
|
|
#else /* Use method described in section 6.6.11 of IrLAP */
|
|
while (irlap_requested_line_capacity(qos) > line_capacity) {
|
|
IRDA_ASSERT(index != 0, return;);
|
|
|
|
/* Must be able to send at least one frame */
|
|
if (qos->window_size.value > 1) {
|
|
qos->window_size.value--;
|
|
IRDA_DEBUG(2, "%s(), reducing window size to %d\n",
|
|
__func__, qos->window_size.value);
|
|
} else if (index > 1) {
|
|
qos->data_size.value = data_sizes[index--];
|
|
IRDA_DEBUG(2, "%s(), reducing data size to %d\n",
|
|
__func__, qos->data_size.value);
|
|
} else {
|
|
IRDA_WARNING("%s(), nothing more we can do!\n",
|
|
__func__);
|
|
}
|
|
}
|
|
#endif /* CONFIG_IRDA_DYNAMIC_WINDOW */
|
|
/*
|
|
* Fix tx data size according to user limits - Jean II
|
|
*/
|
|
if (qos->data_size.value > sysctl_max_tx_data_size)
|
|
/* Allow non discrete adjustement to avoid losing capacity */
|
|
qos->data_size.value = sysctl_max_tx_data_size;
|
|
/*
|
|
* Override Tx window if user request it. - Jean II
|
|
*/
|
|
if (qos->window_size.value > sysctl_max_tx_window)
|
|
qos->window_size.value = sysctl_max_tx_window;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_negotiate (qos_device, qos_session, skb)
|
|
*
|
|
* Negotiate QoS values, not really that much negotiation :-)
|
|
* We just set the QoS capabilities for the peer station
|
|
*
|
|
*/
|
|
int irlap_qos_negotiate(struct irlap_cb *self, struct sk_buff *skb)
|
|
{
|
|
int ret;
|
|
|
|
ret = irda_param_extract_all(self, skb->data, skb->len,
|
|
&irlap_param_info);
|
|
|
|
/* Convert the negotiated bits to values */
|
|
irda_qos_bits_to_value(&self->qos_tx);
|
|
irda_qos_bits_to_value(&self->qos_rx);
|
|
|
|
irlap_adjust_qos_settings(&self->qos_tx);
|
|
|
|
IRDA_DEBUG(2, "Setting BAUD_RATE to %d bps.\n",
|
|
self->qos_tx.baud_rate.value);
|
|
IRDA_DEBUG(2, "Setting DATA_SIZE to %d bytes\n",
|
|
self->qos_tx.data_size.value);
|
|
IRDA_DEBUG(2, "Setting WINDOW_SIZE to %d\n",
|
|
self->qos_tx.window_size.value);
|
|
IRDA_DEBUG(2, "Setting XBOFS to %d\n",
|
|
self->qos_tx.additional_bofs.value);
|
|
IRDA_DEBUG(2, "Setting MAX_TURN_TIME to %d ms.\n",
|
|
self->qos_tx.max_turn_time.value);
|
|
IRDA_DEBUG(2, "Setting MIN_TURN_TIME to %d usecs.\n",
|
|
self->qos_tx.min_turn_time.value);
|
|
IRDA_DEBUG(2, "Setting LINK_DISC to %d secs.\n",
|
|
self->qos_tx.link_disc_time.value);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_insert_negotiation_params (qos, fp)
|
|
*
|
|
* Insert QoS negotiaion pararameters into frame
|
|
*
|
|
*/
|
|
int irlap_insert_qos_negotiation_params(struct irlap_cb *self,
|
|
struct sk_buff *skb)
|
|
{
|
|
int ret;
|
|
|
|
/* Insert data rate */
|
|
ret = irda_param_insert(self, PI_BAUD_RATE, skb_tail_pointer(skb),
|
|
skb_tailroom(skb), &irlap_param_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
skb_put(skb, ret);
|
|
|
|
/* Insert max turnaround time */
|
|
ret = irda_param_insert(self, PI_MAX_TURN_TIME, skb_tail_pointer(skb),
|
|
skb_tailroom(skb), &irlap_param_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
skb_put(skb, ret);
|
|
|
|
/* Insert data size */
|
|
ret = irda_param_insert(self, PI_DATA_SIZE, skb_tail_pointer(skb),
|
|
skb_tailroom(skb), &irlap_param_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
skb_put(skb, ret);
|
|
|
|
/* Insert window size */
|
|
ret = irda_param_insert(self, PI_WINDOW_SIZE, skb_tail_pointer(skb),
|
|
skb_tailroom(skb), &irlap_param_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
skb_put(skb, ret);
|
|
|
|
/* Insert additional BOFs */
|
|
ret = irda_param_insert(self, PI_ADD_BOFS, skb_tail_pointer(skb),
|
|
skb_tailroom(skb), &irlap_param_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
skb_put(skb, ret);
|
|
|
|
/* Insert minimum turnaround time */
|
|
ret = irda_param_insert(self, PI_MIN_TURN_TIME, skb_tail_pointer(skb),
|
|
skb_tailroom(skb), &irlap_param_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
skb_put(skb, ret);
|
|
|
|
/* Insert link disconnect/threshold time */
|
|
ret = irda_param_insert(self, PI_LINK_DISC, skb_tail_pointer(skb),
|
|
skb_tailroom(skb), &irlap_param_info);
|
|
if (ret < 0)
|
|
return ret;
|
|
skb_put(skb, ret);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_param_baud_rate (instance, param, get)
|
|
*
|
|
* Negotiate data-rate
|
|
*
|
|
*/
|
|
static int irlap_param_baud_rate(void *instance, irda_param_t *param, int get)
|
|
{
|
|
__u16 final;
|
|
|
|
struct irlap_cb *self = (struct irlap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
|
|
|
|
if (get) {
|
|
param->pv.i = self->qos_rx.baud_rate.bits;
|
|
IRDA_DEBUG(2, "%s(), baud rate = 0x%02x\n",
|
|
__func__, param->pv.i);
|
|
} else {
|
|
/*
|
|
* Stations must agree on baud rate, so calculate
|
|
* intersection
|
|
*/
|
|
IRDA_DEBUG(2, "Requested BAUD_RATE: 0x%04x\n", (__u16) param->pv.i);
|
|
final = (__u16) param->pv.i & self->qos_rx.baud_rate.bits;
|
|
|
|
IRDA_DEBUG(2, "Final BAUD_RATE: 0x%04x\n", final);
|
|
self->qos_tx.baud_rate.bits = final;
|
|
self->qos_rx.baud_rate.bits = final;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_param_link_disconnect (instance, param, get)
|
|
*
|
|
* Negotiate link disconnect/threshold time.
|
|
*
|
|
*/
|
|
static int irlap_param_link_disconnect(void *instance, irda_param_t *param,
|
|
int get)
|
|
{
|
|
__u16 final;
|
|
|
|
struct irlap_cb *self = (struct irlap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
|
|
|
|
if (get)
|
|
param->pv.i = self->qos_rx.link_disc_time.bits;
|
|
else {
|
|
/*
|
|
* Stations must agree on link disconnect/threshold
|
|
* time.
|
|
*/
|
|
IRDA_DEBUG(2, "LINK_DISC: %02x\n", (__u8) param->pv.i);
|
|
final = (__u8) param->pv.i & self->qos_rx.link_disc_time.bits;
|
|
|
|
IRDA_DEBUG(2, "Final LINK_DISC: %02x\n", final);
|
|
self->qos_tx.link_disc_time.bits = final;
|
|
self->qos_rx.link_disc_time.bits = final;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_param_max_turn_time (instance, param, get)
|
|
*
|
|
* Negotiate the maximum turnaround time. This is a type 1 parameter and
|
|
* will be negotiated independently for each station
|
|
*
|
|
*/
|
|
static int irlap_param_max_turn_time(void *instance, irda_param_t *param,
|
|
int get)
|
|
{
|
|
struct irlap_cb *self = (struct irlap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
|
|
|
|
if (get)
|
|
param->pv.i = self->qos_rx.max_turn_time.bits;
|
|
else
|
|
self->qos_tx.max_turn_time.bits = (__u8) param->pv.i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_param_data_size (instance, param, get)
|
|
*
|
|
* Negotiate the data size. This is a type 1 parameter and
|
|
* will be negotiated independently for each station
|
|
*
|
|
*/
|
|
static int irlap_param_data_size(void *instance, irda_param_t *param, int get)
|
|
{
|
|
struct irlap_cb *self = (struct irlap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
|
|
|
|
if (get)
|
|
param->pv.i = self->qos_rx.data_size.bits;
|
|
else
|
|
self->qos_tx.data_size.bits = (__u8) param->pv.i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_param_window_size (instance, param, get)
|
|
*
|
|
* Negotiate the window size. This is a type 1 parameter and
|
|
* will be negotiated independently for each station
|
|
*
|
|
*/
|
|
static int irlap_param_window_size(void *instance, irda_param_t *param,
|
|
int get)
|
|
{
|
|
struct irlap_cb *self = (struct irlap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
|
|
|
|
if (get)
|
|
param->pv.i = self->qos_rx.window_size.bits;
|
|
else
|
|
self->qos_tx.window_size.bits = (__u8) param->pv.i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_param_additional_bofs (instance, param, get)
|
|
*
|
|
* Negotiate additional BOF characters. This is a type 1 parameter and
|
|
* will be negotiated independently for each station.
|
|
*/
|
|
static int irlap_param_additional_bofs(void *instance, irda_param_t *param, int get)
|
|
{
|
|
struct irlap_cb *self = (struct irlap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
|
|
|
|
if (get)
|
|
param->pv.i = self->qos_rx.additional_bofs.bits;
|
|
else
|
|
self->qos_tx.additional_bofs.bits = (__u8) param->pv.i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_param_min_turn_time (instance, param, get)
|
|
*
|
|
* Negotiate the minimum turn around time. This is a type 1 parameter and
|
|
* will be negotiated independently for each station
|
|
*/
|
|
static int irlap_param_min_turn_time(void *instance, irda_param_t *param,
|
|
int get)
|
|
{
|
|
struct irlap_cb *self = (struct irlap_cb *) instance;
|
|
|
|
IRDA_ASSERT(self != NULL, return -1;);
|
|
IRDA_ASSERT(self->magic == LAP_MAGIC, return -1;);
|
|
|
|
if (get)
|
|
param->pv.i = self->qos_rx.min_turn_time.bits;
|
|
else
|
|
self->qos_tx.min_turn_time.bits = (__u8) param->pv.i;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Function irlap_max_line_capacity (speed, max_turn_time, min_turn_time)
|
|
*
|
|
* Calculate the maximum line capacity
|
|
*
|
|
*/
|
|
__u32 irlap_max_line_capacity(__u32 speed, __u32 max_turn_time)
|
|
{
|
|
__u32 line_capacity;
|
|
int i,j;
|
|
|
|
IRDA_DEBUG(2, "%s(), speed=%d, max_turn_time=%d\n",
|
|
__func__, speed, max_turn_time);
|
|
|
|
i = value_index(speed, baud_rates, 10);
|
|
j = value_index(max_turn_time, max_turn_times, 4);
|
|
|
|
IRDA_ASSERT(((i >=0) && (i <10)), return 0;);
|
|
IRDA_ASSERT(((j >=0) && (j <4)), return 0;);
|
|
|
|
line_capacity = max_line_capacities[i][j];
|
|
|
|
IRDA_DEBUG(2, "%s(), line capacity=%d bytes\n",
|
|
__func__, line_capacity);
|
|
|
|
return line_capacity;
|
|
}
|
|
|
|
#ifndef CONFIG_IRDA_DYNAMIC_WINDOW
|
|
static __u32 irlap_requested_line_capacity(struct qos_info *qos)
|
|
{
|
|
__u32 line_capacity;
|
|
|
|
line_capacity = qos->window_size.value *
|
|
(qos->data_size.value + 6 + qos->additional_bofs.value) +
|
|
irlap_min_turn_time_in_bytes(qos->baud_rate.value,
|
|
qos->min_turn_time.value);
|
|
|
|
IRDA_DEBUG(2, "%s(), requested line capacity=%d\n",
|
|
__func__, line_capacity);
|
|
|
|
return line_capacity;
|
|
}
|
|
#endif
|
|
|
|
void irda_qos_bits_to_value(struct qos_info *qos)
|
|
{
|
|
int index;
|
|
|
|
IRDA_ASSERT(qos != NULL, return;);
|
|
|
|
index = msb_index(qos->baud_rate.bits);
|
|
qos->baud_rate.value = baud_rates[index];
|
|
|
|
index = msb_index(qos->data_size.bits);
|
|
qos->data_size.value = data_sizes[index];
|
|
|
|
index = msb_index(qos->window_size.bits);
|
|
qos->window_size.value = index+1;
|
|
|
|
index = msb_index(qos->min_turn_time.bits);
|
|
qos->min_turn_time.value = min_turn_times[index];
|
|
|
|
index = msb_index(qos->max_turn_time.bits);
|
|
qos->max_turn_time.value = max_turn_times[index];
|
|
|
|
index = msb_index(qos->link_disc_time.bits);
|
|
qos->link_disc_time.value = link_disc_times[index];
|
|
|
|
index = msb_index(qos->additional_bofs.bits);
|
|
qos->additional_bofs.value = add_bofs[index];
|
|
}
|
|
EXPORT_SYMBOL(irda_qos_bits_to_value);
|