1
0
mirror of https://github.com/Amulet-Team/leveldb-mcpe.git synced 2024-11-24 01:46:16 +00:00
leveldb-amulet/table/merger.cc
Hans Wennborg 36a5f8ed7f A number of fixes:
- Replace raw slice comparison with a call to user comparator.
  Added test for custom comparators.

- Fix end of namespace comments.

- Fixed bug in picking inputs for a level-0 compaction.

  When finding overlapping files, the covered range may expand
  as files are added to the input set.  We now correctly expand
  the range when this happens instead of continuing to use the
  old range.  For example, suppose L0 contains files with the
  following ranges:

      F1: a .. d
      F2:    c .. g
      F3:       f .. j

  and the initial compaction target is F3.  We used to search
  for range f..j which yielded {F2,F3}.  However we now expand
  the range as soon as another file is added.  In this case,
  when F2 is added, we expand the range to c..j and restart the
  search.  That picks up file F1 as well.

  This change fixes a bug related to deleted keys showing up
  incorrectly after a compaction as described in Issue 44.

(Sync with upstream @25072954)
2011-10-31 17:22:06 +00:00

198 lines
4.8 KiB
C++

// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "table/merger.h"
#include "leveldb/comparator.h"
#include "leveldb/iterator.h"
#include "table/iterator_wrapper.h"
namespace leveldb {
namespace {
class MergingIterator : public Iterator {
public:
MergingIterator(const Comparator* comparator, Iterator** children, int n)
: comparator_(comparator),
children_(new IteratorWrapper[n]),
n_(n),
current_(NULL),
direction_(kForward) {
for (int i = 0; i < n; i++) {
children_[i].Set(children[i]);
}
}
virtual ~MergingIterator() {
delete[] children_;
}
virtual bool Valid() const {
return (current_ != NULL);
}
virtual void SeekToFirst() {
for (int i = 0; i < n_; i++) {
children_[i].SeekToFirst();
}
FindSmallest();
direction_ = kForward;
}
virtual void SeekToLast() {
for (int i = 0; i < n_; i++) {
children_[i].SeekToLast();
}
FindLargest();
direction_ = kReverse;
}
virtual void Seek(const Slice& target) {
for (int i = 0; i < n_; i++) {
children_[i].Seek(target);
}
FindSmallest();
direction_ = kForward;
}
virtual void Next() {
assert(Valid());
// Ensure that all children are positioned after key().
// If we are moving in the forward direction, it is already
// true for all of the non-current_ children since current_ is
// the smallest child and key() == current_->key(). Otherwise,
// we explicitly position the non-current_ children.
if (direction_ != kForward) {
for (int i = 0; i < n_; i++) {
IteratorWrapper* child = &children_[i];
if (child != current_) {
child->Seek(key());
if (child->Valid() &&
comparator_->Compare(key(), child->key()) == 0) {
child->Next();
}
}
}
direction_ = kForward;
}
current_->Next();
FindSmallest();
}
virtual void Prev() {
assert(Valid());
// Ensure that all children are positioned before key().
// If we are moving in the reverse direction, it is already
// true for all of the non-current_ children since current_ is
// the largest child and key() == current_->key(). Otherwise,
// we explicitly position the non-current_ children.
if (direction_ != kReverse) {
for (int i = 0; i < n_; i++) {
IteratorWrapper* child = &children_[i];
if (child != current_) {
child->Seek(key());
if (child->Valid()) {
// Child is at first entry >= key(). Step back one to be < key()
child->Prev();
} else {
// Child has no entries >= key(). Position at last entry.
child->SeekToLast();
}
}
}
direction_ = kReverse;
}
current_->Prev();
FindLargest();
}
virtual Slice key() const {
assert(Valid());
return current_->key();
}
virtual Slice value() const {
assert(Valid());
return current_->value();
}
virtual Status status() const {
Status status;
for (int i = 0; i < n_; i++) {
status = children_[i].status();
if (!status.ok()) {
break;
}
}
return status;
}
private:
void FindSmallest();
void FindLargest();
// We might want to use a heap in case there are lots of children.
// For now we use a simple array since we expect a very small number
// of children in leveldb.
const Comparator* comparator_;
IteratorWrapper* children_;
int n_;
IteratorWrapper* current_;
// Which direction is the iterator moving?
enum Direction {
kForward,
kReverse
};
Direction direction_;
};
void MergingIterator::FindSmallest() {
IteratorWrapper* smallest = NULL;
for (int i = 0; i < n_; i++) {
IteratorWrapper* child = &children_[i];
if (child->Valid()) {
if (smallest == NULL) {
smallest = child;
} else if (comparator_->Compare(child->key(), smallest->key()) < 0) {
smallest = child;
}
}
}
current_ = smallest;
}
void MergingIterator::FindLargest() {
IteratorWrapper* largest = NULL;
for (int i = n_-1; i >= 0; i--) {
IteratorWrapper* child = &children_[i];
if (child->Valid()) {
if (largest == NULL) {
largest = child;
} else if (comparator_->Compare(child->key(), largest->key()) > 0) {
largest = child;
}
}
}
current_ = largest;
}
} // namespace
Iterator* NewMergingIterator(const Comparator* cmp, Iterator** list, int n) {
assert(n >= 0);
if (n == 0) {
return NewEmptyIterator();
} else if (n == 1) {
return list[0];
} else {
return new MergingIterator(cmp, list, n);
}
}
} // namespace leveldb